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Abstract
Lactate’s role in the brain is understood as a contributor to brain
energy metabolism, but it may also regulate the cerebral
microcirculation. The purpose of this systematic review was to
evaluate evidence of lactate as a physiological effector within
the normal cerebral microcirculation in reports ranging from
in vitro experiments to in vivo studies in animals and humans.
Following pre-registration of a review protocol, we systemati-
cally searched the PubMed, EMBASE, and Cochrane data-
bases for literature covering themes of ‘lactate’, ‘the brain’, and
‘microcirculation’. Abstracts were screened, and data extracted
independently by two individuals. We excluded studies evalu-
ating lactate in disease models. Twenty-eight papers were
identified, 18 of which were in vivo animal experiments (65%),
four on human studies (14%), and six on in vitro or ex vivo

experiments (21%). Approximately half of the papers identified
lactate as anaugmenter of the hyperemic response to functional
activation by a visual stimulus or as an instigator of hyperemia in
a dose-dependent manner, without external stimulation. The
mechanismsare likely to be coupled toNAD+/NADH redox state
influencing the production of nitric oxide. Unfortunately, only
38% of these studies demonstrated any control for bias, which
makes reliable generalizations of the conclusions insecure. This
systematic review identifies that lactate may act as a dose-
dependent regulator of cerebral microcirculation by augmenting
the hyperemic response to functional activation below 5 mmol/
kg, and by initiating a hyperemic response above 5 mmol/kg.
Keywords: brain, cerebral blood flow, lactate, microcircu-
lation, systematic review.
J. Neurochem. (2019) 148, 712--730.

Lactate is an ubiquitous molecule in mammalian systems
produced solely by lactate dehydrogenase (LDH), from
pyruvate and reduced nicotinamide adenine dinucleotide
(NADH) (Veech 1991). Its role in the brain is typically
associated with neural energetics and the controversial
astrocyte-neuron lactate shuttle hypothesis (Dienel 2011,
2017; M€achler et al. 2016). Lactate is the endogenous
agonist of the hydroxycarboxylic acid-1 (HCA1) G-protein
coupled receptor, present on endothelial cell membranes,
pericytes, astrocytes, and synaptic spines (Blad et al. 2011;
Lauritzen et al. 2014; Morland et al. 2017). Evidence from
our laboratory indicates that lactate is produced as a
consequence to differential transport of glucose and oxygen
across the blood–brain barrier (Angleys et al. 2016).
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In brain tissue, proton-coupled lactate transport via
monocarboxylate transporters (Bergersen 2015) and lactate
exchange via ion channels (Sotelo-Hitschfeld et al. 2015;
Karagiannis et al. 2016; Hadjihambi et al. 2017) suggest a
broader role of lactate as a signaling molecule. Accordingly,
lactate modulates neuronal excitability (Sotelo-Hitschfeld
et al. 2015) and is also thought to act as a volume
transmitter, coordinating energy metabolism and blood flow
in the brain and other organs, possibly via mechanisms that
involve NADH and hence cellular redox state (Bergersen and
Gjedde 2012; Mosienko et al. 2015; Proia et al. 2016).
Given the complexity of the mechanisms that control
cerebral blood flow (CBF) at a microvascular level (Attwell
et al. 2010; Hall et al. 2014) it is crucial to better understand
the vascular effects of lactate.
Progress in biomedical research is impeded if studies are

underpowered or experimental procedures incompletely
reported, as this increases the risk of positive reporting bias
(Macleod et al. 2015). The resulting poor reproducibility, in
turn, is a source of wasted resources (Freedman et al. 2015).
With greater attention focusing toward the translational efficacy
and reporting quality of pre-clinical research, it is pertinent to
consider evaluating existing literature prior to conducting
in vivo experiments. This approach also sustains the 3R
principles of Replacement, Reduction, andRefinement (Russell
and Burch 1959). Moreover, it has been emphasized that
systematic meta-research should be conducted to identify
factors contributing to high translational ability of scientific
findings, as well as to help demarcate the ideal ratio between
basic and applied research to achieve these aims (Chalmers
et al. 2014). Systematic reviews provide a means of identifying
trends in the existing research pool, of improving the quality and
translational efficacy of studies, and of identifying unaddressed
aspects in experimental design, which otherwise create a risk of
bias (Hooijmans and Ritskes-Hoitinga 2013; Ritskes-Hoitinga
and Wever 2018). Systematic reviews therefore help drawing
more reliable conclusions from the existing literature while
identifying ways of improving the design of future works.
This systematic review investigates the current evidence

for how the cerebral microvasculature responds to lactate in
studies ranging from the cellular level to human experiments.
Using this broad scoped approach, we aimed to expand the
systematic review paradigm with a focus on intervention
studies, to demonstrate that novel extractions of existing data
help guide the formulation of new hypotheses.

Materials and methods

Review protocol & amendments

The protocol for this systematic review was pre-defined using the
SYRCLE guidelines (de Vries et al. 2015) and published on www.
radboudumc.nl/en/research/radboud-technology-centers/animal-rese
arch-facility/systematic-review-center-for-laboratory-animal-experim
entation/protocols on 5th December 2017 prior to completion of

primary screening. Post-publication modifications were made to
the protocol as follows: (i) At the primary-screening phase,
discrepancies on decision to include were resolved by Tristan R
Hollyer (TRH) and Birgitte S Kousholt (BSK). (ii) At the end of
primary screening, Luca Bordoni (LB) was recruited to conduct
the full text screening and data extraction as BSK and Judith van
Luijk (JvL) were unable to contribute to these processes further.
(iii) Discrepancies on decision at the full-text screening phase were
resolved by TRH and LB. (iv) Leif Østergaard (LØ) was included
as a contributing author. (v) A modified number of risk of bias
measures were decided upon and then evaluated by TRH as
described below.

During the data extraction process, we identified several studies
which evaluated the effect of lactate on cerebral blood flow by
different experimental measurements both in animal and human
studies. We decided to extract these datasets in an aim to identify
potential trends in findings. To further determine the methodological
quality of these extracted studies, TRH assessed them for risk of bias
(RoB) by determining if each study reported the use of bias limiting
measures such as population randomization, blinding, or sample size
calculation.

Study search, selection, screening, and extraction

The PubMed, EMBASE, andCochrane databases were systematically
searched electronically on 14thOctober 2017. The search strategywas
comprised of three categories: ‘lactate (and related enzymes, trans-
porters, and receptors)’, ‘microvasculature’, and ‘brain’. Within each
category, medical subject headings terms were determined and
relevant synonyms were sought within titles, abstracts, and keywords.
The full search strategy is detailed in Table S1. No restrictions were
applied to language or publication date. The search results were
pooled, with duplicates removed, and indexed in EndNoteX8
Software (Clarivate Analytics, Philadelphia, PA, USA). Original
articles and clinical trials were included, and review articles excluded.
The library was then uploaded to the online systematic review
management platform Covidence (http://covidence.org).

As stated in the study protocol, studies were included if they
examined lactate’s role in cerebral circulation only in physiological
conditions. Where disease/pathological models were used, we
extracted data from appropriate controls whenever available.
Selected populations ranged from endothelial cell lines, ex vivo
tissue, in vivo animal, and human studies. Interventions were defined
as any modification of lactate or its pharmacological effectors, for
example, receptors, transporters, generating enzymes (LDH) and
any non-harmful genetic modification, for example, receptor knock-
outs, or relevant control or baseline data. Defined outcomes were
any stated measures related to the effects of the experimental
treatments on population biochemistry or physiology; cerebral
vascular cell/tissue behavior (such as diameter or flow behavior)
evaluated directly or indirectly.

Titles and abstracts were screened for inclusion independently by
TRH and BSK/JvL, the latter at a proportion of 80/20%. Disputes
were resolved by TRH and BSK. The reference sections of all texts
selected for full-text screening were checked for additional refer-
ences of interest. Studies included for full-text screened were
evaluated, and data extracted independently by TRH and LB.

Extracted studies are summarized in characteristics tables (Tables
S2–S4). In each table, the author, publication data, species, strain,
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age of tissue source/animal/subject; number of experimental units,
intervention method, assessment method, and primary findings are
outlined. For ease of interpretation, lactate concentrations were
converted to mmol/kg whenever possible, and blood plasma lactate
values converted to mmol/L.

Results

The selection process is illustrated in Fig. 1 and the full
search strategy is shown in Table S1. The search in the
PubMed, Embase, and Cochrane databases identified a total
of 2385 unique references of which 130 were assessed for
eligibility for data extraction. From within their references
sections, an additional 18 sources were identified. Of the
studies assessed, 28 (nine of which were found from
references) were included in the final review.

Study characteristics

The characteristics of all selected publications are detailed in
Tables S2–S4 indicating the model used; the intervention
used; the methods to assess lactate concentrations or model
responses, for example, CBF; and a summary of the main
findings. Of the 28 studies included, six were in vitro or
ex vivo experiments (21%), 18 were in vivo animal exper-
iments (65%), and four human studies (14%).

In vitro/ex vivo studies

Of the in vitro and ex vivo studies (Table S2), the two earliest
works demonstrated an age-dependent relationship between

the presence of LDH and lactate uptake by cortical vessels
(Spatz et al. 1978; Rieke and Cannon 1985). Detailed
anatomical investigations by Lauritzen et al. (2014) identi-
fied the presence of the HCA1 receptor on the luminal and
abluminal membranes of the mouse endothelial cell at a
density twice as that on astrocytic end-feet. Cellular
responses to exogenous lactate were studied separately
twice. Sub-physiological levels of lactate had no effect on
cell survival (Pirchl et al. 2006), but 20 mmol/L lactate
applied to human brain endothelial cells induced a marked
response to cellular lactate uptake and cellular proliferation
(Miranda-Gonc�alves et al. 2017). Gordon et al. (2008) was
the only ex vivo study that evaluated the pharmacological
mechanisms behind lactate signaling in rat arterioles. It was
found that lactate induces arteriolar dilation by reducing the
reuptake of PGE2 at astrocyte end-feet, allowing for contin-
ued PGE2 binding to prostaglandin receptors on vascular
smooth muscle cells.

In vivo studies

The majority of in vivo animal studies (Table S3) were
conducted in mongrel dogs (Harper and Bell 1963; Iwabuchi
et al. 1973; Hermansen et al. 1984; Young et al. 1991), or
rats (Hallstr€om et al. 1990; Ido et al. 2001, 2004; Provent
et al. 2007). Almost half (10) of the in vivo studies evaluated
the effect of systemic administration of lactate (either as an
acid or its sodium salt) on CBF in animals. To elucidate any
trends in these findings, results from these experiments were
evaluated in combination with similar human studies (see
below, Fig. 2 and Table S3).
Lactate only induced a hyperemic response (identified via

radiolabeling techniques) if administered in doses of above
Total search result 3346

Pubmed 1676 EMBASE 1541 Cochrane 111

Unique
2385 

Excluded  2255

Additional from reference lists 18

Full text screening
130

Duplicates  961

Inlcuded articles
28

Excluded  102

Fig. 1 Flow diagram of the study selection and screening process.

Fig. 2 The percentage cerebral blood flow (CBF) response to lactate
administration in both animals and humans. Administered concentra-

tions below 5 mmol/kg will only augment the CBF response to stimulus
(clear symbols). Higher doses of lactate elicited a CBF response in the
absence of stimulation (dark symbols). Animal studies (circle), human

studies (triangle). Details of individual studies in Table 1.
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5 mmol/kg (Bucciarelli and Eitzman 1979; Young et al.
1991), with resulting blood plasma concentrations of
30 mmol/L reported in Young et al. (1991). Studies infusing
lactate at lower concentrations found no direct hyperemic
response. However, in both rats and non-human primates, an
increase in blood plasma lactate concentrations of 2.6 � 0.0
and 3.5 � 0.4 (Ido et al. 2004), and 2.5 � 0.9 mmol/L (von
Pf€ostl et al. 2012), led to an augmentation of the CBF
response to visual stimuli.
The long-term effects of both exhaustive exercise and

repeated administration of lactate were studied in two
separate experimental groups of mice (Lezi et al. 2013;
Morland et al. 2017). Both studies found that increased
plasma lactate levels brought about by both exercise and
systemic administration induced a comparable increase in
brain vascular endothelial growth factor-A (VEGF-A) and
their related signaling pathways. Morland et al. (2017)
subsequently found that VEGF-A had a pro-angiogenic
effect in both the hippocampus and sensorimotor cortex.

Human studies

Selected human studies are characterized in Table S4. Two of
these studies (Stewart et al. 1988; Reiman et al. 1989)
evaluated how lactate infusion (a reported anxiolytic)
influenced CBF in patients with anxiety disorders and
control subjects. The latter showed a mean increase in CBF
of 20% when administered 500 mmol/kg lactate (Stewart
et al. 1988) but no CBF change when given a lower
concentration (up to 133 mmol/kg) (Reiman et al. 1989).
Mintun et al. (2004), infused 1 mmol/kg lactate, increasing
blood plasma concentrations to 10.7 � 2.8 mmol/L, and
observed unaltered resting CBF, but augmented CBF
response to stimulation, by up to 53%.

Effects of lactate on CBF across species

We identified 10 in vivo animal and 3 human publications
which evaluated the effect of direct systemic administration
of lactate on CBF. To elucidate any trends in findings, results
from these experiments were extracted and evaluated as
shown in Fig. 2 (details are presented in Table 1). At
concentrations of over 5 mmol/kg, lactate-induced cerebral
hyperemia. At concentrations lower than 5 mmol/kg, lactate
augmented CBF response to stimuli.

Risk of bias assessment

We then conducted a modified assessment of reporting bias
to evaluate the validity of these findings. Only one paper
reported the use of blinding, randomization and sample size
calculation methods to control for bias (Dostalova et al.
2018). Two reported the use of randomizing of subjects to
treatment (Bucciarelli and Eitzman 1979; Ong et al. 1986)
and two of blinding subjects to treatment (Reiman et al.
1989; Mintun et al. 2004). The remaining papers did not
state as to whether they took bias controlling measures.

Discussion

Despite continued uncertainty into the precise mechanisms of
flow metabolism coupling in the brain, the role of lactate, as
an effector of microvessel behavior, has not been assessed.
By providing a systematic summary of publications on how
the microvascular system responds to lactate across various
experimental platforms, we have provided insights into
unexplored avenues of research and identified considerations
that the reader should make when planning their own
experiments.

Evidence on biochemical regulation of cerebral microvessels

by lactate

Experiments conducted in vitro, or ex vivo comprised only
21% of all selected studies. The earliest studies showed age
and vessel size-dependent responses to lactate uptake and
production, respectively (Spatz et al. 1978; Rieke and
Cannon 1985). The later anatomical study by Lauritzen
et al. (2014) identified the presence of the HCA1 receptor in
differing amounts within the neurovascular unit. In particu-
lar, they reported that twice as many receptors were found on
endothelial cell membranes compared to astrocytic end-feet,
suggesting a greater sensitivity of cerebral microvessels to
lactate than astrocytes. Furthermore, Miranda-Gonc�alves
et al. (2017) showed that glucose uptake was down-
regulated in favor of lactate uptake in response to high
extracellular concentrations of lactate in immortalized cells
derived from of human brain endothelium. In addition,
large increases in mitochondrial activity, cell migration, and
formation of capillary-like structures and associated pro-
angiogenic factors such as hypoxia inducible factor-1a
(HIF-1a), a transcriptional regulator of VEGF-A occurred
(Semenza 2010). At the arteriolar level, Gordon et al. (2008)
showed that 1 mM lactate-induced arteriolar dilation via a
cyclo-oxygenase (COX) dependent manner, further comple-
menting earlier evidence (Kaidi et al. 2006; Benderro and
LaManna 2014) that HIF-1a is a key regulator of COX-2.
Alongside the findings of Morland et al. (2017), that
repeated exposure to lactate, artificially or through exercise,
promotes VEGF expression, it appears that lactate exerts
both short- and long-term angiogenetic effects on the cerebral
microvascular in via a common mechanism. Such responses
are perhaps unsurprising, considering the classical view of
lactate being produced during anaerobic glycolysis as a
consequence of exercise or hypoxia. Therefore, it demon-
strates that the pathways, which are up-regulated in response
to hypoxia and exercise, also have a role in cerebral vascular
homeostasis and hemodynamics, ensuring that sufficient
glucose and oxygen are delivered to the cells of the brain.
Intravenous administration of up to 2.0 mmol/L lactate has

no effects on resting CBF, regardless of choice of anesthesia
(Fig. 2 and Table S3), but enhances the CBF response to
stimulation in both animals and humans (Ido et al. 2001,
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2004; Mintun et al. 2004). Indeed, CBF responses to
functional activation seemingly correlate with arterial lac-
tate/pyruvate ratios (Mintun et al. 2004), which is coupled to
the NADH/NAD+ ratio.
Ido et al. (2001, 2004) hypothesized that the NADH/NAD+

ratio acts as sensor acting as a regulator of CBFwhen increased
via activation of constitutive nitric oxide synthase. In their
studies, the absence of any CBF response in the unstimulated

regions of the brain is suggested to be due to exogenous lactate
being oxidized to pyruvate (via LDH). This leads to a
concurrent increase in NADH/NAD+ ratio which is balanced
by transfer of NADH to the glycerol-phosphate and malate-
aspartate shuttles (see Fig. 3) (Mintun et al. 2004). It is only
when these pathways become saturated, due to the additive
effect of > 5 mmol/kg lactate or functional activation (result-
ing in an accumulation of NADH), that a subsequent increase

Table 1 Selected in vivo and human studies which reported cerebral blood flow measurements when administering lactate systemically

Authors Species
Salt/
Acid

Dose
(mmol/kg) Delivery

Anesthesia
(neuromuscular
agents)

CBF assessment
method

Reported
response Notes

Bucciarelli and
Eitzman

(1979)

Goat Acid 5–10 IV Chloralose Radiolabeled
microspheres

+46% Plasma lactate
not reported

Dostalova

et al. (2018)

Rabbit Salt 1.87 IV Isoflurane and

fentanyl
(pipecuronium)

Side stream

dark-field

No change

Harper and Bell
(1963)

Dog Acid 0.22 mmol/L IA Thiopentone
(suxamethonium)

85Kr washout No change

Hermansen
et al. (1984)

Dog Acid 2.20 IV Pentobarbitol
(pancuronium)

Radiolabeled
microspheres

No change

Ido et al.
(2001)

Rat Salt 1.00 IV Urethane 125I-desmethylimipramine +100% Augmented
stimulus
response

Ido et al.

(2004)

Rat n/a 1.00 IV Urethane 125I-desmethylimipramine +11% Augmented

stimulus
response

Ong et al.
(1986)

Sheep Acid 3.30 IV d-Tubocurarine 113Xe washout No change

Powell
et al. (1985)

Dog Acid 3.75 IV Halothane
(pancuronium)

[14C]iodoantipyrine No change Once corrected
for pCO2

von Pf€ostl
et al. (2012)

Monkey Salt 0.04 IV Remifentanyl
(mivacurium
chloride)

MRI No change Detection
threshold/augment
BOLD signal

Young
et al. (1991)

Dog Acid 33.3 mol/L IV Halothane
(pancuronium)

[14C]iodoantipyrine +36% Plasma lactate
30 mmol/L

Stewart
et al. (1988)

Human Salt 500 IV n/a Inhaled 133Xe CAT +20% Plasma lactate
not reported

Reiman
et al. (1989)

Human Salt 89 IV n/a [15O] water PET No change

Mintun

et al. (2004)

Human n/a 1.00 IV n/a [15O] water PET +38% Augmented

stimulus response

BOLD, blood-oxygen-level dependent; CBF, cerebral blood flow; CAT, computer-assisted tomography; IV, intravenous; IA, intra-arterial; MRI,

magnetic resonance imaging; PET, positron emission tomography.
The concentration of lactate (either as a sodium salt or acid), route of administration, anesthesia used, method of CBF evaluation, and reported
effects are evaluated.
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in reactive oxygen species results in elevated Ca2+ before
recruitment the of nitric oxide synthase (NOS) pathways
(Wolin 1996). Bucciarelli and Eitzman (1979), Stewart et al.
(1988), and Young et al. (1991) (Table S3), reported large
increases in resting CBF following administration concentra-
tions of lactate higher than 5 mmol/kg. It is therefore likely
that the higher blood plasma concentrations of lactate in these
experiments (as illustrated in Fig. 3), lead tomuch greater rises
in the lactate/pyruvate ratio and NADH : NAD+ ratios,
causing a greater accumulation of NADH and reactive oxygen
species, leading to a much larger increase in CBF. However,
Reiman et al. contradicts this hypothesis showing no CBF
response. Furthermore, what was not explored was how
cellular redox potential is driven also by glyceraldehyde-3-
phosphate dehydrogenase and, also the phosphorylation state
of the cytosolic adenine nucleotide system (Veech et al.
1970).
Monocarboxylate transporter 4 is the predominant mono-

carboxylate transporter on astrocytes (Bergersen 2015) with a
Km of 28 mmol/L (Manning-Fox et al. 2000). This is
indicative of astrocytes having a far greater capacity for
lactate uptake than neurons (Dienel 2012). Changes in
astrocytic NADH : NAD+ ratios has been linked to nitric
oxide production by astrocytes (Buskila et al. 2005). How-
ever, transcriptome data (GOAD database, http://bioinf.nl:
8080/GOAD2/databaseSelectServlet) suggest that astrocytes
do not express NOS isoforms. Furthermore, calcium influx
(also induced by oxidative stress) leads to activation of
nNOS –derived NO in neurons and release of vasoconstric-
tors from astrocytes. Meanwhile, nNOS derived NO inhibits
astrocytic COX-2 and thus the production of astrocyte-
derived vasodilators (Attwell et al. 2010). Nitric oxide is also
known to have positive reciprocal regulatory relationship
with HIF-1a (Poyton and Hendrickson 2015), whose
relationship with lactate is described above.
Tissue pH is a powerful regulator of arterial tone (Yoon

et al. 2012), and the augmented CBF observed in response to

elevated lactate levels might therefore be related to parallel
acidification via co-transport of protons via monocarboxylate
transporters, Experimental data suggest, however, that
lactate-induced CBF changes are caused by the higher
lactate concentrations rather than the parallel changes in pH
(Laptook et al. 1988).
One of the aim of this systematic review was to

collectively analyze evidence showing that lactate can serve
as a regulator of cerebral microvasculature. Although we lack
direct experimental proofs to confirm this specific hypoth-
esis, the current evidence points toward a coordinated system
of local control of the cerebral microvasculature in which
lactate is a key regulator with concentration specific thresh-
olds for the magnitude of the response. This complements
our own modeling of microvessel flow patterns which has
shown that during functional hyperemia, glucose uptake is
facilitated more so than oxygen favoring non-oxidative
glucose consumption suggesting that lactate may feedback
into these control systems (Angleys et al. 2016).

Considerations on RoB

Only five of the 13 papers (38%), which evaluated CBF
responses to lactate, reported using methods to control for
bias. As interest in research reproducibility increases, it is
important that research which is exploratory in nature
(regardless of the model) takes a robust approach to study
design and control for bias (Kimmelman et al. 2014; Dirnagl
2016). We believe that our modified RoB assessment
underscores the need for implementation of the systematic
review methodology in basic science.

Assumptions

During this review, we have made some assumptions about
some of the data extracted. Several of the early studies
administer lactic acid as a model of perinatal hypoxia under
the hypothesis that lactic acidosis may have deleterious
consequences to CBF or cerebral autoregulation (Harper and

lactate + NAD+

LDH
NADH + H+ + pyruvate 

ROS & Ca2+ NOS & NO

HYPEREMIA

Functional activation or > 5 mmol/kg administered lactate 

(via astrcoyte MCT4)

lactate + NAD+ NADH + H+ + pyruvate 

Resting brain or < 5 mmol/kg administered lactate 

Glycerol-phosphate shuttle
Malate-aspartate shuttleMalate-aspartate shuttle

Glycerol-phosphate shuttle
Malate-aspartate shuttleMalate-aspartate shuttleFig. 3 Reaction scheme illustrating the

thresholds for which excess production of

NADH (from lactate) alters redox state,
inducing hyperemia during functional
activation or administration of over 5 mmol/

kg lactate.
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Bell 1963; Bucciarelli and Eitzman 1979; Hermansen et al.
1984; Powell et al. 1985; Ong et al. 1986). In this review we
considered the induction of hyperlactemia (using lactic acid)
as a non-pathological or disease related intervention as long
normoxia was maintained.
Contradictory literature reports may partly result from

differences in the physiological mechanisms resulting in
changes in lactate concentration due to the fact that multiple
physiological situations may lead to alterations in lactate
levels.

Additional relevant literature

We wish to direct to the reader to the fact that, due to the
methodology of this review, we noted that several papers
provide insights into the effects of lactate on microvessels
that are located outside the brain parenchyma. An elegant set
of studies by Yamanishi et al. (2005) evaluated lactate’s role
in the function of retinal microvessels and pericytes and
demonstrated that the contractile responses of pericytes to
lactate were dependent on oxygenation of the preparation.
Hein et al. (2006) also demonstrated this in porcine retinal
arterioles dilated in response to lactate via nitric oxide
synthase (NOS) pathways. However, it should be noted that
the retina is a highly glycolytic environment (Winkler 1981)
and as such, these studies may illustrate physiological
responses unique to the retinal microvasculature. Cochlear
capillaries have also been shown to dilate in response to
lactate via NOS (Dai et al. 2011). It therefore may be likely
that lactate acts (either directly or via NADH) on microves-
sels via a common nitric oxide-dependent mechanisms across
multiple systems.
Works by Rasmussen et al. (2006, 2009) were excluded

on the basis that blood flow velocities were recorded from the
middle cerebral artery, which is not a microvessel. However,
they do report that lactate/pyruvate ratios (a representation of
redox state) may be a regulating factor in CBF during
activation and during the onset of exercise which is further
supported by Vlassenko et al. (2006). The mechanisms
highlighted in this review would benefit from replication and
further investigation, in particular mechanisms which control
the threshold at which lactate switches from an augmentor of
hyperemia with a separate stimulus (e.g. visual) to an initiator
(without another stimulus).
This review has used systematic literature search tech-

niques to comprehensively assess existing evidence on the
role of lactate in the cerebral microcirculation. Using
systematic review methodology to probe questions of a
fundamental physiological nature in studies ranging from
in vitro experiments to human studies, allows us to fully
appreciate the field in the entire research chain. This
approach has identified that exogenous administered lactate
may act as a regulator of cerebral blood flow in a dose-
dependent manner whereby at a threshold of 5 mmol/kg
there is a switch from augmentation of the hyperemic

response, to one of an initiator. We hope that this review
provides a guide to the novel physiological properties of
lactate in the brain, stimulates new interpretations of existing
data, and highlights routes of exploration for further research.
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such occurrences. If it does occur , ask an independent 

researcher to evaluate according to the criteria.  

 

 
Define all inclusion and exclusion criteria based on: 

23. Type of study (design) 
Inclusion criteria: Original article, clinical trial 

Exclusion criteria: review  

24. Type of animals/population (e.g. age, Inclusion criteria: Physiology based hypothesis including in 
 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265183/pdf/LA-11-087.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265183/pdf/LA-11-087.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104815/pdf/LA-09-117.pdf
http://lan.sagepub.com/content/48/1/88.full.pdf+html


gender, disease model) silico in vitro, ex vivo, in vivo, and human studies.  Genetic 

modified models acceptable if it does not induce a disease 

state, fx: GFP-labelling or specific receptor knockout with no 

stated deleterious effect. Negative control data in studies 

investigating a disease model, 

Exclusion criteria: Used of a disease model in vitro, ex vivo, 

in vivo, and human studies with no indication of control 

25. 
Type of intervention (e.g. dosage,  

timing, frequency) 

Inclusion criteria: Direct observation/model of normal state 

in model, and/or a modification of lactate concentrations/ 

behaviour/pharmacology through addition of lactate to 

model system/ manipulations of lactate transport, 

metabolism, receptor pharmacology. 

Exclusion criteria: Stated use of disease model or induction 

of a disease like state by pharmacologic or genetically 

modifying means 

 

26. Outcome measures 

Inclusion criteria: a stated effect on the potential role of 

lactate on cerebral microvasculature as a result of 

experimental investigation at a cellular to whole-brain 

vasculature level. 

Exclusion criteria:  The stated effect of lactate in a disease 

model/state where the effects under pathological 

circumstances are under investigation 

 

27. Language restrictions 
Inclusion criteria:  

Exclusion criteria: none  

28. Publication date restrictions 
Inclusion criteria:  

Exclusion criteria: none   

29. Other 
Inclusion criteria: 

Exclusion criteria:  

30. 
Sort and prioritize your exclusion 

criteria per selection phase 

Selection phase: Pre-screening 

1. Not primary literature or clinical trial. 
2. Does not involve investigation of lactate in the brain   

 

Selection phase: Full-screening 

1. Use of a disease model or induction of disease state 
with no reported negative control/naïve data 

 

 

 

 

 

Study characteristics to be extracted (for assessment of external validity, reporting quality) 

To be presented in a table 

31. Study ID (e.g. authors, year) Authors, Year, Title, Journal.  
 

32. Study design characteristics (e.g. Methods of assessment: mathematical model/ 
 



experimental groups, number of 

animals) 

 

biochemistry/molecular biology/cell physiology/vascular 

diameter/flow response/signal change in imaging paradigm.  

 

 

33. 
Animal model characteristics (e.g. 

species, gender, disease induction) 

In silico: basis on existing models e.g. Kety-Schmidt. 

In vitro: cell type/origin, cell line 

In vivo: species, strain, sex and age.  

Human: sex, age (weight if applicable) 

 

34. 
Intervention characteristics (e.g. 

intervention, timing, duration) 

Investigation or use of lactate and or relevant 

substrate/treatment/intervention or (as defined  in 25.) 

 
 

35. Outcome measures 

Outcome measures in relation to the microcirculation 

(relevant cell types in vitro or in vivo and clinical 

measurements) behavior are classed as either direct or 

indirect. 

 

Cell types refers to those identified in “microvessel” search 

category.  

 

Primary outcome measures: DIRECT 

● Cell contractility (fiber length, thickness) 
● DNA/RNA/microRNA/Protein expression 
● Hormone/neurotransmitter/other signaling 

molecule release/uptake measured in 
concentration or volume. 

● Change in intracellular ion change – concentration 
or current changes/flux/potential difference 

● Vessel diameter 
● Plasma velocity or distribution 
● RBC/erythrocyte cell velocity  
● RBC/erythrocyte cell flux 
● Capillary heterogeneity (CTH) 
● Mean transit time (MTT) 
● Vessel density (direct count / number per unit 

volume) 
 

Secondary outcome measures: INDIRECT e.g.  imaging 

modalities such as PET / MRI or computer models 

● A change in signal/ratio/quotient 
● A change in uptake or release of labelled tracer. 
● Prediction of change in behaviour  

 

 

 

36. Other (e.g. drop-outs) 
  



 
Assessment risk of bias (internal validity) or study quality 

37. 

Specify (a) the number of reviewers 

assessing the risk of bias/study quality 

in each study and (b) how 

discrepancies will be resolved 

2 reviewers, Tristan Hollyer, and Judith van Luijk   
 

38. 

Define criteria to assess (a) the 

internal validity  of included studies 

(e.g. selection, performance, 

detection and attrition bias) and/or 

(b) other study quality measures (e.g. 

reporting quality, power) 

□By use  of SYRCLE's Risk of Bias tool4  

□By use of SYRCLE’s Risk of Bias tool, adapted as follows:   

□By use of CAMARADES' study quality checklist, e.g 22  

□By use of CAMARADES' study quality checklist, adapted 
as follows:   

□Other criteria, namely: Cochrane RoB? Limited on in vitro 
work (OHAT currently refining) 
https://ntp.niehs.nih.gov/pubhealth/hat/review/index-
2.html#Systematic-Review-Methods  
 

 

 
Collection of outcome data 

39. 

For each outcome measure, define 

the type of data to be extracted (e.g. 

continuous/dichotomous, unit of 

measurement) 

Data is likely to be a quantitative statement of the findings 

of the study . A responses or magnitude can also be found- 

Qualitative assessments may also be made and narrative 

assessments used to summarise findings.  

 

40. 

Methods for data extraction/retrieval 

(e.g. first extraction from graphs using 

a digital screen ruler, then contacting 

authors) 

Data will be extracted the following way: 

1. If results are presenting in text in a discrete format 
e.g. number/ % change. This shall be taken 

2. If 1. is not available the extract from graph using 
screen ruler or similar 

3. Contact authors if not available. 

 

41. 

Specify (a) the number of reviewers 

extracting data and (b) how 

discrepancies will be resolved 

2 reviewers, if discrepancies occur, ask an independent 

researcher to evaluate according to the criteria.  

 
Data analysis/synthesis 

42. 

Specify (per outcome measure) how 

you are planning to combine/compare 

the data (e.g. descriptive summary, 

meta-analysis) 

Table of findings with corresponding table with narrative 

synthesis in text 

 
 

43. 

Specify (per outcome measure) how it 

will be decided whether a meta-

analysis will be performed 

n/a 
 

 
If a meta-analysis seems feasible/sensible, specify (for each outcome measure): 

44. 

The effect measure to be used (e.g. 

mean difference, standardized mean 

difference, risk ratio, odds ratio) 

n/a 
 

45. The statistical model of analysis (e.g. n/a 
 

http://www.biomedcentral.com/1471-2288/14/43/abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060322
https://ntp.niehs.nih.gov/pubhealth/hat/review/index-2.html#Systematic-Review-Methods
https://ntp.niehs.nih.gov/pubhealth/hat/review/index-2.html#Systematic-Review-Methods


 

 

 

random or fixed effects model) 

46. 
The statistical methods to assess 

heterogeneity (e.g. I2, Q) 
n/a 

 

47. 

Which study characteristics will be 

examined as potential source of 

heterogeneity (subgroup analysis) 

n/a 
 

48. 
Any sensitivity analyses you propose 

to perform 
n/a 

 

49. 

Other details meta-analysis (e.g. 

correction for multiple testing, 

correction for multiple use of control 

group) 

n/a 
 

50. 
The method for assessment of 

publication bias 
n/a 

 

 

Final approval by (names, affiliations):   Date: Oct. 2017 




