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ABSTRACT

The isoelectric point is the pH at which a particular
molecule is electrically neutral due to the equilibrium
of positive and negative charges. In proteins and
peptides, this depends on the dissociation constant
(pKa) of charged groups of seven amino acids and
NH+ and COO− groups at polypeptide termini. Infor-
mation regarding isoelectric point and pKa is exten-
sively used in two-dimensional gel electrophoresis
(2D-PAGE), capillary isoelectric focusing (cIEF), crys-
tallisation, and mass spectrometry. Therefore, there
is a strong need for the in silico prediction of iso-
electric point and pKa values. In this paper, I present
Isoelectric Point Calculator 2.0 (IPC 2.0), a web server
for the prediction of isoelectric points and pKa val-
ues using a mixture of deep learning and support
vector regression models. The prediction accuracy
(RMSD) of IPC 2.0 for proteins and peptides outper-
forms previous algorithms: 0.848 versus 0.868 and
0.222 versus 0.405, respectively. Moreover, the IPC
2.0 prediction of pKa using sequence information
alone was better than the prediction from structure-
based methods (0.576 versus 0.826) and a few folds
faster. The IPC 2.0 webserver is freely available at
www.ipc2-isoelectric-point.org

GRAPHICAL ABSTRACT

INTRODUCTION

The isoelectric point (pI or IEP) is an important physic-
ochemical parameter of many compounds, including pep-
tides and proteins, and can be used to estimate the surface
charge of molecules in various pH conditions. This physico-
chemical property has been extensively used in many molec-
ular techniques, such as two-dimensional gel electrophore-
sis (2D-PAGE) (1,2), capillary isoelectric focusing (3,4),
crystallisation (5), and mass spectrometry (MS) (6,7). It
should be stressed that for polypeptides, the isoelectric point
depends mostly on the acid dissociation constants (pKa)
of the ionisable groups of seven charged amino acids: glu-
tamate (� -carboxyl group), cysteine (thiol group), aspar-
tate (ß-carboxyl group), tyrosine (phenol group), lysine (ε-
ammonium group), histidine (imidazole side chains), and
arginine (guanidinium group). Furthermore, other charged
groups can be important, such as the amine and carboxyl-
terminal groups of the polypeptide chain and the post-
translational modifications (PTMs) that carry the charged
groups (e.g. phosphorylation and N-terminal acetylation).
Moreover, the difference between the theoretical pI and the
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experimental pI can be related to the ionisation state of the
individual residues. Some residues are buried inside the pro-
tein structure and, therefore, their contribution to the net
charge of the whole molecule is marginal. Additionally, the
charge of the exposed residue can be neutralised if it is used
to form interactions with other residues, such as in non-
covalent salt bridges, in which a proton migrates from a car-
boxylic acid group to a primary amine or to the guanidine
group in Arg (in proteins, Lys or Arg are used as the bases
and Asp or Glu as the acids; 8–10). However, most of the in
silico methods that are currently used for pI estimation are
based on simply counting the numbers of charged residues
and utilising the Henderson-Hasselbalch equation with cus-
tomised pKa values (11,12). Nevertheless, some attempts to
build more sophisticated methods should be acknowledged,
such as those using genetic algorithms (13), artificial neural
networks (14) and support vector machines (15).

While the estimation of the isoelectric point can be con-
sidered a challenging task, the prediction of pKa values for
individual residues is even more difficult. The average pKa
values used for pI prediction have been measured using
simplified conditions, such as alanine pentapeptides with
charged residue in the centre (16). This has been done to
minimise the contribution from neighbouring residues, but
such an approach is of no use for pKa estimation in real
proteins, where the influence of surrounding residues must
be considered. An additional problem involved in building
a reliable pKa prediction algorithm is the scarcity of data
(approximately 1000 known pKa values in proteins have
been measured experimentally (17)). To date, for pKa pre-
diction, only programs based on protein structure have been
available, such as MCCE (18), H++ (19), Propka (20) and
Rosetta pKa (21).

In this work, I present a major update of the original IPC
algorithm (available at http://isoelectric.org) (12) that sig-
nificantly extends its capabilities (Figure 1). The IPC 2.0
web server (available at http://www.ipc2-isoelectric-point.
org and mirrored at http://ipc2.mimuw.edu.pl) incorporates
two major feature upgrades:

- Prediction of the isoelectric point using state-of-the-art
machine learning instead of the relatively simple pKa op-
timisation used in IPC 1.0

- Prediction of individual pKa values based solely on se-
quence features

The features were implemented to address the major
drawbacks of IPC according to users’ feedback and to
improve prediction accuracy. Additionally, a new, larger
dataset for peptides was used. The input of IPC 2.0 is the
peptide or protein sequence(s) in a one-letter amino acid
code (for multiple sequences, the FASTA format is used).
For each input sequence, IPC 2.0 runs the machine learning
models for the isoelectric point and predicts the pKa disso-
ciation constant for each charged residue and the terminal
groups of polypeptide chains. Additionally, a scatter plot
with the predicted isoelectric points versus the molecular
weight is presented for all proteins (in total, output from 21
isoelectric point prediction methods). All the prediction re-
sults can be downloaded in CSV format for further analysis.

MATERIALS AND METHODS

Datasets

To develop and test the IPC2.0 server, multiple benchmark
datasets had been used (Table 1). They can be divided into
the following three main sets:

- Protein dataset: contains 2324 non-redundant proteins
with experimentally measured isoelectric points (merged
data from SWISS-2DPAGE and PIP-DB databases
(22,23)). This dataset was also used in IPC 1.0. For more
details, see (12).

- Peptide dataset: the datasets from previous studies were
merged to form a total of 119 092 non-redundant peptides
(6,24,25). Note that this is different peptide dataset than
that used for IPC 1.0. For more details, see (12).

- pKa dataset: 1337 pKa values from 157 proteins were ob-
tained from the PKAD database (17).
All datasets were clustered to avoid duplicates and, if

needed, to merge and average experimental measurements.
Next, the datasets were randomly split into 25% testing sets
(used only for final benchmarks) and 75% training sets (used
for machine learning, hyperparameters optimisation). All
presented benchmarks on individual datasets had been cal-
culated with 10-fold cross-validation.

Feature generation

The most important features for isoelectric point predic-
tion are the sequence itself; the number of charged residues;
the amino acid type on the C- and N-termini; and the
isoelectric point predicted by simple methods using the
Henderson–Hasselbach equation and pKa value sets, such
as IPC (12), Bjellqvist (26) and DTASelect (27). To en-
gineer additional features, the AAindex––with 566 matri-
ces for 20 standard amino acids––was scanned (28). To se-
lect the most informative features, the univariate feature se-
lection with regression (f regression) and mutual informa-
tion (mutual info regression) was used (up to 10 highest-
scoring features were selected using the SelectKBest func-
tion from Scikit-learn) (29). For pKa models, the AAindex
scores were calculated using kmers of different sizes cen-
tred on a charged amino acid (for a pentamer, e.g. xxRxx,
this may correspond to ALRWI, GIRAA, WRRIL, etc. For
more details, see ‘Machine Learning Details’ section in the
Supplementary Material). It is important to stress that lo-
cal protein features, such as secondary structure and solvent
accessibility, are valid only for protein sequences. They are
irrelevant for short peptides, where, for instance, the use of
a mass spectrometer disrupts any higher-order structure of
the molecule. Therefore, pKa predictions should be consid-
ered valid only for proteins (>50 amino acids).

Performance evaluation metrics

The prediction of pKa and pI values is a regression prob-
lem. Therefore, metrics such as root mean square deviation
(RMSD), mean absolute error (MAE), Pearson’s correla-
tion coefficient (r2), and the number of outliers were used.
While the first three metrics are commonly used, the last
must be explained. The outliers were defined at 0.5 and 0.25
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Figure 1. Overview of the IPC 2.0 architecture. The input (amino acid sequence in the plain format or multiple sequences in the FASTA format) is
processed by individual machine learning models. Separate models depending the prediction task are used. Isoelectric point prediction for peptides is
based on separable convolution model (four channels representing the one-hot-encoded sequence, AAindex features, amino acid counts, and predictions
from IPC 1.0). The protein pI and pKa prediction models use the ensembles of low level models integrated with support vector regressor. For more details,
see Supplementary Figure S1 and ‘Machine Learning Details’ in the Supplementary Material.

pH unit difference thresholds between the predicted and ex-
perimental pI for proteins and peptides, respectively. Thus,
if the prediction disagree with the experimental pI by given
threshold, such case has been considered as the outlier. The
total number of outliers for individual datasets has been
used to identify methods returning predictions within rea-
sonable error range.

Machine learning

In this work, I try to solve three independent problems:
the pI of proteins, the pI of peptides, and the pKa of
charged residues. Therefore, it is justified to design (at least)
three separate models. Any machine learning process begins

with the conversion of input data (in this case, polypeptide
chains) into a format that can be used by machine learn-
ing packages (here, SciPy (30), sklearn (29), Tensorflow (31)
and Keras (32)). The simplest approach is to use one-hot en-
coding, but it should be stressed that this produces a sparse
matrix or vector (in this case, it would be L × 22, where L is
the polypeptide length and 22 corresponds to 20 standard
amino acid letters plus one for an unknown amino acid and
one for padding). If the input varies in length, some padding
(peptides; up to 60) or truncation (protein; down to 1000)
is inevitable. With regard to pI prediction, the number and
type of charged groups are most significant; thus, this infor-
mation (even alone) can be used as the initial vector. Ad-
ditionally, if possible, the introduction of hand-crafted fea-
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Table 1. Detailed statistics for the datasets used in IPC 2.0.

Dataset Entries Details

IPC2 protein
IPC protein 25 (25% test set)
IPC protein 75 (75% training set)

2324
581

1743

The dataset consists of proteins derived from two databases: PIP-DB and
SWISS-2DPAGE (22,23). The outliers are defined at 0.5 pH unit difference
between the predicted and experimental isoelectric point threshold. The same
protein dataset is used in IPC and IPC 2.0. Average protein size: 387 aa.

IPC2 peptide
IPC2 peptide 25 (25% test set)
IPC2 peptide 75 (75% training set)

119 092
29 774
89 318

The dataset consists of the peptides from HiRIEF high-resolution isoelectric
focusing experiments from Branca et al. 2014 (6) and Johansson et al. 2019
(24). Merged dataset from seven independent experiments: 3.7–4.9 (8,713
peptides), 3.7–4.9 (7361 peptides), 3.7–4.9 (35 595 peptides), 3–10 (23 975),
3–10 (15 000 peptides), 6–11 (36 827 peptides), 6–9 (38 057 peptides).
Average peptide size: 14.6 aa.

IPC2 pKa
IPC2 pKa 25 (test set)
IPC2 pKa 75 (training set)

1337
260

1079

pKa values from PKAD database (157 proteins). Due to small number of
samples, the test set and training set was built as follows: 260 pKa values
from 34 proteins used in the pKa Rosetta method (21) were selected as a test
set. The remaining samples from the PKAD database were used as the
training set.

The full datasets were never used directly. First, the sequences were clustered (to remove duplicates and to average isoelectric point if multiple experimental
data existed), then split randomly into 25% and 75% sets (test and training data sets, respectively). The training sets were used for the training and
(hyper)parameter optimisation. The test sets were used only once to assess the final performance of the models. For individual datasets’ sequences and
experimental isoelectric points, see Supplementary Data 1.

tures is recommended (this is important when the data size
is limited). This last step can frequently be omitted because
if it is given a sufficiently large dataset, the deep learning ap-
proach can learn the features of the model by itself (e.g. the
convolution filters for the images). Unfortunately, if data
are scarce, the prediction accuracy is hampered, and adding
hand-crafted features can be unavoidable to enrich the in-
put vectors with expert knowledge.

In the case considered by this paper, apart from the se-
quence alone, I used features derived from the sequence
(such as charge, length, molecular weight, hydrophobicity,
number of charged amino acids, and the predicted pI from
other methods). The input differs according to the problem
to be solved and the machine learning technique used but,
in general, the input consists of two major parts: sequence-
related and feature-related. Several machine learning ap-
proaches were tested. First, I used optimization techniques
to find the optimal set of seven pKa values for charged
residues. In the first version of IPC, basin-hopping with a
truncated Newton algorithm (33) was used; here, I used a
differential evolution algorithm (34), as it performed signif-
icantly better. The population size was set to 50 and all re-
maining parameters were default (SciPy version (30)). Next,
having the initial predictions of pI from IPC 1.0, I designed
a very simple approach based on support vector regression
(SVR) with RBF kernel and GridSearchCV parameters op-
timization. The input vector in this case was 19 predicted
isoelectric points. Finally, I progressed to more advanced
machine learning techniques, namely, deep learning. It is
possible to start from simple dense networks (Multi-Layer
Perceptron; MLP) with different numbers of dense layers
and neurons that are interconnected with dropout and with
different activation layers (preferably selu and elu). The fi-
nal architecture for peptide isoelectric point prediction ben-
efit from all mentioned information and is based on stack-
ing of separable convolution layers. The input is reshaped
in the following way. For peptides, the maximal length is 60
amino acids; thus, this defines the main size of the 2D ma-

trix obtainable after one-hot encoding (all sequences were
padded up to 60, if needed). This results in a matrix of 60
× 22 (20 standard amino acids, X for unknown, and 0 for
padding). By analogy with the image processing from which
convolution has been adopted, this 60 × 22 matrix can be
considered as the main image size. Similarly, additional in-
formation can be stored in separate channels (for instance
an RGB image has three channels for values of red, green,
and blue). Here, I used four channels. The first channel was,
as stated, a one-hot encoded sequence. The second chan-
nel stored information about the most informative features
from AAindex. In the third and fourth channels, I encoded
the information about 1D features, the information about
charged residues counts, and the isoelectric point prediction
from IPC 1.0. The input was processed by two separable
convolution layers, interconnected with two average pool-
ing layers. The initial kernel size of the filter was set to 22 ×
5 to slide across the whole amino acid frame with a window
of five amino acids. Then the feature maps were flattened
and sent to a standard MLP unit: three dense layers (Sup-
plementary Figure S1).

Machine learning architecture for the prediction of pKa is
very different, as here the focus is on a single charged amino
acid (and its neighbourhood). Therefore, the input is very
limited. I decided to use the information related to kmers of
different size. With increasing size of the kmer (from three
to 15), we encoded the sequence (one-hot encoding) and the
amino acid scores for the most informative features from
AAindex. This information was used as input for the MLP
unit (three dense layers separated by dropout layer). Next,
to boost the performance we used an ensemble of nine mod-
els to build final support vector regression model.

In all deep learning models, the ADAM optimiser
(35) and hyper-parameter optimisation by Randomized-
SearchCV were used. As the optimisation condition, the
mean squared error loss function was used. Apart from the
dropout, 10-fold cross-validation and early stopping were
used to estimate the robustness of the predictions and to
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Table 2. Isoelectric point prediction accuracy on leave-out 25% datasets

Method Protein dataseta Method Peptide datasetb

RMSE MAE R2 Outliersc RMSE MAE R2 Outliersc

IPC2.protein.svr.19 0.8479 0.5906 0.5934 247 IPC2.peptide.Conv2D 0.2216 0.1216 0.9761 2691
IPC2 protein 0.8608 0.6052 0.5748 251 IPC2.peptide.svr.19 0.2299 0.1155 0.9743 2490
IPC protein 0.8677 0.6109 0.5760 250 IPC2 peptide 0.2482 0.1394 0.9700 3179
ProMoST 0.9113 0.6444 0.5183 263 Bjellqvist 0.4051 0.2836 0.9204 11639
Toseland 0.9278 0.6537 0.5095 250 Nozaki 0.4083 0.2673 0.9191 9837
Dawson 0.9365 0.6586 0.4977 263 DTASelect 0.4235 0.2796 0.9130 10606
Bjellqvist 0.9369 0.6536 0.5005 260 Thurlkill 0.4466 0.2535 0.9033 7182
Wikipedia 0.9484 0.6795 0.4860 262 Sillero 0.4747 0.2696 0.8907 7607
Rodwell 0.9579 0.6762 0.4706 262 Dawson 0.4910 0.2642 0.8831 6698
Grimsley 0.9588 0.6953 0.4779 265 Wikipedia 0.5178 0.2974 0.8700 8326
Lehninger 0.9617 0.6783 0.4607 266 Grimsley 0.5264 0.3796 0.8656 15956
Solomon 0.9631 0.6746 0.4606 272 Rodwell 0.5855 0.3429 0.8337 9857
pIR 1.0148 0.7556 0.4161 315 Toseland 0.5860 0.3896 0.8335 13152
Nozaki 1.0164 0.7219 0.3980 288 EMBOSS 0.5971 0.3557 0.8271 11022
Thurlkill 1.0250 0.7573 0.3948 302 PredpI-iTRAQ8 0.6302 0.3503 0.8027 12059
DTASelect 1.0278 0.7798 0.3947 319 PredpI-TMT6 0.6365 0.3518 0.7988 12135
EMBOSS 1.0498 0.7757 0.3734 308 PredpI-plain 0.6480 0.3710 0.7913 12813
Sillero 1.0519 0.7694 0.3461 308 IPC peptide 0.7459 0.4860 0.7302 13599
Patrickios 2.3764 1.8414 <0 517 Solomon 0.7518 0.4929 0.7259 13777
PredpI-TMT6 NA NA NA NA Lehninger 0.7697 0.5209 0.7127 15200
PredpI-plain NA NA NA NA pIR 0.8529 0.7303 0.6387 27158
PredpI-iTRAQ8 NA NA NA NA ProMoST 1.1026 0.7562 0.4104 18513

Patrickios 2.0172 1.3927 <0 22818

aProtein dataset consisting of 581 proteins (25% randomly chosen proteins, not used for the training or optimization).
bPeptide dataset consisting of 29 774 peptides (25% randomly chosen peptides, not used for the training or optimization).
cThe outliers were defined at 0.5 and 0.25 pH unit difference between the predicted and experimental pI thresholds for the protein and peptide datasets.
NA: The PredpI program was designed for peptides only within the 3.7–4.9 pH range; thus, for proteins, it returned 0 and could not be evaluated on the
protein dataset.
New machine learning models developed in this study are in bold. First version of IPC (12) is underscored. Scores calculated after 10-fold cross-validation.
Table is sorted by RMSD. For individual methods’ predictions, see Supplementary Data 2. For more details about the datasets, see Table 1.

avoid overfitting. During the fitting process, the training set
was randomly split (validation split = 0.2). Finally, the per-
formance was estimated for the 25% of cases that had been
omitted. For more details, see ‘Machine Learning Details’ in
the Supplementary Material.

Other methods

To benchmark IPC 2.0, multiple other methods were com-
pared. The simplest methods of isoelectric point predic-
tion are based on different pKa sets and the Henderson–
Hasselbach equation (Patrickios (36), Solomon (37),
Lehninger (38), EMBOSS (39), Dawson (40), Wikipedia
(pKa values as presented in Wikipedia page in 2005), Tose-
land (41), Sillero (42), Thurlkill (16), Rodwell (43), DTASe-
lect (27), Nozaki (44), Grimsley (45), Bjellqvist (26), whose
method was implemented as ExPASy ‘Compute pI/Mw
Tool’ (46), ProMoST (9) and finally IPC 1.0 (12)). Addi-
tionally, machine learning methods, such as PredpI (plain,
TMT6, iTRAQ8 variants) (6) and pIR (15) were also used.
Furthermore, IPC 2.0 pKa predictions were compared to
those of Rosetta pKa (four variants) (21).

Implementation

The pre-processing, training, and testing of the machine
learning models were done in the Python programming lan-
guage. Among the libraries used, the most important were
SciPy (30), sklearn (29), TensorFlow (31), and Keras (32).
For the web-server implementation, the Apache server and

the PHP programming language were used. In addition, the
HTML front-end benefitted from the Twitter Bootstrap and
CanvasJS libraries.

RESULTS

Isoelectric point prediction

The isoelectric point prediction of the IPC 2.0 method is
based on two separate datasets that consist of protein and
peptides. The datasets differ in size and in the difficulty of
the prediction task. Peptides are much shorter and con-
tain only a small number of charged groups. In contrast,
in proteins, multiple additional factors, such as PTMs or
solvent accessibility, need to be taken into account. Thus,
the estimation of the isoelectric point is much more diffi-
cult. The results presented in Table 2 show that the IPC 2.0
models performed the best. Moreover, the more informa-
tion and more advanced machine learning technique used,
the better were the results. The optimisation models (de-
noted IPC2 protein and IPC2 peptide) use pKa sets that are
optimal for calculating pI with the Henderson-Hasselbach
equation (Supplementary Table S1). They perform better
than any other methods (RMSD of 0.860 by IPC2 protein
versus 0.911 by ProMoST and 0.248 by IPC2 peptide ver-
sus 0.405 by Bjellqvist). However, from an machine learning
point of view, they are very simple (but at the same time very
fast).

The next machine learning approach I used was support
vector regression (SVR), in which the isoelectric point pre-
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Table 3. pKa prediction accuracy of Rosetta pKa dataset.

Method Rosetta pKa dataseta Method Rosetta pKa dataseta

RMSE MAE Outliersb RMSE MAE Outliersb

D (74; 3.45 ± 0.80) Y (17; 10.89 ± 0.82)
IPC2 pKa 0.3883 0.2238 6 Rosseta (Site repack) 0.7750 0.6177 7
Rosseta (Site repack) 0.8193 0.5824 27 Rosseta (Neighbor repack) 0.8370 0.6647 9
Rosseta (Ensemble average) 0.8413 0.5460 25 Rosetta (Standard) 0.9579 0.8000 9
Rosseta (Neighbor repack) 0.8676 0.6378 34 IPC2 pKa 0.9766 0.8261 10
Rosetta (Standard) 1.0651 0.8554 46 Rosseta (Ensemble average) 1.1892 0.9529 13

H (76; 6.58 ± 0.98) K (22; 10.66 ± 0.52)
Rosseta (Site repack) 0.8247 0.6408 31 IPC2 pKa 0.2933 0.1909 2
IPC2 pKa 0.8523 0.5105 27 Rosseta (Neighbor repack) 0.6216 0.5091 7
Rosseta (Neighbor repack) 0.8559 0.6487 32 Rosetta (Standard) 0.6498 0.5046 8
Rosseta (Ensemble average) 1.0244 0.7566 39 Rosseta (Site repack) 0.6705 0.5227 7
Rosetta (Standard) 1.2303 0.9961 50 Rosseta (Ensemble average) 0.7135 0.5364 6

E (71; 4.16 ± 0.80) All (260*)
IPC2 pKa 0.3625 0.1951 7 IPC2 pKa 0.5762 0.3364 54
Rosseta (Neighbor repack) 0.8744 0.5887 29 Rosseta (Site repack) 0.8262 0.6165 102
Rosetta (Standard) 0.8880 0.7324 38 Rosseta (Neighbor repack) 0.8332 0.6185 111
Rosseta (Site repack) 0.9303 0.6549 30 Rosseta (Ensemble average) 0.9207 0.6746 114
Rosseta (Ensemble average) 0.9317 0.6972 34 Rosetta (Standard) 1.0300 0.8296 151

aFor the validation of pKa, the dataset from Kilambi and Gray (2012) was used (260* residues from 34 proteins). The numbers next to the residue type
indicate the number of cases and the average pKa value with standard deviation.
bThe outliers are defined at 0.5 pH unit difference between the predicted and experimental pKa threshold.
*The dataset consists of 260 instead of 264 residues due to parsing problems (four missing residues could not be mapped to the protein sequence, due to
the wrong residue register). Scores calculated after 10-fold cross-validation.

dicted by other methods was an input, in a so-called en-
semble averaging technique (47,48). The main advantage of
SVR is that it has only two parameters (C and gamma for
RBF kernel) that need to be optimised. The main disadvan-
tage is that the input features must be already well designed
and in a similar space (for instance, enriching the input
with more heterogeneous features, such as protein length or
molecular weight, prevent the algorithm from converging).
The SVR models not surprisingly performed better than the
optimisation versions (RMSD of 0.848 and 0.230 for pro-
teins and peptides, respectively). Another key feature of en-
semble averaging is that it can be used to reduce the vari-
ance of the predictions. This can be seen in this study with
the significant reduction of outliers: the IPC2.peptide.svr.19
model produced only 8.3% outliers, while the input methods
on average produced ∼32% outliers with only one model
with 10.6% outliers.

Finally, it is possible to progress to deep learning tech-
niques in which the amino acid sequence can be used di-
rectly by one-hot encoding. Additionally, all remaining
hand-crafted features can be added easily (e.g. the most in-
formative features from AAindex; see Supplementary Ta-
bles S2–S4). Together with the plethora of ready-to-adapt
deep learning architectures, this provides another level of
improvement (and training complexity). The final archi-
tecture used for peptide pI prediction in IPC 2.0 is based
on separable convolution kernels scanning multichannel in-
put. The model obtained an RMSD of 0.222. It should be
stressed that IPC 2.0 is also a robust method, as it pro-
duces the fewest outliers (247 and 2490 for proteins and pep-
tides, respectively). Moreover, due to the strict methodology
for clustering and 10-fold cross-validation, the method does
not exhibit significant signs of overfitting (compare Table 2
and Supplementary Table S5). In this study, multiple ma-
chine learning models were tested (for details, see Supple-
mentary Table S6).

pKa dissociation constant prediction

The pKa prediction of individual residues is a separate chal-
lenge with its own problems that need to be addressed.
First, the data are very limited. Moreover, currently avail-
able methods (e.g. MCCE, H++ and pKa Rosetta) require
protein structure and are relatively slow (for instance, the
pKa Rosetta protocol used for benchmarking in this work
requires several hours for a single protein). In contrast, IPC
2.0 uses only sequence-based features and returns results al-
most instantly with similar accuracy (Table 3 and Supple-
mentary Table S7). The prediction of pKa values is based on
an SVR ensemble of nine MLP models that use the infor-
mation derived from kmers of different sizes centred on the
charged residue. This approach made it possible to capture
sequence fingerprints that were located in direct proximity
to the charged residue. The overall accuracy of the IPC 2.0
pKa prediction was better than that of the pKa Rosetta pro-
tocol (0.576 versus 0.839), although some pKa dissociation
constants were clearly worse predicted by IPC 2.0. The main
sources of misprediction were His and Tyr residues: for Tyr
residues at least, this can be explained by the small number
of training points.

IPC 2.0 web server

The IPC 2.0 web server (http://www.ipc2-isoelectric-point.
org) takes protein(s) and peptide(s) as input (single se-
quence or multiple sequences in FASTA format, up to 10
000 residues in total) and returns predictions of pI and pKa
values for individual charged residues. In addition, the out-
puts are complemented by virtual 2D-PAGE plots. As the
server is capable of multiple sequence predictions, its con-
venient output feature is the CSV format, which can be
used for further large-scale analyses (e.g. on the proteome
scale 49–52). Additionally, the standalone version of IPC

http://www.ipc2-isoelectric-point.org
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2.0 is also available on web server site and as Supplemen-
tary Data.

DISCUSSION

In this work, I have presented IPC 2.0, a new web server
for isoelectric point and pKa dissociation constant predic-
tion based on sequence information only. It uses a state-of-
the-art ML methodology and represents an improvement
on previous methods. Additionally, IPC 2.0 is the first, fast
pKa prediction method that can estimate pKa values using
sequence information alone. It does so within seconds, with
a performance level similar to more time-consuming and
structure-based methods. To boost the performance of IPC
2.0 and to bypass the limited size of datasets for protein
and pKa prediction hand-crafted features were used (Sup-
plementary Tables S6 and S7).

However, users should be aware of some of the IPC 2.0
web server’s limitations. First, the isoelectric point and pKa
predictions can be significantly distorted when PTMs are
present (e.g. phosphorylation). This should be kept in mind
when analysing proteins from eukaryotes that are rich in
PTMs (see Supplementary Table S1 in Kozlowski, 2016
[12]). Due to very limited experimental data, it was not
possible to develop machine learning models dedicated to
PTMs. Another shortcoming of IPC 2.0 is that it only
uses sequence information. It is expected that protein struc-
tures that contain more information about the charged
residue’s neighbourhood should improve the prediction per-
formance. Such an approach could help to increase the
modest performance of pKa predictions.

The high performance of the IPC 2.0 web server (and
standalone version) makes it suitable for large-scale anal-
yses related to the charge of proteins and peptides. I believe
that biologists will benefit from this web server with its user-
friendly interface.

DATA AVAILABILITY

IPC 2.0 (http://www.ipc2-isoelectric-point.org), including
the web service, datasets, standalone scripts, and docu-
mentation, has been donated to the public domain. There-
fore, it can be freely used for any legal purpose. Neverthe-
less, the machine learning libraries used by some models
are: sklearn, Tensorflow and Keras, which are under BSD,
Apache and MIT licences, respectively. The web server will
be available at the given web address for at least 10 years.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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3. Pernemalm,M. and Lehtiö,J. (2013) A novel prefractionation method
combining protein and peptide isoelectric focusing in immobilized
pH gradient strips. J. Proteome Res., 12, 1014–1019.

4. Zhu,M., Rodriguez,R. and Wehr,T. (1991) Optimizing separation
parameters in capillary isoelectric focusing. J. Chromatogr. A, 559,
479–488.

5. Kirkwood,J., Hargreaves,D., O’Keefe,S. and Wilson,J. (2015) Using
isoelectric point to determine the pH for initial protein crystallization
trials. Bioinformatics, 31, 1444–1451.

6. Branca,R.M.M., Orre,L.M., Johansson,H.J., Granholm,V., Huss,M.,
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