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Abstract: In this study, the correlation between the antibiotic resistance genes and antibiotic suscepti-
bility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients
diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella
pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered.
Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K.
pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed
by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed
between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside
acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams
(except for aztreonam). For P. aeruginosa, a significant association was noticed between the pres-
ence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones,
amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to
aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump
while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great
medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.

Keywords: carbapenem resistance; lower respiratory tract infections; Klebsiella pneumoniae; Pseu-
domonas aeruginosa; Escherichia coli; ESBL

1. Introduction

Gram-negative bacteria pose a significant treatment challenge to medical staff due
to their widespread resistance to antibiotics. Klebsiella pneumoniae is a frequent human
pathogen that causes many diseases, such as pneumonia, urinary tract infections and
surgical wound infections, and serious life-threatening infections, such as endocarditis and
septicemia. It can also cause necrotizing pneumonia and pyogenic liver abscesses [1]. It is
responsible for about one-third of infections caused by all Gram-negative bacteria [2]. It is
also frequently resistant to multiple antibiotics [3]. Escherichia coli, which is another member
of the Enterobacteriaceae family, is the most common commensal in the gastrointestinal tract
of people as well as an important pathogen. It can cause several diseases, including watery
diarrhea, bloody diarrhea, urinary tract infections, acute neonatal meningitis and sepsis [4].
Pseudomonas aeruginosa is a Gram-negative bacterium that causes a myriad of diseases,
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especially in critically ill and immunocompromised patients. It is a common culprit of
ventilator-associated pneumonia, urinary tract infections, skin and soft tissue infections
and bacteremia [5].

There is no doubt that the discovery of antibiotics at the beginning of the 20th cen-
tury has saved countless lives and revolutionized modern medicine. Unfortunately, the
discovery of these “magic bullets” has been inevitably accompanied by the emergence of
resistant pathogens [6]. Currently, medical experts are concerned about the return to the
pre-antibiotic age [7]. From the analysis of the available bacterial genomes, it was found
that more than 20,000 potential resistance genes already exist in a medical database [8].

The genetic origin of drug resistance differs among drug-resistant microorganisms; it
can be due to either chromosomal or mobile genetic elements [9]. Resistance acquired from
mobile genetic elements, such as plasmids and transposons, is more common than from
those of the chromosome. A single plasmid can carry multiple genes which encode for
resistance to several drugs, thus, it spreads multiple drug resistance among microorgan-
isms [10]. Another major problem with plasmids is that they can cross many species and
genus barriers, therefore, they allow resistance to spread in bacteria that are not necessarily
exposed to antibiotics [11]. Thus, devastating consequences in human health emerge from
the rapid and broad dissemination of resistance determinants by plasmids [12]. In general,
bacteria use three main strategies to become resistant to different antibiotics: (a) prevent-
ing the drug from reaching its target (through reduced permeability or active efflux), (b)
altering the drug target and (c) inactivating the antibiotic through antibiotic destruction or
modification [10]. With the advance in molecular biology techniques, the resistance genes
have been extensively studied and documented [13].

Efflux pumps, which are used by almost all bacterial cells to export toxic substances
from the cell metabolism, can expel antibiotics from the cell as well [14]. Five families of
bacterial drug efflux pumps have been previously identified [15]. In most cases, the efflux
pumps are chromosomally encoded and therefore they are not easily transferable between
bacteria [16]. In resistant Gram-negative bacteria, the widely spread multidrug efflux
pumps are AcrAB-TolC and MexAB-OprM, which belong to the RND superfamily. These
tripartite efflux transporters were first identified and characterized in E. coli and P. aerugi-
nosa, respectively [17]. They are known to efflux antibiotics (β-lactams, fluoroquinolones,
tetracycline and chloramphenicol), heavy metals, dyes, detergents and solvents, along with
many other substrates [16].

The expression of hydrolytic enzymes known as β-lactamases is the most common
mechanism of bacterial resistance to β-lactams. These enzymes specifically hydrolyze
the β-lactam ring, leading to an inactivated product that cannot inhibit the bacterial
transpeptidases any longer [10]. There are many β-lactamases encoded on mobile genetic
elements, and this leads to their increased transmission and spread. Thus, it is very
common to find bacteria harboring as many as eight different β-lactamases, and each one
of them specifically inactivates a unique subset of β-lactam antibiotics [18]. It is important
to have reliable and easily understandable nomenclature to refer to these enzymes, as
more than 4300 unique enzymes have already been identified [19]. The β-lactamases are
classified into four distinct classes based on their molecular structure: classes A through D.
Classes A, C and D possess a serine residue at the active site to initiate bond hydrolysis,
they are thus referred to as serine β-lactamases (SBLs). In contrast, the hydrolytic action of
class B β-lactamases is facilitated by one or two essential zinc ions in the active sites and
therefore they are known as metallo-β-lactamases (MBLs) [18].

Notable class A enzymes include (1) TEM, which is named for a patient called
Temoniera and is the first plasmid-encoded β-lactamase identified in Gram-negative bac-
teria; (2) sulfhydryl variant (SHV) which is an enzyme with similar activity to TEM;
(3) cefotaximase (CTX-M); and (4) K. pneumoniae carbapenemase (KPC), which is responsi-
ble for carbapenem resistance [19]. Class A extended-spectrum β-lactamases (ESBLs) of the
TEM, SHV and CTX-M families are now among the most clinically significant β-lactamases
that can hydrolyze penicillins and broad-spectrum cephalosporins, as well as monobac-
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tams [18]. The most clinically relevant and widespread members of class B enzymes are:
(1) Verona integrin-encoded MBL (VIM); (2) imipenemase (IMP); and (3) New Delhi MBL
(NDM), among others [20]. MBLs constitute the most molecularly diverse class of car-
bapenemases, and can hydrolyze nearly all β-lactams, except for monobactams. The class
C enzymes (also referred to as AmpC enzymes) hydrolyze penicillins and cephalosporins.
These enzymes are mainly chromosomally encoded; however, some have been reported
to be carried on plasmids [18]. Class D SBLs include the oxacillinase (OXA) enzymes
which are mainly plasmid encoded [18]. Recently, these enzymes have become increasingly
important due to the ability of some members of this class to hydrolyze carbapenems along
with other β-lactams, OXA-48 and related enzymes [21].

The enzymatic modification of the amino or hydroxyl groups of aminoglycosides
is considered the major resistance mechanism to these antibiotics in Gram-negative and
Gram-positive bacteria. This is facilitated by aminoglycoside phosphotransferases (APHs),
aminoglycoside acetyltransferases (AACs) and/or aminoglycoside nucleotidyltransferases
(ANTs) [10]. The structural modification of the aminoglycoside results in the inability
of the modified antibiotic to bind to the target RNA due to unfavorable steric and/or
electrostatic interactions [22]. Moreover, the modified variant of the enzyme, aac(6′)-Ib-cr,
also exhibits a reduced quinolone susceptibility phenotype [23]. It has two amino acid
changes, Trp102Arg and Asp179Tyr, which together allows the enzyme to acetylate and
inactivate ciprofloxacin as well [24].

Therefore, through this research, we aim to develop an accurate local periodic report
of antimicrobial resistance and to correlate the presence of certain antibiotic resistance
gene(s) and susceptibility to antibiotics among the carbapenem-resistant Gram-negative
pathogens (CRGNPs), particularly those conferring a multiple drug resistant (MDR) phe-
notype. The findings of this study will guide healthcare practitioners to more effective
prescription patterns.

2. Results

The Gram-negative isolates collected in this study (n = 194) were K. pneumoniae (46%),
E. coli (24%) and P. aeruginosa (30%). The antimicrobial susceptibility testing showed that
the lowest resistance was observed to amikacin (15%), doxycycline (16%) and meropenem
(18%). On the other hand, the highest resistance was observed to amoxicillin (79%),
cefadroxil (78%), cefuroxime (78%) and cefotaxime (69%). It was found that 66.5% of the
isolates (n = 129) were MDR. Table S1 (supplementary data) shows the antibiogram results
of the Gram-negative isolates in this study.

The meropenem-resistant isolates were selected for further study, as they are consid-
ered critical level priority pathogens according to the WHO [25]. None of the collected E.
coli isolates were resistant to meropenem. On the other hand, 22 K. pneumoniae isolates
(25%) and 12 P. aeruginosa isolates (21%) were resistant to meropenem. The results of the
antibiogram results of the carbapenem-resistant isolates are shown in Table S2 (supplemen-
tary data). Detailed antibiogram results and genes detected in the carbapenem-resistant K.
pneumoniae and P. aeruginosa isolates are shown in Tables S3 (supplementary data) and S4
(supplementary data), respectively.

All the meropenem-resistant K. pneumoniae and P. aeruginos a isolates were resistant to
cefotaxime and all of them contained one or more of the ESBL enzymes studied, however,
only 16 K. pneumoniae (73%) and three P. aeruginosa (25%) isolates gave double disk synergy
test (DDST). On the other hand, 19 meropenem-resistant K. pneumoniae (86%) and six
meropenem-resistant P. aeruginosa (50%) harbored one or more of the carbapenemases
studied, however, only 18 K. pneumoniae and three P. aeruginosa isolates gave positive
modified Hodge test (MHT). Thus, the sensitivity of MHT for the K. pneumoniae isolates
was almost 95% and for the P. aeruginosa isolates it was 50%. The results of the DDST and
the MHT of the K. pneumoniae and P. aeruginosa isolates are shown in Tables S3 and S4
(supplementary data), respectively. Several resistance genes were studied and their results
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are shown in Table 1, the number of resistance genes carried per resistant isolate is shown
in Tables 2 and 3 shows different antimicrobial resistance genotypes of the CRGNPs.

Table 1. Resistance genes detected in carbapenem-resistant Gram-negative pathogens (CRGNPs).

Gene K. pneumoniae (n = 22) n◦ (%) P. aeruginosa (n = 12) n◦ (%)

blaKPC 0 (0) 0 (0)
blaIMP 0 (0) 0 (0)
blaVIM 4 (18) 3 (25)
blaNDM 14 (64) 1 (8)
blaOXA 11 (50) 3 (25)

blaCTX-M 15 (68) 8 (67)
blaSHV 10 (45) 11 (92)
blaTEM 10 (45) 7 (58)

aac(6’)-Ib-cr 20 (91) 10 (83)
mexA - 12 (100)
acrA 19 (86) -

n◦: number of isolates carrying the gene, %: approximate percentage.

Table 2. Number of resistance genes carried per resistant isolate.

n◦ of Resistance
Genes/Isolate K. pneumoniae P. aeruginosa

Total Isolates

n◦ %

7 3 9
6 6 2 8 23
5 4 6 10 29
4 3 2 5 15
3 3 1 4 12
2 2 1 3 9
1 1 — 1 3

n◦: number of isolates carrying the genes, %: approximate percentage.

Table 3. Antimicrobial resistance genotypes of CRGNPs (n = 34).

Genotype No. ≈%

mexA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib 5 14
acrA/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib or
mexA/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib 3 8

acrA/blaNDM/blaOXA/blaCTX-M/blaSHV/aac(6’)-Ib or
mexA/blaNDM/blaOXA/blaCTX-M/blaSHV/aac(6’)-Ib 2 6

acrA/blaNDM/blaCTX-M/blaSHV/aac(6’)-Ib 2 6
acrA/blaNDM/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib 1 3
acrA/blaVIM/blaNDM/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib 1 3
acrA/blaVIM/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib 1 3

acrA/blaVIM/blaNDM/blaSHV/blaTEM/aac(6’)-Ib 1 3
acrA/blaNDM/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib 1 3
acrA/blaNDM/blaOXA/blaCTX-M/blaTEM/aac(6’)-Ib 1 3

acrA/blaNDM/blaOXA/blaCTX-M/aac(6’)-Ib 1 3
acrA/blaOXA/blaCTX-M/blaTEM/aac(6’)-Ib 1 3
mexA/blaOXA/blaSHV/blaTEM/aac(6’)-Ib 1 3

acrA/blaVIM/blaNDM/aac(6’)-Ib 1 3
blaNDM/blaOXA/blaCTX-M/aac(6’)-Ib 1 3

acrA/blaNDM/blaOXA/aac(6’)-Ib 1 3
mexA/blaVIM/blaSHV/aac(6’)-Ib 1 3

mexA/blaCTX-M/blaSHV/aac(6’)-Ib 1 3
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Table 3. Cont.

Genotype No. ≈%

acrA/blaCTX-M/aac(6’)-Ib 1 3
acrA/blaNDM/blaCTX-M 1 3

blaNDM/blaCTX-M/blaTEM 1 3
mexA/blaVIM/blaSHV 1 3

blaOXA/aac(6’)-Ib 1 3
acrA/aac(6’)-Ib 1 3
mexA/blaVIM 1 3

acrA 1 3

As shown in Table 4, statistical analysis has shown a statistically significant associa-
tion between the detection of resistance genes and the phenotypic antimicrobial resistance
(p value < 0.05). Calculation of the Pearson chi-square value showed a significant associa-
tion between the presence of the blaSHV gene and the multidrug efflux pump, MexA, in P.
aeruginosa and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and
the β-lactams except for aztreonam. There was also a significant association between the
presence of the aac-6’-Ib gene and resistance to aminoglycosides. Among the K. pneumoniae
isolates, there was a significant association between the presence of the multidrug efflux
pump, AcrA, and resistance to β-lactams except for cefepime and aztreonam. There was
also a significant association between the presence of the aac-6’-Ib gene and resistance to
ciprofloxacin, azithromycin and the β-lactams except for aztreonam. Statistical analysis
has also shown a statistically significant association between the co-existence of antibiotic
resistance genes on plasmids of the same isolate, including co-existence of blaSHV/blaCTX-M,
blaSHV/blaTEM, blaCTX-M/aac-6’-Ib and blaSHV/aac-6’-Ib. Lastly, there was also a significant
association between a positive MHT and resistance to meropenem.

Table 4. Statistical association between genotype and minimum inhibitory concentration (MIC) of
the antibiotics and their respective p values.

Significant Associations
(Genotype and MIC of the Antibiotic) Pearson Chi-Square

blaSHV/amoxicillin 0.015
blaSHV/co-amoxiclav 0.015

blaSHV/cefadroxil 0.015
blaSHV/cefuroxime 0.015
blaSHV/cefotaxime 0.015
blaSHV/cefepime 0.015

blaSHV/meropenem 0.015
blaSHV/ciprofloxacin 0.015
blaSHV/levofloxacin 0.015

blaSHV/amikacin 0.019
blaSHV/tobramycin 0.00

blaSHV/co-trimoxazole 0.049
mexA/amoxicillin 0.00

mexA/co-amoxiclav 0.00
mexA/cefadroxil 0.00

mexA/cefuroxime 0.00
mexA/cefotaxime 0.00
mexA/cefepime 0.00

mexA/meropenem 0.00
mexA/ciprofloxacin 0.00
mexA/levofloxacin 0.00
mexA/tobramycin 0.015

mexA/co-trimoxazole 0.002
aac6’-Ib/amikacin 0.040
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Table 4. Cont.

Significant Associations
(Genotype and MIC of the Antibiotic) Pearson Chi-Square

aac6’-Ib/gentamicin 0.012
aac6’-Ib/tobramycin 0.005

blaSHV/amikacin 0.019
blaSHV/tobramycin 0.000

blaCTX-M/gentamicin 0.015
blaTEM/gentamicin 0.002
acrA/amoxicillin 0.026

acrA/co-amoxiclav 0.026
acrA/cefadroxil 0.026

acrA/cefuroxime 0.026
acrA/cefotaxime 0.026

acrA/meropenem 0.026
aac6’-Ib/ciprofloxacin 0.012
aac6’-Ib/azithromycin 0.005
aac6’-Ib/amoxicillin 0.008

aac6’-Ib/co-amoxiclav 0.008
aac6’-Ib/cefadroxil 0.008

aac6’-Ib/cefuroxime 0.008
aac6’-Ib/cefotaxime 0.008

aac6’-Ib/meropenem 0.008
blaSHV/blaCTX-M 0.047
blaSHV/blaTEM 0.036

blaCTX-M/aac6’-Ib 0.027
blaSHV/aac6’-Ib 0.016

Modified Hodge test/meropenem 0.001
MIC: minimum inhibitory concentration.

3. Discussion

Lower respiratory tract infections (LRTIs) are a global health concern as they are a
leading cause of morbidity and mortality worldwide [26]. A study conducted in 2017 by
the Global Burden of Diseases, Injuries, and Risk Factors reported that nearly 2.56 million
deaths resulted from LRTIs, making them the fifth leading cause of death for all ages [27].
More than 50% of the deaths due to LRTIs were caused by bacteria for which antibiotics
are commonly prescribed for treatment [28].

Antibiotic resistance is pernicious for both the health and economic wellbeing of
societies; its threat to modern medicine has been internationally recognized and profusely
addressed in recent years [29]. Resistant organisms cause infections that are more difficult
to treat, as they require drugs that are often less easily available, more expensive and even
more toxic [30]. Reports show that the likelihood of hospitalization and the duration of
hospital stay were at least twice as great for patients infected with drug-resistant strains of
the same organism [31].

Gram-negative pathogens are particularly disconcerting to medical staff as they are
becoming increasingly resistant to all or nearly all available antibiotic options [32]. The
emergence of MDR Gram-negative bacilli has affected almost every field of medicine [33].
The most severe Gram-negative infections are commonly caused by MDR K. pneumoniae,
E. coli, P. aeruginosa and Acinetobacter [30]. The carbapenem-resistant Enterobacteriaceae,
which are often referred to as “nightmare bacteria”, can survive and multiply in the sink
drains of healthcare facilities. Thus, they inadvertently spread to patients and to the
surrounding environment through wastewater [32]. These bacteria are medically alarming
as they are resistant to carbapenems which are typically reserved as a last resort treatment
option against drug-resistant pathogens [30].

K. pneumoniae was the most commonly isolated pathogen in our study. It was found
that 77.5% of these isolates were MDR which was much higher than the results reported
by Siwakoti et al. [34] of 28%. Fortunately, this was lower than the results reported by
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El-Sokkary et al. [35] of 89.6%. El-Sokkary et al. reported a similar resistance pattern
to amikacin, cefuroxime, ciprofloxacin and levofloxacin. They reported much higher
resistance to co-trimoxazole and co-amoxiclav. On the other hand, they reported lower
resistance to cefotaxime, cefepime and meropenem.

Comparing our results with an African systematic review [36], we found a similar
prevalence of resistance to amoxicillin, co-amoxiclav, cefuroxime, amikacin, gentamicin,
levofloxacin, tetracycline, co-trimoxazole and tobramycin. We observed higher resistance
to meropenem, ciprofloxacin and cefotaxime. On the other hand, we observed much lower
resistance to doxycycline. Comparing our results with a study carried out in China by
Duan et al. [26], we found a similar prevalence of resistance to levofloxacin only. We
observed higher resistance to cefepime, meropenem, amikacin, tobramycin, ciprofloxacin
and co-trimoxazole. On the other hand, we observed much lower resistance to doxycycline.
Comparing our results with the study reported by Singh et al. in India [37], we found
a similar prevalence of resistance to meropenem, levofloxacin and co-trimoxazole. We
observed much higher resistance to co-amoxiclav, cefotaxime, aztreonam and ciprofloxacin.
On the other hand, we observed lower resistance to cefepime, amikacin and gentamicin.
Comparing our results with another Indian study [38], we observed similar resistance to
amikacin. We also observed lower resistance to co-amoxiclav, ciprofloxacin and gentamicin.
However, we found much higher resistance to cefotaxime.

The antimicrobial susceptibility testing of the collected E. coli isolates showed that
none of them was resistant to meropenem (0%). Approximately 60% of the isolates were
MDR. Fortunately, this was lower than the results reported by another Egyptian study
where 87.5% of the recovered E. coli isolates were MDR [35]. Comparing our results
with the above study, we also observed a lower prevalence of resistance to amikacin,
co-amoxiclav and co-trimoxazole. We found a similar resistance pattern to cefuroxime,
cefepime and levofloxacin. Additionally, none of the E. coli isolates of the above study was
resistant to meropenem. On the other hand, we observed higher resistance to cefotaxime
and ciprofloxacin.

Comparing our results with the previously mentioned systematic review of African
countries [36], we found similar prevalence of resistance to amikacin, gentamicin, to-
bramycin, levofloxacin and meropenem. We observed higher resistance to cefuroxime,
cefotaxime, cefepime and ciprofloxacin. On the other hand, we observed lower resistance
amoxicillin, co-amoxiclav, co-trimoxazole, doxycycline and tetracycline. Comparing our
results with the study reported in India by Singh et al. [37], we found similar prevalence of
resistance to levofloxacin. We observed higher prevalence of resistance to co-amoxiclav,
cefotaxime, aztreonam, ciprofloxacin and co-trimoxazole. On the other hand, we observed
lower resistance to cefepime, meropenem, amikacin and gentamicin. Fortunately, while
comparing our results with another Indian study [38], we observed much lower resis-
tance to co-amoxiclav, amikacin, gentamicin and ciprofloxacin. However, we found higher
resistance to cefotaxime and tetracycline.

P. aeruginosa usually shows resistance to multiple antibiotics, even those with con-
siderable anti-pseudomonal activity. Therefore, it is better to treat infections caused by P.
aeruginosa when guided by the susceptibility results of individual strains [35]. Approxi-
mately 55% of the isolates were MDR. Luckily, this was lower than the results reported in
Egypt by El-Sokkary et al. [35], where 65.2% of the recovered P. aeruginosa isolates were
MDR. Comparing our results with the above study, we also observed lower resistance to
cefepime, meropenem, amikacin, ciprofloxacin and levofloxacin.

Comparing our results with the aforementioned African systematic review [36], we
found a similar prevalence of resistance to amikacin, gentamicin, amoxicillin, co-amoxiclav,
cefotaxime, meropenem, ciprofloxacin and levofloxacin. We observed slightly lower re-
sistance to co-trimoxazole and much lower resistance to tetracycline. Comparing our
results with the previously mentioned study in China by Duan et al. [26], we observed a
similar prevalence of resistance to cefepime, amikacin, gentamicin and levofloxacin. We
observed higher resistance to tobramycin and ciprofloxacin. Fortunately, we observed
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lower resistance to meropenem. Comparing our results with the study reported in India
by Singh et al. [37], we found a similar prevalence of resistance to aztreonam, amikacin
and gentamicin. However, we observed much higher resistance to cefepime, meropenem,
ciprofloxacin and levofloxacin. Fortunately, while comparing our results with another
Indian study by Vijay and Dalela [38], we observed much lower resistance to all the compa-
rable antimicrobials tested in the study: amikacin, gentamicin, co-amoxiclav, cefotaxime,
ciprofloxacin and tetracycline.

Although K. pneumoniae is usually resistant to amoxicillin, research on susceptibility to
amoxicillin is still carried out in several countries around the world as not all K. pneumoniae
isolates produce penicillinases [36]. This African systematic review included more than
144 studies and 149,000 samples from patients all across Africa. Likewise, several recent
studies tested the susceptibility of P. aeruginosa to amoxicillin, co-amoxiclav and cefotaxime
as not all P. aeruginosa isolates produce cephalosporinases [36,38,39].

All of our collected meropenem-resistant K. pneumoniae isolates were resistant to amox-
icillin, co-amoxiclav, cefadroxil, cefuroxime and cefotaxime. Moreover, all of them (100%)
were MDR. On the other hand, the lowest resistance was observed to doxycyline (4%; only
one isolate was resistant). Comparing our results with a Chinese study on carbapenem-
resistant K. pneumoniae [40], we observed similar resistance to cefotaxime, tobramycin,
amikacin and co-trimoxazole. Fortunately, we found lower resistance to aztreonam, ce-
fepime, ciprofloxacin, levofloxacin and gentamicin. Similarly, when comparing our isolates
with another Chinese study [41], we observed similar resistance to cefuroxime, cefotaxime
and levofloxacin, as well as to amikacin and gentamicin. However, we observed higher
resistance to ciprofloxacin and lower resistance to co-trimoxazole. Comparing our study
with a study covering 25 hospitals in China [42], we found a similar prevalence of resistance
of the carbapenem-resistant K. pneumoniae isolates to cefotaxime, amikacin, tobramycin and
co-trimoxazole. On the other hand, we observed lower resistance to cefepime, aztreonam,
ciprofloxacin, levofloxacin and gentamicin.

All the tested meropenem-resistant P. aeruginosa isolates (100%) were resistant to
amoxicillin, co-amoxiclav, cefadroxil, cefuroxime, cefotaxime, cefepime, ciprofloxacin and
levofloxacin. Moreover, they were all MDR. Unfortunately, this is much higher than
another study on carbapenem-resistant Pseudomonas aeruginosa; only 65% of the isolates
were MDR [43]. The mechanisms of resistance of Gram-negative bacteria to carbapenems
are complex; they are a result of the production of carbapenemases, a combination of porin
loss or reduced expression with the production of ESBLs, or alteration of penicillin binding
proteins (PBPs) at the drug action site of carbapenem [44]. Carbapenemase production is
considered the most prevalent mechanism of resistance to carbapenems worldwide [45].
Carbapenem-resistant Enterobacteriaceae are designated by the CDC as nightmare bacteria,
as carbapenem-resistant K. pneumoniae has a mortality rate of 40–50%, which is almost the
same as that of Ebola virus, whose mortality rate is 50–60% [46].

There is a remarkable geographic variation in the distribution of different carbapen-
emases among carbapenem-resistant bacteria [46]. In some regions of the USA, KPCs
comprise approximately 80% of the carbapenemases detected in K. pneumoniae, while
MBLs are uncommonly detected in North America, with the exception of few imported
cases [47]. KPCs also predominate in Italy, Portugal, Greece and China [48]. On the
contrary, NDM is the most dominant carbapenemase in England [49], while OXA-48 is con-
sidered the most predominant carbapenemase detected in K. pneumoniae in Germany [49],
Spain [50], Turkey [51] and Lebanon [52]. NDM, as well as OXA-48, predominate among
the carbapenem-resistant bacteria in Saudi Arabia and the Gulf countries [53]. On the other
hand, K. pneumoniae harboring both KPC and VIM together has been increasingly identified
in Greece and France [49]. A study from Saudi Arabia and the Gulf countries [53] reported
that the most frequently detected carbapenemases were OXA-48 (49%) and NDM (23%).
None of the isolates produced KPC or VIM or IMP. However, Zhang et al. [42] from China
reported that the most prevalent carbapenemase-producing gene in K. pneumoniae isolates
was blaKPC (77%), followed by blaNDM (15%) and finally blaIMP (2%). Another study [41] re-
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ported that the most prevalent gene was blaOXA (42%), followed by blaNDM (37%), followed
by blaKPC (17%) and finally blaIMP (1%). A study conducted in India on carbapenem-
resistant P. aeruginosa reported that the most frequently detected carbapenemase was blaVIM
(29%), followed blaNDM (28%) and finally blaSIM and blaGIM (5% each) [54].

Patients suffering from community-acquired pneumonia usually receive empirical
antimicrobial therapy, while the guidelines reserve microbiological testing for severe
cases [55]. Standard microbiological identification techniques, followed by antimicrobial
susceptibility testing, and then followed by PCR identification of the resistance genes of
concern is a tedious process that requires several days. This delay exposes the patients
to the unnecessary adverse effects of the drugs, as well as extending the hospital stay for
complicated cases, which increases the risk that the patients contract a hospital-acquired
infection [56]. It is extremely important to implement rapid techniques that allow the
identification of the causative pathogens within a few hours. This would ensure more
effective antimicrobial therapy within a few hours following the diagnosis [55]. One of
these techniques is the Biofire® FilmArray® Pneumonia Panel which accurately identifies
33 targets in sputum and bronchoalveolar lavage samples in about one hour. It is a
multiplex PCR technology that contains probes for eight respiratory viruses, 18 bacteria and
seven clinically relevant resistance genes (mecA/C, blaKPC, blaNDM, blaVIM, blaOXA-48-like,
blaIMP and blaCTX-M). This technology identifies the nucleic acids in the samples even
if the pathogen is fastidious or the patient received prior antimicrobial therapy which
would render the culture results incomprehensive [57]. Other rapid molecular diagnosis
techniques include the RespiFinder® SMART 22 FAST, the Unyvero pneumonia cartridge,
the ResPlexTM Panels, scalable target analysis routine (STAR) technology and PLEX-ID
technology [58–61]. Unfortunately, these techniques are not widespread in Egyptian
hospitals as they are much more expensive.

In conclusion, the results obtained in this study are of great and relevant medical
importance to healthcare practitioners for effective and proper antibiotic prescription.
Investment to incorporate the rapid identification techniques in Egyptian hospitals should
become a medical priority to allow improved routine care.

4. Materials and Methods
4.1. Microorganisms

A total of 194 clinical Gram-negative bacterial isolates were recovered from sputum
clinical specimens discharged from the microbiology laboratory at Al-Demerdash Hospital,
Cairo, Egypt from patients suffering from acute lobar pneumonia according to hospital
records during the period from January 2018 to February 2019. Only patients who did not
receive previous antimicrobial treatment were included in the study. The isolates were
identified using conventional microbiological techniques. Further confirmation of some
of the results was done using the API® 20E identification kit (bioMérieux, Lyon, France).
Escherichia coli ATCC® 25922, E. coli ATCC® 35218, K. pneumoniae ATCC® 700603 were
used in the quality control of antimicrobial disk diffusion susceptibility tests. The whole
study was approved by the Faculty of Pharmacy, Ain Shams University Research Ethics
Committee (ENREC-ASU-Nr. 94) where both informed and written consent was obtained
from patients or parents of patients after explaining the study purpose.

4.2. Antimicrobial Susceptibility Test

The antimicrobial susceptibilities, including the Kirby–Bauer disk diffusion method
and minimum inhibitory concentration (MIC), were tested as recommended by the Clinical
and Laboratory Standard Institute (CLSI) [62]. Disks were obtained from Oxoid®, UK and
Bioanalyse®, Turkey. The tested antimicrobials were: amikacin (30 µg), gentamicin (10 µg),
tobramycin (10 µg), amoxicillin (25 µg), amoxicillin/clavulanic acid (20/10 µg), cefadroxil
(30 µg), cefuroxime (30 µg), cefotaxime (30 µg), cefepime (30 µg), meropenem (10 µg),
aztreonam (30 µg), ciprofloxacin (5 µg), levofloxacin (5 µg), doxycycline (30 µg), tetracycline
(30 µg), trimethoprim/sulfamethoxazole SXT (1.25/23.75 µg) and azithromycin (15 µg).
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The MIC microdilution broth test was done in triplicate (CLSI) [62]. Isolates resistant to at
least one antimicrobial agent in 3 or more antimicrobial categories are considered MDR.
This is standardized international terminology proposed by the Centers for Disease Control
and Prevention (CDC) and the European CDC [63].

4.3. Phenotypic Detection of ESBLs

We performed the double disk synergy test (DDST) developed by Jarlier and co-
workers to detect potential ESBL producers [64]. A fresh inoculum of the potential isolate
was prepared in isotonic saline to match the turbidity of 0.5 McFarland standard suspen-
sion. Then, the surface of a Mueller–Hinton agar plate was swabbed in three different
directions and along the rim of the plate. Disks containing 30 µg of cefotaxime, cefepime
and aztreonam were placed 20 mm apart, center to center, from a disk containing amoxi-
cillin/clavulanic acid (20/10 µg) on the surface of the inoculated plate and incubated at
37 ◦C for 16 to 18 hours. The presence of ESBL was indicated by the enhancement of the
inhibition zones between any of those disks towards the disk containing clavulanic acid.

4.4. Phenotypic Detection of Carbapenemases

We performed the modified Hodge test (MHT) to detect the presence of carbapene-
mase. Molecular detection of the carbapenemase-coding genes remains the most specific
method of detection, however, it is the most expensive option and it is susceptible to false
negatives if the specific carbapenemase gene present in the isolate is not targeted. The test
was done according to the CLSI guidelines [62]. The plate was examined for enhanced
growth of E. coli ATCC® 25,922 around the test isolate streak at the intersection of the streak
and the inhibition zone.

4.5. Detection of Selected Resistance Genes

The CRGNPs were selected for further study as they are categorized as critical priority
pathogens. This was done according to the antibiotic-resistant priority pathogens that pose
the greatest threat to human health, published by the WHO [25]. The genomic DNA was
extracted using a Genomic DNA Extraction Kit (Thermo Scientific, Waltham, MA, USA) and
the plasmid DNA was extracted using a GeneJet Plasmid Miniprep Kit (Thermo Scientific,
USA). The extracted DNA was used as the template in the polymerase chain reaction (PCR)
amplification cycles. The PCR products were detected by agarose gel electrophoresis [65].
The primers (oligonucleotides) used to amplify the studied resistance genes are listed in
Table 5. Some PCR products were purified and sequenced at GATC Biotech Company
(Constance, Germany) through Sigma Scientific Services Company (Cairo, Egypt) by the
use of an ABI 3730xl DNA Sequencer. The products were analyzed and assembled using
the Staden Package program version 3 (http://staden.sourceforge.net/ (accessed on 20
November 2020)). Finally, they were submitted in the NCBI GenBank database and their
corresponding accession codes were obtained. The accession codes of the genes detected in
this study are shown in Table S5 (supplementary data).

Table 5. Primers used in this study, the target resistance genes, the expected product sizes (bp), the
used annealing temperatures (Ta) and their references.

Target
Gene Primer Sequence (5′→3′) Size (bp) Ta (◦C) Reference

blaKPC
Pf TGTCACTGTATCGCCGTC

1100 50 [66]Pr CTCAGTGCTCTACAGAAAACC

blaIMP
Pf CTACCGCAGCAGAGTCTTTG

587 50 [67]Pr AACCAGTTTTGCCTTACCAT

blaVIM
Pf TCTACATGACCGCGTCTGTC

748 50 [68]Pr TGTGCTTTGACAACGTTCGC

http://staden.sourceforge.net/
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Table 5. Cont.

Target
Gene Primer Sequence (5′→3′) Size (bp) Ta (◦C) Reference

blaNDM
Pf GGTTTGGCGATCTGGTTTTC

621 50 [69]Pr CGGAATGGCTCATCACGAT

blaOXA
Pf GCGTGGTTAAGGATGAACAC

438 50 [70]Pr CATCAAGTTCAACCCAACCG

blaCTX-M
Pf CGCTTTGCGATGTGCAG

550 50 [71]Pr ACCGCGATATCGTTGGT

blaSHV
Pf GGTTATGCGTTATATTCGCC

867 50 [72]Pr TTAGCGTTGCCAGTGCTC

blaTEM
Pf ATGAGTATTCAACATTTCCG

867 50 [72]Pr CTGACAGTTACCAATGCTTA

aac(6’)-Ib-
cr

Pf TTGCGATGCTCTATGAGTGG
358 50 [73]Pr CGTTTGGATCTTGGTGACCT

mexA
Pf CGACCAGGCCGTGAGCAAGCAGC

316 65 [74]Pr GGAGACCTTCGCCGCGTTGTCGC

acrA
Pf ATCAGCGGCCGGATTGGTAAA

312 50 [75]Pr CGGGTTCGGGAAAATAGCGCG

4.6. Statistical Analysis

Statistical analysis of the data was performed using IBM SPSS Statistics software
for Windows v.20.0 (IBM Corp., Armonk, NY, USA). Qualitative data were expressed as
frequency and percentage. A chi-square test was used to compare categorical variables. All
tests were two-tailed, and p-value < 0.05 was considered as statistically significant.

5. Conclusions

The results of our study highlight the extensive spread of resistant pathogens in our
community. This calls for strenuous regulations to rationalize antibiotic prescription and
eliminate over-the-counter antibiotic dispensing. Improved diagnostic tests to determine
the etiology of LRTIs would allow more judicious use of antibiotics. This would decrease
the risk of propagating antimicrobial resistance, as well as the unwanted adverse effects of
antibiotics, including the development of Clostridium difficile.
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2/10/3/255/s1. Table S1: Antibiogram analysis results of the total Gram-negative isolates against
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Table S3: Carbapenem-resistant K. pneumoniae isolates, Table S4: Carbapenem-resistant P. aeruginosa
isolates, Table S5: The NCBI accession codes of the genes detected in this study.
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