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ABSTRACT

Within the field of synthetic biology, a rational de-
sign of genetic parts should include a causal un-
derstanding of their input-output responses––the so-
called transfer function––and how to tune them. How-
ever, a commonly adopted strategy is to fit data
to Hill-shaped curves without considering the un-
derlying molecular mechanisms. Here we provide
a novel mathematical formalization that allows pre-
diction of the global behavior of a synthetic device
by considering the actual information from the in-
volved biological parts. This is achieved by adopt-
ing an enzymology-like framework, where transfer
functions are described in terms of their input affin-
ity constant and maximal response. As a proof of
concept, we characterize a set of Lux homoserine-
lactone-inducible genetic devices with different lev-
els of Lux receptor and signal molecule. Our model
fits the experimental results and predicts the impact
of the receptor’s ribosome-binding site strength, as a
tunable parameter that affects gene expression. The
evolutionary implications are outlined.

INTRODUCTION

The advance of genetic engineering has made it possible to
modify genetic programs inside cells by re-designing them
in predefined ways (1). Synthetic biology has emerged as a
discipline in which modular biological parts are used for the
construction of genetic devices. As in any engineering disci-
pline, mathematical and computational models provide the
workbench to infer system-level behavior from the proper-
ties of the biological parts (2). Standard engineering pre-
dicts output responses of a device given a set of input sig-
nals and a specified internal set of pieces. Within synthetic
biology, the proper characterization of simple blocks in a

reliable way constitutes a major challenge for the building
of complex genetic devices (3–5).

The transfer function, a term borrowed from electronics,
is the representation of the relationship between the input
and the output of a system (6,7). This concept has been
translated within synthetic biology as the response of a reg-
ulable genetic device in the presence of a signal that acts
as the control variable of the system. In most relevant sce-
narios, nonlinear responses are often desirable in order to
implement the digital logic abstraction found in man-made
circuits. This can be achieved using mechanisms such as sat-
uration of biochemical systems (8), ultrasensitivity (9), mul-
tistability (10) and transcription factor cascades (11) among
others. Hill functions have been commonly used for the fit-
ting of experimental datasets in biochemistry (12), com-
putational biology, (13), pharmacology (14), systems and
synthetic biology (10,15–18). The success of this approach
comes from the fact that fitting data require little a priori
knowledge of the underlying biological mechanisms, and
provide quantitative information about affinity and coop-
erativity of the system (8).

In genetics, Hill-like functions come from the assumption
of cooperative effects due to transcription factor multimer-
ization (19) and can be derived from equilibrium calcula-
tions on ligand-receptor binding. However, in most cases,
its representation results from the correction of the hyper-
bolic Michaelis–Menten approach by adding an empirical
exponent n (14), written as

v

Vm
= [S]n

Sn
0.5 + [S]n

. (1)

As a consequence of its empirical nature, neither the origi-
nal Michaelis–Menten premises nor biological information
remains in the model, losing the link between the kinetic
parameters and biological mechanisms. Accordingly, mod-
els constructed by fitting have very limited predictive value
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beyond the exact conditions in which data were acquired.
Thus, the approximation taken is largely a heuristic one.

Design often requires iterative optimization steps. How-
ever, any device modification may lead to some type of un-
predictable behavior, forcing further empirical characteriza-
tion. Unfortunately, such a circumstance is not rare in the
process of construction and testing of a genetic device (4).
Hence, there is a need for a more suitable framework that
allows predictions and avoids time-consuming data collec-
tion.

In this regard, the Michaelis–Menten approach (20) may
offer an inspiring alternative to the broadly accepted Hill
fitting. Interestingly, the transfer function concept fairly
matches the substrate-velocity plot for enzymatic catalysis.
This classical plot constitutes a clever characterization of
enzyme kinetics, connecting a simple experimental setup
with a biochemically grounded model, based on very pre-
cise premises. In that way, an analogous perspective for ge-
netic devices would confer to transfer functions a desir-
able predictive value. The aim of this work is to establish a
quantitative relation between input’s affinity, signal ampli-
tude and the variation of the control variable (i.e. induction
molecules). In order to provide an experimental validation,
we shall compare our model predictions with the character-
ization of an engineered device: the Lux system.

The quorum sensing Lux system has been extensively
used in synthetic biology (15,16,21). With a sophisticated
regulation in nature (22), its engineered versions have been
restricted to the transcriptional level, to which a Hill-like
behavior with a wide range of cooperativities has been re-
ported (7,13,16,23).

When we look at the biochemical characterization, the in-
teraction of LuxR dimer with 3-oxo-C6-homoserine lactone
(3OC6HSL) induces the binding to promoter (24). This pro-
cess is mediated in a noncooperative manner by 3OC6HSL,
as suggested by studies in Lux and its Car homolog systems
(25,26). Interestingly, receptor without lactone cognate is
able to bind the DNA promoter (27), suggesting that some
expression mediated by free receptor may occur. This sce-
nario, schematically represented in Figure 1A, provides a
starting point for a more biologically meaningful model of
this system. However, one issue remains: the ability to con-
trol and manipulate the elements of the device.

From an engineering perspective, modularity and orthog-
onal function of genetic parts is the key for the construction
of tailored devices. At this point, the ribosome-binding sites
(RBSs) are useful elements to control the efficiency of the
translation of the mRNA pool. Efforts on the characteriza-
tion of RBSs variants for different organisms have provided
valuable information for the choice of one or another RBS
in a genetic system (28). A comparison of the effect of these
parts in the expression of the final output is given by its rel-
ative strength, which is calculated using a standard value of
expression as a reference for normalization (29). The use of
different RBSs constitutes a common way to modulate the
expression of a particular gene. But what is the impact of
RBS changes on the behavior of a device?

To tackle this question, our work presents an
enzymology-like approximation that allows us to explore
the role of different RBSs in a genetic pLux-LuxR-inducible
circuit. This study shows how tunable parts of the device,

Figure 1. Schematic representation of genetic regulation for the inducible
LuxR-pLux engineered devices used in this study. Notation follows the
mathematical model: R LuxR receptor, L lactone, and P pLux promoter,
R2 dimerized receptor without lactone, Q dimerized receptor with lactone,
SR transcriptional complex not mediated by lactone, SL lactone mediated
transcriptional complex, mG mRNA of reporter gene and G reporter pro-
tein. The Ki notation represents equilibrium constants, while ki refers to
kinetic constants (A). Genetic architecture of the three constructs analyzed
(B).

such as the expression of receptor, modulate the transfer
function in a completely predictable manner. As a proof
of concept, an experimental characterization and a further
mathematical modeling of an inducible genetic device
is presented. This picture more close to the biological
mechanism suggests some limitations of the convencional
Hill fitting approach.

MATERIALS AND METHODS

Bacterial strains and growth conditions

Cloning and expression experiments were performed in Es-
cherichia coli Top10 (Invitrogen, USA). Cells were grown
in Lysogeny Broth (LB) at 37◦C and selected with appro-
priate antibiotics (chloramphenicol 340 �g/ml; kanamycin
250 �g/ml; or ampicilin 100 �g/ml; Sigma, USA). Bacterial
strains were preserved in LB glycerol 20% (v/v) at −80◦C.

Construction of 3OC6HSL Lux genetic devices

Cloning was carried out using the Biobrick assembly
method and the parts from the Spring 2010 iGEM distribu-
tion. The biobrick parts used in this study were the follow-
ing: B0014 (double terminator), B0034 (strong RBS), B0032
(medium RBS), B0033 (weak RBS), R0040 (tetracycline
promoter, pTet, as a constitutive promoter), R0062 (Lux
promoter, pLux), C0062 (LuxR coding sequence), E1010
(red fluorescence protein, RFP), E0040 (green fluorescence
protein, GFP). Biobrick cloning was performed using an
assembly kit (Ginkgo Bioworks, USA).

Three genetic devices were built, composed of a
common 3OC6HSL inducible part followed by three
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Figure 2. Transfer function acquisition RBSrptor (medium) construct. A
3D chart showing response measurements of RFP expression along time
at different [3OC6HSL] (A). Time series of normalized RFP expression.
Colors (from black to red) indicate different times in the experiment, from 1
to 14 h (B). Estimation of the time regime for transfer function acquisition
(C). In a green scale, the value of S for the eight different [3OC6HSL]. In
blue, α value accounting for the overall signal variation along time. The
shaded area shows the time region in which we assume the steady state has
been reached.

variants of a constitutive part, as illustrated in Fig-
ure 1B. On one hand, the inducible construct had the
following structure: B0014-R0062-B0032-E1010; on the
other hand, there were three variants of the consti-
tutive part, cloned as B0014-R0040-X-C0062-X-E0040-
B0014, where X corresponds to the three aforemen-
tioned alternative variants: B0034, B0032 and B0033 (la-
beled as strong, medium and weak, respectively). Techni-
cal details about the relative strength of these RBSs are
taken from http://parts.igem.org/Ribosome Binding Sites/
Prokaryotic/Constitutive/Community Collection. As de-
tailed in the part registry, the B0034 part was used as a
standard for normalization. Therefore the relative strengths
used in this work were 1, 0.3 and 0.03 for B0034, B0032 and
B0033, respectively. All constructs were included in the Bio-
bricks high copy number plasmid (pSB1AK3) and trans-
formed by chemical method. In the case of the experiments
with no receptor (see Figures 3C and 5B), a construct bear-
ing only the inducible part within the same plasmid was
used. All genetic constructs were confirmed by Sanger se-
quencing.

Figure 3. Transfer function varying RBS at receptor. Open circles in the
X-axis indicate the Kn

0.5 according to the fitting. Arrows in the right side
of the chart show the induction with respect to basality according to fit-
ted equations (A). Effect of [3OC6HSL] on ΘGFP, as an estimator of re-
ceptor expression. The bottom chart is a zoom of medium and weak con-
structs. Arrows in the right side of the charts indicate the variation between
minimum and maximum value of ΘGFP. Asterisk indicates that ΘGFP was
very close to zero giving rise to negative values. In this case, variation was
calculated using the lowest positive value (B). Leakiness of constructs at
[3OC6HSL] = 0 M (C).

Fluorescence assays for gene expression determination

Strains containing the plasmid of interest were grown
overnight in LB ampicillin at 37◦C and continuous shak-
ing. A 1000-fold dilution from overnight culture was grown
until exponential phase, OD660 ≈ 0.4. Cultures were cen-
trifuged at 4000 g, during 5 min and resuspended in fresh LB
ampicillin up to an OD660 = 0.3. Incubation for in vivo mea-
sures was carried out by transferring 100 �l of the diluted
cultures and 100 �l of LB ampicillin with the appropriate
3OC6HSL (N-[�-ketocaproyl]-L-homoserine lactone; Cay-
man Chemical Company, USA) concentrations into a flat
bottom 96-well microplate (Nunc, Thermo Fisher Scien-
tific, USA). LB without cells was included in the incuba-
tion as a background control for both fluorescence and ab-
sorbance.

Gene expression was monitored in time for a battery of
3OC6HSL concentrations by quantification of the RFP.
LuxR was indirectly reported by measuring the concomi-
tant expression of GFP placed in tandem with LuxR (Fig-
ure 1B). Incubation and measures of bacterial cultures dur-

http://parts.igem.org/Ribosome_Binding_Sites/Prokaryotic/Constitutive/Community_Collection
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Table 1. Data fitting for the parameters using Hill function approach and the enzymology-like model assuming leakiness

RBSrptor a b (× 104) K0.5 (× 10−8) M n r2 a1 (× 104) a2 (× 10−10) M a3 (× 10−8) M r2

Strong 638 ± 1990 3.6 ± 0.3 1.5 ± 8.9 0.93 ± 0.16 0.96 3.6 ± 0.1 3.2 1.5± 0.7 0.95
Medium 404 ± 2103 3.8 ± 0.3 2.3 ± 4.8 0.97 ± 0.13 0.95 4.0 ± 0.2 4.0 2.6 ± 1.1 0.95
Weak 215 ± 1605 4.1 ± 0.3 22 ± 59 0.99 ± 0.23 0.96 4.1 ± 0.2 12.7 22.0 ± 6.8 0.96

ing characterization were performed on a Synergy MX mi-
croplate reader (BioTek Instruments, USA) every 10 min for
14 h. Fluorescence measures for RFP (ex: 578 ± 9 nm, em:
616 ± 9 nm) and GFP (ex: 478 ± 9 nm, em: 516 ± 9 nm) with
gain 70 were carried out, as well as optical density (OD at
660 nm) measures. Incubation was done at 37◦C with con-
tinuous orbital shaking (medium intensity). 3OC6HSL con-
centration conditions were prepared from an initial stock at
10−2 M (3:1, phosphate buffered saline:ethanol). Serial di-
lutions in LB ampicillin ranging from 10−4 to 10−10 M were
prepared the day of the experiment.

Data transformation and Hill function fitting

Sample absorbance and fluorescence readings (OD660(S),
f(S)) were corrected using signal background control
(OD660(B), f(B)). Averaged data were obtained from six in-
dependent experiments. As described in (18), output signal
Θ i was calculated according to the formula:

�i = fi(S) − fi(B)
OD660(S) − OD660(B)

(2)

where i refers to GFP or RFP. The value Θ corresponds,
with a factor of proportionality, to the concentration of the
fluorescent protein i per cell. Matlab R2013a software was
used for fitting according to the following formula, assum-
ing a cooperative behavior and signal basality:

�RFP = a + b[3OC6HSL]n

Kn
0.5 + [3OC6HSL]n

(3)

Nonlinear least squares were computed using the trust re-
gion algorithm with default settings.

Time series and signal variation computation

A normalized value of ΘRFP, ΘRFP(norm), was calculated
for every time step as following: given a time, ΘRFP for
each [3OC6HSL] was divided by the maximal value. We de-
fined signal variation, S, as the coefficient of variation of
ΘRFP(norm) in a time interval. Evolution of S over time was
calculated using a moving window, consisting of five points
of ΘRFP(norm), therefore capturing the information of 50
min in total.

The relation between the values of S for the differ-
ent [3OC6HSL] was evaluated using the estimator α. This
value, defined as the standard deviation of the different S
curves, was used to establish the region of the steady-state
condition for transfer function acquisition. According to α
analysis, the time for the transfer function acquisition was
set at 14 h, applying a gain 75 for fluorescence measures.

RESULTS

Transfer function acquisition

The exact time for transfer function acquisition is often
arbitrary and still constitutes an open issue (7,30). As an
illustrative case, Figure 2A shows the evolution of ΘRFP
along time for different [3OC6HSL] for the construct with
the RBSrptor (medium). Similar qualitative behavior was ob-
served in the other two constructs (data not shown). Repre-
sentation of ΘRFP(norm) of the different [3OC6HSL] curves
allowed a qualitative comparison of the transfer function
along time. Figure 2B shows how the transfer function con-
verged (from black to red lines) to a more and more signal
overlap.

After the introduction of 3OC6HSL, cells require time
for protein production and maturation. At the steady state,
i.e. �Θ/�t ∼ 0, production is compensated by degradation
processes, giving rise to a constant value of Θ along time.
However, given any arbitrary interval time �t, �Θ consists
of the genetic behavior due to the actual change associated
to protein production and the noise associated to the mea-
sure in that interval. This imposes a limitation for the appli-
cation of the steady state definition.

To overcome this limitation, we used S as a way to es-
tablish a practical definition for the steady-state condition
from experimental data (see Materials and Methods section
for definition). As at the steady state biological signal does
not contribute to the variation of the output, this one must
be given only by noise. In Figure 2C, where the time evolu-
tion ofS for every [3OC6HSL] (labeled from black to green)
is shown, one can see how dispersion values depended on
time but also on [3OC6HSL] (inversely proportional). The
differences among S curves were captured in the time evo-
lution of α value (see Materials and Methods section), rep-
resented by a blue thick line in Figure 2C. Looking at α, we
could arbitrarily select a threshold to define the time when
the steady steady is assumed for the transfer function ac-
quisition. This mathematical transformation allowed us to
usefully collapse the information about the level of fluctua-
tions in a single curve. In our study, we chose a final point at
14 h to perform the transfer function characterization and
further modeling fitting.

Characterization of the pLux device varying RBSrptor

In order to modulate the strength of gene expression, we
characterized a set of constructions using different RBSrptor
as illustrated in Figure 1B. The characterization of the re-
spective transfer functions is summarized in Figure 3. The
amount of output in response to [3OC6HSL] suggested a
noncooperative effect, i.e. n ≈ 1 (see Figure 3A and Table 1
for numerical details). Furthermore, the results showed a
decrease of the turning point when stronger RBSrptor were
used.
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The expression of receptor monitored by fluorescence
measurements of the GFP tandem construction (Figure 1B)
showed how the receptor expression was practically un-
affected in RBSrptor (medium) and RBSrptor (weak) con-
structs. However, a significant decrease of ΘGFP was ob-
served in the case of the RBSrptor (strong) construct.

Measures with zero ligand concentration produced a
basal signal. Such a response was also dependent on the
strength of the receptor, as shown in Figure 3C. The analy-
sis of constructs without receptor also produced a basal ex-
pression, independently of lactone concentration. This sug-
gests that the engineered pLux alone was able to promote
the expression without receptor.

Enzymology-based model premises

The mathematical model for the inducible device was estab-
lished according to the following premises:

� Transfer function is evaluated at the steady state where a
single stable fixed point is expected.

� Concentrations of molecular species regarding the ge-
netic device, i.e. receptor, promoters and transcriptional
and translational machinery, remain invariable along
time.

� Total promoter concentration [PT] is much smaller than
the total transcriptional activator receptor [RT].

� Ligand concentration [L] (the input) is assumed invari-
ant in time and, according to the previous premise, large
enough to consider that the bound part is negligible with
respect to the total one, i.e. [L] ≈ [LT].

� Genetic devices work under the condition in which its
load neither affects the behavior of the cell nor causes
a limitation of resources. Metabolic burden is therefore
not included in the formalization.

� The parts of the genetics device have an orthogonal func-
tionality, i.e. the components perform one predefined
function and they have not got undesirable interactions
with the other cellular components. Therefore, they per-
form the expected behavior.

Besides these general assumptions, for our specific LuxR
device and according to the results shown in the previous
section, we shall consider the biological mechanism shown
in Figure 1A. In agreement to this, RFP expression is modu-
lated by lactone concentration and both luxR-independent
and luxR-dependent leakiness are also considered. In order
to provide a more understandable view of this characteriza-
tion, we formulate a mathematical model using the former
set of enzimology-inspired premises.

A simple model predicts the role of the RBSrptor strength in
output amplitude and turning point

Departing from the genetic circuit illustrated in Figure 1A,
our model considers a process of sensing a molecule L by
joining with a dimeric receptor R2. It is worth mentioning
that the requirement of more than one L molecule would in-
troduce a power over [L]. For the sake of simplicity, we shall
assume that one ligand molecule is enough for receptor’s ac-
tivation and further addition has no impact on the behavior

of active receptor complex. This assumption is supported
by the noncooperative process observed in our experimen-
tal characterization and by the reported evidence previously
mentioned in the Introduction section.

In this simplified version, we assume that leakiness due
to receptor binding and naked promoter does not occur, i.e.
km0 = 0 and K2 = 0. The reactions considered in this simple
scenario are:

R + R � R2 =⇒ K0 = [R2]/[R]2 (4)

L + R2 � Q =⇒ K1 = [Q]/([R2][L]) (5)

Q + P � SL =⇒ K3 = [SL]/([Q][P]), (6)

giving rise to the following differential equations:

d[mG]
dt

= kmL[SL] − kmd[mG] (7)

d[G]
dt

= kp[mG] − kpd[G]. (8)

At the steady state, d[mG]/dt = d[G]/dt = 0, [G*] can be
written as a function of the active complex [SL]:

[G∗] = kpkmL

kpdkmd
[SL]. (9)

Now we need to obtain a mathematical expression of [G*]
in terms of the control variables of this model, i.e. [L], [RT]
and [PT]. These correspond to [3OC6HSL] concentration,
externally fixed in the experimental setup; amount of LuxR,
kept invariant by its constitutive expression ([RT]); and the
number of Lux promoters ([PT]), defined by a constant pop-
ulation of plasmids.

In this simple model, [RT] is a function of [R2T], as de-
tailed in the mathematical appendix. For the sake of sim-
plicity and according to the biology of the system, we as-
sume that the process of dimerization is prior to the bind-
ing with the ligand. Furthermore, we mathematically im-
pose that the ligand interaction has a negligible effect on
the equilibrium between dimer and monomer. According
to this, we define two conservation equations:

[R2T] = [R2] + [Q] + [SL] (10)

[PT] = [P] + [Q] + [SL], (11)

where by the assumption of [RT] � [PT], [SL] is not consid-
ered in (10). Applying the equilibrium constant definitions
(5) and (6), we rewrite the [SL] expression and the conserva-
tion Equations (10) and (11) as

[SL] = K1 K3[P][R2][L] (12)

[R2T] = [R2](1 + K1[L]) (13)

[PT] = [P](1 + K1 K3R2[L]). (14)

According to these equations, we can rewrite [SL] in func-
tion [R2T] and [PT] in Equation (9), giving rise to the expres-
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Figure 4. Transfer function for four different φ according to the simplified
model without leakiness. Upper dotted line corresponds to the maximum
achievable expression. Lower dotted line shows the Gapp

m /2 as function of
φ. The intersections with the transfer functions (little open circles) high-
light the Gapp

m /2 for the four transfer functions. Their projections over the
[L] axis show their respective Kapp values (bigger open circles) (A). Depen-
dence of Kapp and Gapp

m with respect to the value of φ. Note that when φ ∼
0, Kapp ∼ K−1

1 and Gapp
m ∼ 0. The gray area corresponds to φ � (K3r′)−1.

In this region Gapp
m acquires the maximum value and Kapp decays as the

inverse of φ (B). Parameters for the simulation were: K1 = 0.2 �M−1, K3
= 1 �M−1, r′ = 100 �M and γ gkmL[PT] = 100 �M.

sion

[G∗] = γ gkmL[PT][R2T]

K−1
3 + [R2T]

⎛
⎜⎝ [L](

K−1
1

1+K3[R2T]

)
+ [L]

⎞
⎟⎠ , (15)

where γ and g are groups of kinetics constants as detailed
in Equations (35) and (36) of the mathematical appendix.
[R2T] can also be written as a function of the normalized
RBS strength (φ), with respect to the canonical RBS part
(see the mathematical appendix for further details). Now,
by defining

Gapp
m = γ gkmL[PT]

φ

(K3r ′)−1 + φ
(16)

Kapp = K−1
1

(K3r ′)−1

(K3r ′)−1 + φ
, (17)

we obtain a more compact expression in a familiar
Michaelis–Menten form:

[G∗] = Gapp
m

[L]
Kapp + [L]

. (18)

Interestingly, the model allows us to define the maximum
expression of the reporter (Gapp

m ) and the affinity constant
of the device (Kapp) as functions of the normalized strength
of the RBS receptor (φ). According to the expressions (16),
(17) and (18), Figure 4 illustrates the Michaelian effect of [L]
and φ in the device. Notice that Gapp

m reaches its maximum

Figure 5. Transfer function (A) and basal expression (B) obtained from
fitting our mathematical model including leakiness with real data. It ex-
plains the effect of receptor in amplitude signal and ligand affinity. Arrows
show the times of variation from the ratio of Gm/G0 from fitted model
equation. Model was manually fitted to data using the following param-
eter values: γ km0[PT] = 85 M, K2r′ = 5, K3r′ = 500, εR = 10, εL = 10
and K−1

1 = 3 × 10−6 M. Pearson test was applied to the different con-
structs giving the following correlation coefficients: 0.996, 0.987 and 0.987
for weak, medium and strong, respectively. Comparison of model and real
data leakiness in the panel (B) gave a correlation coefficient of 0.984.

value when φ � (K3r′)−1 is satisfied (gray region in the Fig-
ure 4B). Under such a condition, the affinity of the device
increases, reducing the value of Kapp as φ−1 (see Figure 4B).

In this model, Gapp
m ranges from zero at φ = 0 to a max-

imal value, determined by the efficiency of the machinery,
formally γ gkmL[PT]. Conversely, Kapp at φ = 0 acquires its
maximum value K−1

1 , corresponding with Gapp
m = 0.

It is worth mentioning that extreme cases address an ideal
trend and they would not match real behavior. This is due to
considerations of the simple model, such as the availability
of ligand and resources, as well as the extreme variation of
the φ values, which are far to be satisfied under physiological
conditions. Unlike Hill approximation, this simple equation
allows us to see in a qualitative way the role of this device
according to the variation of its components.

It is worth to note the similarity of equation (18) with
the so-called reversible acompetitive inhibition in enzymol-
ogy (8). Input affinity and signal amplitude is affected in a
saturable way by the RBS strength as it occurs with the in-
hibitor in the enzymological model. However, in our case
such a dependence occurs in an activatory fashion.

Mathematical model including leakiness predicts the effect of
receptor on output basality

The model presented in this section is a generalization
of the previous one. In contrast to the simplified version,
this model incorporates two lactone-independent expres-
sion pathways: one mediated by the free receptor and an-
other by the naked promoter. Departing from the chemical
reactions previously presented in Equations (4), (5) and (6),
we now add the following binding equilibrium:

R2 + P � SR =⇒ K2 = [SR]/([R2][P]). (19)
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The concentration of the protein reporter [G] is de-
termined by the equation based on the intermediates
species––including the free promoter activity mediated by
km0––as described in the following ODEs:

d[mG]
dt = km0[P] + kmR[SR] + kmL[SL] − kmd[mG] (20)

d[G]
dt = kp[mG] − kpd[G]. (21)

Analogously to the simple model, we shall write an expres-
sion of [G*] based on equilibrium constants and total con-
centration of the chemical species. As detailed in the math-
ematical appendix, the resulting expression in its compact
version is:

[G∗] = a1

(
a2 + L
a3 + L

)
, (22)

where a1, a2 and a3 are functions of φ (detailed in Equa-
tions (53), (54) and (55) of the mathematical appendix), ac-
counting for amplitude signal, basality and ligand affinity,
respectively.

By considering the two limit cases [L] = 0 and [L] = ∞
of the (22) and defining the turning point as that [L] = L0.5
for Gm/2, we connect mathematical parameters with mea-
surable values of the transfer function as follows:

G0 = a1a2

a3
= γ gPT

km0 + kmR K2r ′φ
1 + K2r ′φ

(23)

Gm = a1 = γ gPT
km0 + kmL K3r ′φ

1 + K3r ′φ
(24)

L0.5 = a3 − 2a2. (25)

The parameters G0, Gm and L0.5 correspond to the basal
expression, maximal expression and turning point, respec-
tively. Continuous lines in Figure 5A show that the effect
of φ is similar to the observed one from the simple model
behavior for signal amplitude (Gm) and turning point (L0.5)
(see Figure 4A for comparison). Leakiness by free receptor
gives rise to a basal signal at [L] = 0 that also depends on φ
in a saturable way, according to Equation (23).

This expression, although less treatable than the simpler
version, offers a predictable behavior useful for data fitting.
Figure 5 shows the fitting of experimental data using values
of normalized strength for the strong (φ = 1), medium (φ
= 0.3) and weak (φ = 0.03) RBS parts, as are described in
the parts registry collection (see Materials and Methods).
The fitting using the Equation (22) gave a basal output and
turning point that fairly matched the experimental values
(see Table 1). In the same way, amplitudes from the model
and the experiments followed a similar trend as suggested by
Pearson correlation between data and the model, as detailed
in Figure 5.

DISCUSSION

Despite the potential applicability of Synthetic Biology in
biomedicine and environmental issues, a proper character-
ization of global behavior of devices in a reliable and pre-
dictable way is missing. In this regard, the use of biological

meaningful models allows us to determine the behavior of
tunable genetic devices.

Inspired by well established formal approaches from en-
zymology, our results show that the impact of tunable parts
such as the RBS receptor, the plasmid copy number (which
would modulate [PT]) and even the RBS directly affecting
RPF, can be predictably studied without the use of the Hill
function approach. From an engineering perspective, the
model reveals that the sensation by an inducible device can
be adjusted by varying the receptor levels. A strategy based
on the changes of the receptor expression is worth consid-
ering rather than complicated protein engineering.

Interestingly, the model offers a suitable explanation
about the lack of cooperativity observed in the experimental
results: only one molecule of lactone is required for the ac-
tivation complex. This is in agreement with evidence found
in literature for Lux and homologous quorum sensing re-
ceptors. The free ligand receptor formation allows us to ex-
plain the leakiness mediated by free receptor described in
this work. Such evidence provides some concerns about the
behavior of the engineered Lux device, specially when pos-
itive cooperativity is desired (13,15).

Noteworthy, for the RBSrptor (strong) we observed a re-
duction in the receptor levels, despite its expression took
place under a constitutive promoter. This reduction may af-
fect the device response when scaling up the system. These
experimental results may suggest the existence of an indirect
negative interaction between inducible gene expression, in
our case RFP, and other nonregulated genes, such as LuxR.
We speculate that the metabolic load associated to device in-
duction could be responsible for this behavior. Looking at
Figure 5B, the higher levels of basal RFP expression in con-
structs with and without LuxR in absence of lactone can
be interpreted in similar terms. This latter example illus-
trates the possibility that experimental setup may not ad-
just well to our model premises, being the nonorthogonal-
ity of genetic devices another possible source of discrepan-
cies. The predictive value of the model precisely relies on
the assumption that its premises are fulfilled, and therefore
deviations from the expected behavior could be a hint that
some premises are broken. Further research incorporating
factors such as metabolic load and crosstalks might improve
the predictive capabilities of the model.

Bearing all this in mind, principles of organization de-
scribed in this work may offer an evolutionary insight, in
particular, in processes of adaptation or even the emergence
of some type of diseases. According to our results, muta-
tions at the level of receptor expression may offer a finer tun-
ing process than those occurring at the polypeptidic chain
of the receptor. In this context, the work provides a proof
of concept for an interesting evolutionary perspective of the
principles of biological design extracted from a synthetic bi-
ology approximation.

CONCLUSION

The use of an enzymology-based approach provides a
framework for the study and reliable characterization of
synthetic devices uncovering interesting connections of the
principles of organization of natural systems. Further work
on the extension of an enzymological approach to the study
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of more complex genetic behaviors would be of great inter-
est for the controllability and development of new synthetic
genetic devices.
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MATHEMATICAL APPENDIX

According to the chemical reactions described in Equations
(4), (5), (19) and (6), the expression of the protein reporter
[G] (which can be tuned by the modification of the RBS
parts of the genetic device) is determined by two parts: one
constitutive, related to the receptor expression [RT] and an-
other one inducible, affected by the presence of ligand [L].

DERIVATION OF THE CONSTITUTIVE EXPRESSION
OF THE RECEPTOR IN RELATION TO THE RELATIVE
RBS STRENGTH

We assume that the receptor expression is controlled by a
constitutive promoter with a linear degradation of the gene
product. Prefixes m and p are used for transcription and
translation of related species and kinetic constants, respec-
tively. The resulting equations for the receptor are split in
its transcription and translation processes as follows:

d[mRT]
dt

= k′
m0 − k′

md[mRT] (26)

where [mRT] is the mRNA species that, at the steady state,
is defined as [mR∗

T] = k′
m0/k′

md. The translation process is
described by the following ODE and the respective steady
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state for the value of total receptor concentration:
d[RT]

dt = k′
p[mRT] − k′

pd[RT] (27)

[R∗
T] = k′

pk′
m0/(k′

mdk′
pd). (28)

Normalizing k′
p by the kinetic constant of the canonical

RBS sequence B0034 (cita web) denoted by ko
p we get that

k′
p = φko

p. In this way we define φ as the relative strength of
a particular RBS part, respecting the canonical sequence.
Grouping all the constants except φ we obtain

r = ko
pk′

m0/(k′
mdk′

pd). (29)

Then, we can express [R∗
T] as a function of φ as follows

[R∗
T] = φr. (30)

DERIVATION OF THE INDUCIBLE PART

According to the chemical reactions described in Equations
(4), (5), (6) and (19), the expression of the protein reporter
[G], is determined by the following equation:

d[G]
dt

= k0[P] + kR[SR] + kL[SL] − kd[G]. (31)

In this equation, we capture by order of the summations:
(i) the basal expression due to the naked promoter [P], (ii)
the expression by the promoter bound to receptor without
ligand [SR], (iii) the promoter bound ligand-receptor com-
plex, denoted as [SL] and (iv) the natural degradation of the
protein [G]. Processes of transcription and translation are
collapsed in the following kinetic constants for the alterna-
tive types of G synthesis: k0, kR and kL. This is possible by
the steady-state assumption also for the RNA species. Tran-
scription and translation processes are defined by these two
ODEs:

d[mG]
dt = km0[P] + kmR[SR] + kmL[SL] − kmd[mG] (32)

d[G]
dt = kp[mG] − kpd[G]. (33)

Giving rise to the value of the protein G at the steady state:

[G∗] = kp/(kmdkpd (km0[P] + kmR[SR] + kmL[SL])) (34)

We now normalize kp by ko
p, obtaining a relative strength

for the RBS of the inducible part, defined as

γ = kp/ko
p . (35)

By grouping some kinetic constants we get

g = ko
p/(kmdkpd) (36)

obtaining the following expression:

G∗ = γ g (km0[P] + kmR[SR] + kmL[SL]) (37)

where γ represents the normalized RBS strength used in a
particular construct. Now we shall proceed to get an expres-
sion in terms of parameters of the system. For the sake of
simplicity, we will start with obtaining the expression as a
function of R2 and then to give the final expression in terms
of the RBS strengths. This provides a more tractable and
intuitive expression for the behavior of the gene expression.

According to model premises, [RT] and [PT] satisfy the fol-
lowing conservation expressions:

[RT] = [R] + [R2] + [Q] + [SR] + [SL] (38)

[PT] = [P] + [SR] + [SL]. (39)

[RT] � [PT], [SR] and [SL] are not considered in Equation
(38) giving rise to a simpler equation:

[RT] = [R] + [R2] + [Q]. (40)

Taking the equilibrium constants of Equations (4), (5), (19)
and (6), we express [SR], [SL] and [Q] in function of [R2T]
and [L] and [P]:

[Q] = K1R2[L] (41)

[SR] = K2[P][R2] (42)

[SL] = K3 K1[P][R2][L]. (43)

Now, from the equation conservation defined in Equation
(40), we replace the [Q] expression of the Equation (41) and
we get

[R2] = [R2T]
(1 + K1[L])

. (44)

Now, from the conservation equation of [PT] (see Equation
(11)) we derive the expression of [P] by replacing [SR] and
[SL] from Equations (42) and (43). Accordingly, we obtain

[P] = [PT]
(1 + (K2 + K1 K3[L])[R2])

(45)

Replacing [Q], [SR] and [SL] from Equations (41), (42) and
(43), and [P] from (45) in Equation (37), we obtain after re-
ordering

[G∗] = γ gPT
km0 + (kmR K2 + kmL K1 K3[L]) [R2]

1 + (K2 + K1 K3[L])[R2]
. (46)

Now, replacing [R2] by the eq. (44) we obtain

G∗ = γ g[PT](σ1 + σ2L)
σ3 + σ4L

(47)

where

σ1 = km0

R2T
+ kmR K2, σ2 = km0 K1

R2T
+ kmL K1 K3 (48)

σ3 = 1
R2T

+ K2, σ4 = K1
R2T

+ K1 K3. (49)

We can rewrite Equation (47) as follows

G∗ = γ gPT
σ2

σ4

(
σ1/σ2 + L
σ3/σ4 + L

)
(50)

and we finally obtain the expression (18) by defining

a1 = γ gPTσ2/σ4 a2 = σ1/σ2 a3 = σ3/σ4. (51)
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RELATION BETWEEN [R2T] AND [RT]

For the [R2T] value, the simplification allows to establish a
constant relation with [RT] just solving the second degree
equation: 4K0[R2T]2 + (1 − 4K0[RT])[R2T] + K0[RT]2 = 0.
Taking the positive solution of the equation and assuming
that K0 � 1, we obtain

[R2T] ≈ [RT]
2

= φr
2

= φr ′. (52)

For the general case, rewriting (51) applying (52) we obtain
the expressions

a1 = γ g[PT](km0 + kmL K3r ′φ)/(1 + K3r ′φ) (53)

a2 = K−1
1

(
km0 + kmR K2r ′φ
km0 + kmL K3r ′φ

)
(54)

a3 = K−1
1 (1 + K2r ′φ)/(1 + K3r ′φ)). (55)

Simplified model (15) can be similarly treated applying (52)
to obtain (18).
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