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Nicotine is the primary pharmacologic component of tobacco, and its highly addictive

nature is responsible for its widespread use and significant withdrawal effects that result

in challenges to smoking cessation therapeutics. Nicotine addiction often begins in

adolescence and this is at least partially attributed to the fact that adolescent brain

is most susceptible to the neuro-inflammatory effects of nicotine. There is increasing

evidence for the involvement of microglial cells, which are the brain’s primary homeostatic

sensor, in drug dependence and its associated behavioral manifestations particularly

in the adolescent brain. A hallmark of neuro-inflammation is microglial activation and

activation of microglia by nicotine during adolescent development, which may result

in long-term addiction to nicotine. This non-systematic review examines multifactorial

etiology of adolescent nicotine addiction, neurobiology of nicotine addiction and the

potential mechanisms that underlie the effects of nicotine on inflammatory signaling in

the microglia, understanding how nicotine affects the adolescent brain. We speculate,

that modulating homeostatic balance in microglia, could have promising therapeutic

potential in withdrawal, tolerance, and abstinence-related neural adaptations in nicotine

addiction, in the adolescent brain. Further, we discuss nicotine addiction in the context

of the sensitization-homeostasis model which provides a theoretical framework for

addressing the potential role of microglial homeostasis in neural adaptations underlying

nicotine abuse.
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INTRODUCTION

Nicotine addiction is the leading cause of preventable death and disease worldwide. Preclinical
models and human studies have demonstrated that nicotine has cognitive-enhancing effects and
these effects of nicotine may be an important factor in vulnerability to Tobacco Use Disorder
(TUD) and may also contribute to difficulty in quitting smoking. The positive reinforcement
effects of nicotine reflect nicotine’s inherently rewarding effects that increase the probability of
continued self-administration, and for both, the initiation and maintenance of tobacco use (1–3).
Preclinical models typically used cell cultures or animal models that involve administration of

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.664748
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.664748&domain=pdf&date_stamp=2021-07-05
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:smahajan@buffalo.edu
https://doi.org/10.3389/fpubh.2021.664748
https://www.frontiersin.org/articles/10.3389/fpubh.2021.664748/full


Mahajan et al. Review of the Neurobiology of Nicotine Addiction

nicotine to rodents. Preclinical models have consistently
demonstrated that nicotine had both neuroprotective and
anti-inflammatory effects depending on the nicotine dose
administered and nicotine enhanced neurotrophic factors,
increased cognition and impulsivity and developed neurotoxicity
in the developing brain (2–4). Clinical studies evaluated the
neurotoxic effects of tobacco smoking on the brain, and also
evaluated the cognitive and behavioral assessments, as well as
neuroimagingmeasures in the human brain, and have established
that tobacco smoking decreases brain volume, increases neuro-
inflammation and oxidative stress but enhances cognition and
neural efficiency (4).

The National Institute of Drug Abuse (NIDA) reports that
tobacco use is established primarily during adolescence, and
evidence suggests that around 50% of those who start smoking
in the adolescent years continue to smoke for 15–20 years
(5). A National Youth Tobacco Survey (NYTS) found that
41.9% adolescents reported strong cravings for tobacco- a
classic symptom of nicotine dependence (6). In adolescents,
even infrequent smoking can result in an increased risk of
dependence. In adolescents, monthly smoking can increase the
likelihood of developing nicotine dependence by 10-fold as
compared to adult smokers (7–10). The urge to smoke occurs
early on after initiation, which drives the increase in frequency
of use, exacerbating into nicotine dependence and a more rapid
progression to addiction and a neurophysiologic dependence
on nicotine (9). The risk of nicotine dependence in adolescents
is associated with intensity of recent cigarette consumption, a
slower nicotine metabolism and depression (11). The CDCwarns
that if cigarette smoking continues at the current rate among
youth, 5.6 million of Americans younger than 18 will die early
from a smoking-related illness (12).

Adolescence is a period of transition characterized by
significant hormonal, psychosocial, and neural changes (13).
This period is associated with development of social, emotional,
and cognitive skills and also increased vulnerability to stress
and risk-taking behaviors (14–16). The adolescent brain is
undergoing maturation and is particularly vulnerable to the
harmful effects of drugs of abuse, including tobacco and
nicotine containing products. Nicotine binds to nicotinic
acetylcholine receptors (nAChRs). nAChRs are widely
distributed throughout the human brain and are critical in
neurotransmitter release, brain maturation, reward processing,
and cognition (17). Nicotine exposure during adolescence,
disrupts the normal development, and expression of neuronal
nAChRs, ultimately altering the function and pharmacology of
the receptor subunits and changing the release of reward-related
neurotransmitters (18).

E-cigarettes have emerged as the most common mode of
nicotine delivery among youth across the U.S and its use is most
prevalent among adolescents’ and by vaping nicotine products,
adolescents’ do not have an awareness and understanding of
nicotine and its presence within E-cigarettes products (19,
20). In adults, e-cigarettes are a potential cessation aid, while
among adolescents who have never before smoked, e-cigarette
use is associated with initiation or escalation of cigarette
smoking (21, 22).

Smoking prevalence is a function of multiple parameters, such
as initiation, cessation and relapse. Prevalence of adult smoking
and cessation are both correlated with levels of childhood
smoking intensity (23, 24). Adolescent smokers were the most
likely to relapse and are more vulnerable to peer pressure
which makes them more susceptible to smoking relapse after
cessation (25). Adolescent smokers may underestimate the health
consequences of smoking and therefore limit their determination
to quit (26). A recent study that examined reuptake and relapse
to tobacco use across a variety of tobacco products such as
cigarettes, electronic nicotine delivery systems, cigars, hookah,
and smokeless tobacco showed that for all the tobacco products
reuptake occurred in 7.8% of adult previous users and 30.3% of
adolescent previous users (27). These data affirm that preventive
strategies should be designed early, so as to reduce, delay, or
eliminate any youth access to cigarettes.

First-line pharmacologic therapies for smoking cessation
includes nicotine replacement therapy (NRT), varenicline, and
bupropion, however, the choice of therapy is based largely
on patient preference. For those smokers willing to quit, a
combination of behavioral support and pharmacologic therapy
is the most effective in smoking cessation (28, 29). FDA has
not approved cessation medications for adolescents, and NRT
cannot be purchased over-the-counter by persons younger than
18 years of age (30, 31), but cessation medications can be
prescribed for and used by adolescents under the supervision
of a physician. A systematic meta-analysis study detected no
significant efficacy of pharmacological therapy in adolescents,
therefore, no definitive recommendations for pharmacotherapy
for smoking cessation in adolescents could be made (32, 33).
The tobacco cessation 5-A method (ask, advise, assess, assist, and
arrange) that is used by adults, should be offered by the physician
to all adolescents who smoke after assessment of the level of
tobacco dependence in the adolescent using the Fagerström test
for nicotine dependence (34). Therapies for adolescents should
include counseling, nicotine replacement therapy, psychoactive
medication (e.g., bupropion), and combination therapy (35).

Currently available cessation strategies include community
interventions such as educational programs; anti-tobacco
counter-advertising at the local, state, and national levels
and curtailing access to tobacco via smoking bans at home
and school and increased tobacco prices in combination
with pharmacotherapy, all of which may be effective in
decreasing tobacco use in adolescents. Novel smoking cessation
experimental interventions using text messaging (36) peer
mentoring (37) and digital or virtual self-help interventions (38)
for adolescents may be more effective, however data supporting
the effectiveness of such interventions at the current time are
limited, however experts suggest that these novel strategies when
used in combination with counseling and pharmacotherapy may
be very effective (39).

Effects of nicotine are highly dependent on when exposure to
the brain occurs and contributes to specific neural vulnerabilities
at each brain developmental phase. Several studies have
shown that prenatal, early postnatal, and adolescent brain
maturation is physiologically regulated by acetylcholine (ACh)
via activation of nicotinic acetylcholine receptors (nAChRs), and
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that nicotine exposure results in significant long-term deficits
in the developing brain by interfering with the cholinergic
regulatory processes (40–42). The dopaminergic system is
dynamically changing during adolescence and stimulation by
nicotine alters maturation of the mesocorticolimbic system via
the nAChRs on dopaminergic neurons and microglia (43).

Given the susceptibility of the developing brain to nicotine
as outlined above, preventing tobacco product use among
youth is critical to ending the tobacco epidemic in the
United States. Tobacco smoking continues to be the leading
cause of preventable morbidity and mortality globally (44)
which underscores the need for better therapeutics for nicotine
dependence. In order to develop more effective therapeutic
interventions, it is essential not only to understand the
pathophysiology of addiction but also examine the adolescent
neurobiology and the genetic predisposition that underlies the
etiology of adolescent nicotine addiction.

METHOD

We conducted a non-systematic literature review to examine in
depth themultifactorial etiology of adolescent nicotine addiction.
The review is largely based on a selection of current, high-quality
articles in the field of neuroscience and epidemiology relevant
to nicotine addiction with the goal of examining a potential
relevant model, such as the sensitization-homeostasis model,
which not only explains the development of nicotine addiction in
adolescents, but is also strongly supported by scientific literature.

Multifactorial Etiology of Adolescent
Nicotine Addiction
Parental and Peer Influence
Epidemiological and clinical data have shown that exposure to
tobacco or nicotine can lead to subsequent abuse of nicotine and
other recreational drugs in adolescents, and this phenomenon
is described as the gateway hypothesis (45). Parents can affect
the health of their children through genetic factors, physical and
mental health, health behaviors and socioeconomic status (11).

Nicotine dependence, depression, and parental
socioeconomic factors, contribute significantly to poor health in
early adulthood and adolescence (46).

Parental smoking and nicotine dependence directly increases
child onset of smoking, daily smoking and nicotine addiction
(47). Peer influence on the etiology and maintenance of smoking
is enormous and predicts initiation, smoking persistence and
dependence, and is also a mediator or progression to substance
abuse (48). Although adolescent behavioral and personality
characteristics may be associated with initiation, and continued
use of cigarettes, individual genetic differences in initial
sensitivity to nicotine may constitute a critical element in
adolescent susceptibility to nicotine dependence (49).

Genetic Influence on Nicotine Dependence
Genetic Predisposition confers liability to nicotine dependence
and variation in individual genes have been associated with
nicotine dependence. The evidence for a significant role of
genetic factors on nicotine dependence is substantial. Both

linkage studies and genome wide association studies (GWAS)
have identified candidate genes/genomic regions associated with
nicotine dependence (50–53).Measured genetic variation are also
associated with nicotine dependence treatment efficacy (54).

Genetic factors significantly influence both smoking initiation
and persistence, a schematic of these influences are presented
in Figure 1, these include genes associated with differences in
nicotine’s metabolic capacity and nicotine effects on central
nervous system neurotransmitter functionality, specifically
the dose that modulate direct and indirect effects on nAChR,
dopaminergic and opioidergic activity, respectively. The
candidate genes that play a key role in nicotine addiction include
those associated with the dopaminergic neurotransmitter system
(e.g., DRD2, DRD3, DRD4), cellular transport system (e.g.,
SLC1A2, SLC6A4), serotonergic neurotransmitter system (e.g.,
HTR2A), nicotinic neurotransmitter system (e.g., CHRNA4,
CHRNA5, CHRNA3, CHRNA7, CHRNB4), opioidergic activity
(e.g., OPRM1), and nicotine metabolism (e.g., CYP2A6) (55).

nAChRs are primary targets of nicotine, nicotine exerts direct
and indirect effects on other receptor systems (e.g., opioid,
serotonergic, glutamatergic) that also mediate nicotine-induced
behavioral and neural changes in humans. Variation in the
genes that code for the drug receptor proteins or that code for
metabolic and catabolic enzymes that influence neurotransmitter
levels, also represent the candidate genes for nicotine dependence
and treatment.

The CYP2A6 genotype confers a slow nicotine metabolism
increasing the risk of nicotine dependence (56). CYP2A6, is a
genetically variable hepatic enzyme that is responsible for the
majority of the metabolic inactivation of nicotine to cotinine.
This enzyme mediates over 90% of the conversion of nicotine
to cotinine, which is a major route of elimination of nicotine
and therefore CYP2A6 activity is an important indicator of
nicotine metabolism. A slow rate of nicotine conversion into
cotinine results in a prolonged presence of higher nicotine
concentrations in the bloodstream, thus increasing the exposure
of nicotinic acetylcholine receptors in the brain to nicotine.
Variant alleles of the CYP2A6 gene are associated with slower
nicotine metabolism (57).

Neurobiology of Nicotine Dependence
Nicotine from a smoked cigarette reaches the brain in as little
as 7 s after inhalation (58). Inhalation of cigarette smoke results
in nicotine quickly crosses the blood brain barrier and binding
to nicotinic acetylcholine receptors (nAChRs) in the brain
(59). Activation of nAChRs stimulates the mesocorticolimbic
dopamine system which is the reward pathway thus producing
the primary reinforcing effects of nicotine (60). Stimulation
of dopamine neurons in the ventral tegmental area (VTA) by
nicotine via high affinity α4β2 nAChRs causes increased firing
in terminal dopaminergic fields, such as the nucleus accumbens
(NAc), amygdala, and the prefrontal cortex (PFC) (61).

Exposure to nicotine in conjunction with environmental
cues, causes lasting changes in dopaminergic function, which
contribute to maintenance of smoking and the experience of
withdrawal symptoms upon cessation (62–64). Disruption of
dopaminergic activity via pharmacological blockade of dopamine
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FIGURE 1 | Schematic of Genetic factors that significantly influence both smoking initiation and persistence. Highlighted are genes associated with differences in

nicotine’s metabolic capacity and nicotine effects on central nervous system neurotransmitter functionality, specifically the those that modulate direct and indirect

effects on nAChR, dopaminergic and opioidergic activity.

receptors and disruption of nAChRs leads to decreased nicotine-
induced reinforcement, suggesting a mediating role of these
receptors in the reinforcing properties of nicotine (65).

Vulnerability to Nicotine in Adolescence
Nicotine is a psychoactive and addictive substance that directly
acts on brain areas involved in emotional and cognitive
processing. Preclinical and clinical data suggests that although
sociocultural influences significantly affect smoking adolescence,
adolescent sensitivity to nicotine has strong neurobiological
underpinnings (66).

Adolescence is a sensitive period for maturation of brain
circuits that regulate cognition and emotion, with resulting
vulnerability to the effects of nicotine and tobacco (67, 68).
Adolescence is defined as a transitional period from childhood
to adulthood that is conservatively estimated to last from 12
to 18 years of age in humans, however the boundaries of this
period and what it encompasses is debatable and can vary widely
depending on gender, socioeconomic status, and nutritional
state (13).

Adolescence is marked by major physical changes in the body,
however the hallmark of this period is a major reorganization of
forebrain circuitry (13). During adolescence, the brain is sensitive
to novel experiences with major experience-dependent plasticity
occurring in the prefrontal cortex (PFC) region of the brain that
is responsible for executive control and decision-making (69).

Thus, dynamic structural and functional reorganization of the
brain occurs during adolescence.

Structural Changes in the Adolescent Brain
The structural changes in the adolescent brain include prolonged
reorganization of gray matter, white matter, and associated
neurochemical systems. During adolescence there is a significant
decrease in the gray matter volume and density in the prefrontal
cortex, parietal cortex and basal ganglia, which are critical
brain regions for executive function, sensory processing, and
motivation (70–72). On the other hand, there are corresponding
increases in white matter, which reflect increased myelination
and axonal diameter, and result in increased efficiency of
impulse transduction (73). These changes in gray and white
matter are not homogeneous and this imbalanced maturation
of subcortical emotional and reward-focused systems as well
as cortical executive and impulse control systems are believed
to underlie the increased risk-taking behavior in adolescence
(74, 75). These significant structural changes in the brain during
adolescence, are accompanied by neurochemical changes which
are paralleled by increases in functional connectivity, all of
which synchronously play a significant role in the development
of executive function and cognitive control attributed, to the
maturation of the dopamine system (76, 77).

A functional MRI study examined the effects of nicotine
dependence and tobacco consumption on brain structural
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changes in young adolescents and found that nicotine
dependence was associated with distinct atrophy patterns
on the brain volume (78). Mild nicotine dependence displayed
more structural brain alternations than the heavy nicotine
dependence and is attributed to the intensified neuroplasticity, a
neural adaptation the adolescent brain undergoes against brain
atrophy (79).

Studies have shown that micro-circuitry of the PFC and
the NAc show developmental differences in dopamine
function indicating that that cognitive processing within
these regions is profoundly different in adolescence as compared
to adulthood (66). Thus, rapidly maturing dopamine systems
may be especially sensitive to disruption by environmental
influences during adolescence, with long-term consequences on
addiction behavior.

Smoking during adolescence increases the risk of developing
psychiatric disorders and cognitive impairment in later life
(80, 81). In addition, adolescent smokers suffer from attention
deficits, which aggravate with the years of smoking (82–84).
Recent studies in rodents reveal the molecular changes induced
by adolescent nicotine exposure that alter the functioning of
synapses in the PFC and that underlie the lasting effects on
cognitive function (85). The PFC, is the brain area responsible
for executive functions and attention performance, is one of
the last brain areas to mature and is still developing during
adolescence which makes the adolescent brain vulnerable to
imbalance and therefore more susceptible to the influence of
psychoactive substances such as nicotine (86). In prefrontal
networks nicotine modulates information processing onmultiple
levels by activating and desensitizing nicotine receptors on
different cell types and in this way affects cognition (87).

Nicotine Induced Neurobiological Changes
in Adolescents
Comparison of smoking behavior of adolescents with that
of adult’s point to an enhanced sensitivity of the adolescent
brain to addictive properties of nicotine. Adolescents report
symptoms of dependence even at low levels of cigarette
consumption (88, 89). Adolescents are uniquely sensitive to
nicotine and therefore, understanding the distinct effects of
nicotine use on the adolescent brain is critical to treating
and preventing nicotine addiction. Nicotine interferes with
adolescent brain maturation and causes persistent changes in
neuronal signaling (41, 90). Nicotine exposure in adolescence
modulates cortico-limbic processing and alters synaptic pruning
patterns in reward-encoding brain regions (66, 91). Nicotine
exposure may lead to higher levels of dependence by exerting
neurotoxic effects in the prefrontal cortex (PFC) interfering with
adolescent cognitive development, executive functioning, and
inhibitory control (92). These effects are particularly evident
under stressful or emotionally intense states and are most
pronounced when smoking begins during early adolescence (93,
94). Neuronal nAChRs are central regulators of neurophysiology
and signaling in addiction pathways and are widely distributed
in neuroanatomical regions implicated in nicotine addiction
(17). Adolescent nicotinic receptors in different neuroanatomical
regions display significantly increased functionality compared
with adult receptors (66, 95, 96). These data suggest that the

underlying receptor mechanisms of nicotine tolerance differs
between adults and adolescents, therefore the effectiveness of
smoking cessation therapies differs between these group.

Adolescents also exhibit greater behavioral sensitivity and
susceptibility to other drugs of abuse after nicotine exposure,
contrary to that adults exposed to nicotine do not show enhanced
behavioral sensitivity or susceptibility to other drugs of abuse
(66, 97–99). The increased tolerance to nicotine in adolescents
may contribute to an enhanced vulnerability, further the increase
in adolescent nAChR functionality compared with adults may
contribute to the shift in nicotine dependence (10, 41). Dopamine
plays a large role in the rewarding effects of nicotine (66, 100).
Since the dopaminergic system is still undergoing development
during adolescence, nicotine-stimulated dopamine release is
significantly higher during the early adolescent period (101).

In adults’ dopamine release is attenuated during withdrawal,
thus adolescents do not experience this same decrease in
dopamine as adults and thus exhibit lower withdrawal symptoms
and aversive effects (60, 102).

Nicotine withdrawal symptoms in adolescent smokers exhibit
signs and symptoms that are characteristically associated with
nicotine deprivation in adult smokers (103, 104). However,
clinical studies suggests that the time course of withdrawal
symptoms may be different for adolescents who are trying to
achieve and maintain long-term abstinence and in those who
have varying levels of nicotine dependence (10, 99).

Microglia and Their Role in CNS
Pathophysiology in the Context of Nicotine
Addiction
Microglia are highly specialized resident immune cells of
the brain and play a vital role in surveillance of the brain
microenvironment, which enables them to detect and respond
to perturbations by altering their own morphology based on
the type of insult (105, 106). Recent studies have shown that
microglia are critical mediators of anxiety-like behaviors in mice
during nicotine withdrawal (107) and while microglia mediate
both inflammatory responses in the brain and brain plasticity,
little is known regarding their role in nicotine dependence and
changes in microglial phenotypes in response to nicotine.

Adolescents aremore to susceptible tomicroglial activation by
nicotine as compared to adults which results in long term effects
in terms of nicotine induced neuropathology and addiction
(101, 108). Important structural and functional changes in
synaptic plasticity and neural connectivity occur in different
brain regions in adolescence (72, 74, 109). Most drugs of abuse
activate microglia leading to a pro-inflammatory state which
then alters neuro-circuits associated with reward and drug
dependence (110–112).

Microglial activation phenotypes are described as (1) classic
activation (M1 phenotype), (2) alternative activation (M2a
phenotype), (3) alternative type II activation (M2b phenotype),
and (4) acquired deactivation (M2c phenotype) (113, 114). M1
microglia are capable of producing reactive oxygen species (ROS)
and produce cytokines such as tumor necrosis factor-α (TNF-
α), IL-1β, IL-6, and IL-12, thereby mediating inflammatory
tissue damage (115). The M1 phenotype is commonly referred
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to as neurotoxic (116, 117). M1 microglia regulate synaptic
pruning (118) and exhibit limited phagocytic activity (119). M2a
microglia exhibit significant phagocytic activity and respond
to IL-4 and IL-13 stimulation by producing an insulin-like
growth factor-1, anti-inflammatory cytokines such as IL-10;
and to express G-CSF, GM-CSF, and CD209 (120–122). These
microglia can stimulate tissue regeneration and can eliminate
cellular debris. M2b microglia show increased IL-12, IL-10,
and HLA-DR expression. M2b microglia also have significant
phagocytic activity and an increased expression of CD32 and
CD64. M2c also known as acquired deactivation phenotype is
acquired as a result of stimulation with the anti-inflammatory
cytokine IL-10 or glucocorticoids, shows increased expression of
transforming growth factor (TGF), sphingosine kinase (SPHK1),
and CD163 (123). The polarization of microglia toward the M2
phenotype occurs to resolve inflammation and degeneration as
a whole; thus, this phenotype is characterized as neuroprotective
(113, 114, 124, 125).

Immunomodulatory Effects of Nicotine on
Microglia
Nicotine induces both immunosuppressive and immuno-
stimulatory effects in the CNS (126, 127). The translocator
protein (TSPO) is used as a neuro-inflammatory marker as
its expression is upregulated in reactive glial cells during CNS
pathologies. However, it remains unclear in which microglial
phenotypes TSPO levels are upregulated, as microglia can
display a plethora of activation states that can be protective
or detrimental to the brain. TSPO expression was selectively
increased in M1 microglia but not M2 microglia. TSPO
imaging reveals microgliosis in non-neurodegenerative brain
pathologies, and this is perhaps reflected in the observation that
cigarette smokers have decreased levels of TSPO suggesting that
neuroprotective properties of nicotine and the anti-inflammatory
responses of nicotine may be responsible for the decreased
incidence in neurological diseases in smokers (128). Nicotine
induced increases in brain inflammatory markers which are
not only dose-dependent, but are also related to smoking
intensity and time since smoking cessation (126). Neuroimaging
studies, show gray-matter abnormalities throughout the brain, in
smokers compared to non-smokers, and these are attributed to
an upregulation of nicotinic acetylcholine receptors (nAChR) in
the prefrontal cortex and the consequent differences in functional
connectivity in the prefrontal cortex region in smokers compared
to non-smokers (128, 129). Additional studies are needed to
examine nicotine induced inflammatory responses and TSPO
binding in human smokers during acute nicotine withdrawal
in order to evaluate the therapeutic potential of microglial
modulators as smoking cessation aids.

Studies in Adult Mice Models That Highlight Nicotine

Induced Microglial Activation and Consequent

Inflammatory Response
Adeluyi et al. showed that chronic nicotine treatment and
nicotine withdrawal in adult mice both alter microglial
morphology, however both conditions trigger different
inflammatory responses in the brain NAc region (107).

Chronic nicotine does not elicit a pro-inflammatory response in
the NAc, but does induce microglial activation, while nicotine
withdrawal does induce a pro-inflammatory response that
involves the interaction between Nox-2, ROS, and TNFα in adult
mice (107, 130). The NADPH oxidase (Nox) system is a major
source of intracellular ROS production in the adult brain and the
nicotine withdrawal induced activation of the Nox isoform-Nox-
2 expression in microglia, which is believed to be the primary
mechanism that results in increased ROS generation and
pro-inflammatory response to nicotine withdrawal (131, 132).

Role of Microglia in Nicotine-Induced
Synaptic Plasticity
In addition to their immune function, microglia are also
involved in synaptic function and plasticity; therefore, we
speculate that, their alterations within the NAc, which is a
critical brain circuit for addictive processes, may enhance the
development of aberrant synaptic connections and plasticity
underlying nicotine dependency (111). Synaptic cues specific
to the NAc during exposure to chronic nicotine or withdrawal
from chronic nicotine distinctly influence the phenotype of
its resident microglia. Nicotine induced neuro-plastic changes
that contribute to nicotine addiction are triggered with initial
exposure to nicotine and cause significant changes in brain
physiology, structure and function, and changes in behavioral
responses. Microglia play a critical role in synaptic remodeling
and plasticity that underlies drug addiction (133, 134). Nicotine
can directly modulate microglial morphology and function via
interaction with nicotinic acetylcholine receptors (nAChRs) on
microglia (135, 136). α7-nAChR is the only nAChR subtype
expressed by microglia (137–142).

Role of Microglia in Nicotine-Induced
Inflammation
Activated microglia produce and release a variety of pro-
inflammatory cytokines and augmenting the production of free
radicals (143). Microglial cells express innate immune receptors,
Toll like Receptors (TLRs) and cytoplasmic NOD-like immune
receptors (NLRs) (144, 145), which react not only to pathogens
(PAMPs, pathogen associated molecular patterns), but also to
stress conditions, and to cell damage (DAMPS or damage-
associated molecular patterns) (146). Activation of TLRs triggers
signaling pathways, such as the activation of transcription factor
NF-κB, which produces cytokines and inflammatory mediators
(146). Several studies demonstrate the participation of these
receptors in neuroinflammation and associated neuropathology
is induced by nicotine abuse, particularly in adolescence (147).

Variable Effects of Nicotine on Adult and
Adolescent Microglia
Morphological Differences
Significant morphological differences exist between adult
microglia and adolescent microglia, adult microglia were larger
and have more complex morphology than adolescent microglia.

Frontiers in Public Health | www.frontiersin.org 6 July 2021 | Volume 9 | Article 664748

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Mahajan et al. Review of the Neurobiology of Nicotine Addiction

FIGURE 2 | Schematic that illustrates the effect of nicotine on microglial activation in adult microglia vs. adolescent microglia. M1 microglia represent a neurotoxic

environment with increased levels of pro-inflammatory cytokines while M2 microglia are neuroprotective. Adolescent-nicotine exposed microglia show an increased

reactive M1 activation and a pro-inflammatory response. Increased expression of pro-inflammatory cytokines CX3CR1, CXCL12, TNFrs11β, ROS, NOX-2, TNF-α, and

TSPO are reported in nicotine exposed adolescent microglia as compared to nicotine exposed adult microglia.

Differences in Transcriptional Profiles
The transcriptional profile associated with immune activation
is significantly different in adolescent microglia as compared
to adult microglia (148). Nicotine treatment showed age-
dependent effects on microglial marker Iba1 expression
in the NAc and BLA which are actively maturing brain
region during adolescence responsible for reward (66).
Microglia express the receptor CX3CR1, which mediates
developmental synaptic pruning through the neuronal ligand
CX3CL1 (111).

Differences in Microglial Activation
Nicotine decreased overall expression of genes associated with
microglial activation and nicotine alters the expression of
these transcripts in an age-dependent manner which suggests
that microglia are not fully mature by adolescence (101). A
recent study showed that microglia are essential regulators of
nicotine induced increases in cocaine seeking behavior (101)
in adolescent microglia. Nicotine-induces microglial activation
in the brain regions such as NAc, basolateral amygdala (BLA)
which are responsible for reward (41, 66). The nicotine
induced changes to microglial activation is mediated via the
NAc localized D2 receptors and CX3CL1 signaling cascade
suggesting that nicotine can induces significant changes to
adolescent brain and behavior, and that microglial activation
is a critical to this regulation (149). CX3CL1 not only

mediates nicotine-induced increase in microglial activation,
but increases the neuronal-microglial communication pathway
via the CX3CL1-CX3CR1 interaction, after adolescent-nicotine
exposure (149, 150).

Adult microglia treated with nicotine did not show
either microglial proliferation nor activation demonstrating
a neuroprotective effect of nicotine on adult microglia
(151), however in the adolescent brain, nicotine treatment
increased microglial activation (108) resulting in enhanced
secretion of inflammatory cytokines, metabolic dysfunction,
ineffective phagocytosis of proteins and neuronal debris,
and alterations in neurochemical transmission producing
long-term changes in limbic function (41, 152). The
adolescence period is therefore a particularly vulnerable
period during which, nicotine withdrawal induces microglial
morphological changes in the nucleus accumbens (NAc)
promoting microglial activation via Nox2-mediated
increases in ROS.

Differences in Pro-inflammatory Response
Once activated microglia release pro-inflammatory cytokines
TNFα and IL-1β, which correlate with increased withdrawal
behaviors (107, 153). The increase in the pro-inflammatory
cytokines occurs in both adolescents as well as adults, however,
the increase in inflammatory cytokines in adolescents is
significantly higher than that in adults (101, 154) (Figure 2).
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Modulation of Microglial Activation—A
Potential Therapeutic Approach for
Cessation
Targeting the microglial potassium (KATP) channels has
been shown to be effective in controlling inflammatory
microglia activation, avoiding its toxic phenotype
though a mitochondria-dependent mechanism (155).
Such a strategy of modulating microglial activation
and consequent neuroinflammation may be a novel
therapeutic approach for treatment of nicotine
withdrawal symptoms.

Nicotine withdrawal is associated with cognitive deficits
including attention and episodic memory impairments. The
presence of cognitive deficits correlated with microglial
activation and the increased expression of neuro-
inflammatory cytokines such as IL1β, TNFα and IFNγ,
in the hippocampus and the prefrontal cortex regions of
the brain (153). A non-steroidal anti-inflammatory drug
(NSAID) such as indomethacin can prevent cognitive
deficits and microglial activation during withdrawal,
which suggests the potential use of anti-inflammatory
agents to improve cognitive function during nicotine
withdrawal (153).

The role of microglia in response to nicotine is further
consolidated by experiments that show that microglial depletion
reversed the microglial- related Nox2 and associated aberrant
ROS production and also decreased anxiety-like behavior that is
typical response to nicotine withdrawal (156).

Research investigating the role of microglia in nicotine
dependence is limited and still novel, however, has potential
implications in the development of more potent therapeutics to
treat nicotine dependence and withdrawal.

Future Pharmacotherapeutic Approaches
to Treat Nicotine Addiction
Both the neurochemical and functional changes observed
in adolescent brain regions are associated with dopamine
modulation and the cerebral reward system, which are influenced
by specific genes, suggesting that a genetic predisposition of the
neural mechanisms is involved in the acquisition of dependence
in nicotine addiction.

Use of Pharmacogenetics in Nicotine Addiction

Treatment
Identification of genes involved in the inheritance of specific
smoking phenotypes may strengthen the selection of treatment
options tailored to individual genotype (157). Although
evidence for associations of CYP2A6 with smoking behavior
and for the nicotine-metabolite ratio as a predictor of
relapse are promising, cost effectiveness of implementing
pharmacogenomics therapy would depend on the distribution of
the relevant genetic polymorphisms in all smoking individuals
(158). Pharmacogenomics and nicotine dependence is still an
emerging science.

Microglia as Therapeutic Target for the Treatment of

Nicotine Addiction
We speculate that neurodevelopmental changes may be
modulated by pharmacotherapy targeted to activate change in
microglial phenotype which may promote brain homeostasis
and a neuro-adaptation that favors decreased dependence
on nicotine thus microglia are a promising therapeutic
target that need to be explored. Currently, data on role
of microglial activation in nicotine cravings, withdrawal
and tolerance is limited. We believe that the sensitization-
homeostasis model (159–161), which highlights the concept
that “nicotine’s dependence liability derives from its ability to
stimulate neural pathways responsible for the suppression of
craving and due to sensitization,” will provide a theoretical
framework for addressing the potential role of microglial
homeostasis in withdrawal, tolerance and abstinence-related
neural adaptations in nicotine addiction in both adults
and adolescents. The sensitization-homeostasis model is
unique in its extensive integration of clinical observations
and basic science and its attribution of dependence to
craving suppression and suggests that separate homeostatic
mechanisms are responsible for abstinence, withdrawal, and
tolerance (162).

CONCLUSION

Studies show that behavioral treatments particularly in
adolescents are effective, whereas pharmacotherapies have
only marginal success (28, 29, 32, 33). The side effect
profiles for nicotine replacement therapy, bupropion, and
varenicline in adolescents are similar to those reported
in adult studies and none of these medications were
efficacious in promoting long-term smoking cessation among
adolescent smokers. The decision to use pharmacotherapy
in adolescents should be individualized and should be
administered in addition to cognitive-behavioral counseling
and support.

Nicotine dependence over time can result in neuro-
plastic changes in the brain (163), and therefore there is
a possible concern for nicotine replacement therapy use
during adolescence, which is that nicotine can change the
neurodevelopmental trajectory. Therefore, understanding
how nicotine affects the adolescent brain, and identifying
novel therapeutics is essential to treating nicotine addiction
in adolescents.

Cessation interventions utilizing mobile devices and social
media also show promise in boosting tobacco cessation.
Technology-based smoking cessation interventions such
as the tobacco quitting helpline and other telehealth
approaches are not only cost effective but increase the
likelihood of adults and adolescents quitting, compared
with no intervention.

Pharmacogenomics approaches hold promise for
personalized treatment by increasing success rates in
nicotine dependence treatment (82, 164–172). Thus, effective
treatments that support tobacco cessation in both adults
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and adolescents should include both behavioral therapies
and FDA-approved medications and further emphasis
be placed on personalization of cessation treatments to
increase the possibility of compliance and ensure success of
the intervention.
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