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Deep learning neural networks are a powerful tool in the analytical toolbox of modern microscopy, but they
comewith an exacting requirement for accurately annotated, ground truth cell images. Otesteanu et al. (2021)
elegantly streamline this process, implementing network training by using patient-level rather than cell-level
disease classification.
The advent of automated, high-

throughput microscopy has revolution-

ized cell biology, allowing focus on the

particular, e.g., detailed inspection of

rare cells, or providing meta-level statis-

tics of population metrics (Ljosa and Car-

penter, 2009). The incorporation of imag-

ing capability into flow cytometers has

further advanced the field (Blasi et al.,

2016), especially in application to clinical

diagnostics as hematological image anal-

ysis becomes possible (Ogle et al., 2016).

However, automated image acquisition

and quantification inevitably leads to a

requirement for automated image anal-

ysis (Caicedo et al., 2017), and this has

been provided by evermore sophisticated

machine learning approaches (Sommer

and Gerlich, 2013).

Early advances in machine learning

delivered expert systems—computer

models based on expert knowledge in

which data metrics and the rules that

linked them were user defined. Thus, in

essence, the machine simulated the

analytical steps of the human brain,

bringing much enhanced speed and reli-

ability (Buchanan and Smith, 1988). Over

time the algorithmic operations of the ma-

chine have grown increasingly complex

and opaque to the human user. This pro-

cess has led us to today’s deep learning

systems in which automated correlation,

classification, and decision making is

done within artificial neural architectures.

Thus, we have progressed from machine

learning that aimed to model the decision

making processes of the brain to systems

that mimic the brain itself. The benefit of

this computational development are

extremely powerful deep learning net-

works capable of discovering information

on processes and interactions that is hid-
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den within data patterns. The requirement

for machine supervision still remains,

however, because expert knowledge is

needed to define the labeled datasets on

which the deep learning networks are

trained. It is this aspect that Otesteanu

et al. (2021), address in their paper, pre-

senting machine learning for clinical diag-

nostics on the basis of T cell morphology

and implemented by using minimized

(weak) supervision.

The standard approach to neural

network training uses strong supervision

in which input datasets are individually

classified and labeled at the level of indi-

vidual data entries (Zhou, 2018). For

example, in cell-based diagnostics, ex-

perts have to spend a great deal of time

inspecting cell images and annotating

them according to whether they corre-

spond to a phenotype associated with a

healthy or diseased patient. This anno-

tated ‘‘ground-truth’’ dataset is then

used to train the network to automatically

recognize the designated cell types (Doan

et al., 2018) (Figure 1). This approach is

resource-heavy, requiring expert knowl-

edge, a lot of time, and accuracy in data

labeling. It also assumes a-priori knowl-

edge of what cells are important and

what they look like, but what about un-

known populations? How can we usema-

chine learning in the case of clearly indi-

cated disease, with known physiological

symptoms, but no knowledge of the

cellular biomarkers of the pathology?

Otesteanu et al. (2021) present a weak

learning approach (iCellCnn) that removes

the need for cell-level, ground truth anno-

tation by training the neural network with a

collection of cells labeled according to

patient status. They term this a ‘‘bag of

cells’’ approach, and its novelty lies in
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the use of patient-level classification

(Figure 1). Instead of recognizing individ-

ual cells whosemorphology indicates dis-

ease, the network is trained to recognize

distributions of image features, collected

from a population of cells. In the authors’

words they use ‘‘weak labeling of a set

of inputs, instead of a strong labeling of in-

dividual inputs.’’

The disease considered is a blood can-

cer, Sézary syndrome. This is a T cell lym-

phoma that is characterized by anoma-

lous cerebriform (brain-like) morphology

of T cell nuclei. In iCellCnn, multiple

T cell images, obtained from an individual

patient blood sample, form the input to a

convolutional autoencoder—a feature-

extracting neural network. This combines

morphological feature information from all

cells within a one-dimensional feature

vector. This vector, an abstracted

description of the blood sample, is used

as an input to a random forest classifier

which indicates the probability of the

presence of diseased cells in the input

cell collection (those of cerebriform

morphology). Thus, the training of the ma-

chine learning model defines morpholog-

ical patterns of disease at the cellular level

in a data-driven manner. As all T cells are

presented to the neural network, it learns

to ignore the non-disease-specific cells

that might confuse classification of pa-

tient status. The authors benchmark their

approach by comparing diagnoses to

those obtained by using a strong learning

approach, implemented by prior labeling

of individual cells as disease-associated

or healthy. Two levels of annotation are

adopted:

1. Naive, in which the status of the pa-

tient is assigned to all of their cells
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Figure 1. Training approaches for disease diagnosis by machine learning
Shown on left, representative cells are harvested from healthy and diseased donors. The aim is to train the
artificial neural network to recognize these subsets so that it can determine the status of an undiagnosed
patient (in gray). Shown on right, feature extraction from the cell images creates the information set on
which the network bases its classifications. This might be ambiguous as some healthy cells (indicated in
orange) can present similar features to diseased cells (indicated in red). Supervised training is im-
plemented at cell level to train for recognition of diseased cells (strongly supervised), or with ‘‘bags of
cells’’ to train for recognition of a diseased patient (weakly supervised). Figure created with Biorender
(https://biorender.com/).
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(i.e., 100% of cells from a healthy

patient are labeled as healthy and

vice versa for a diseased patient).

This works on an assumption that

patients with Sézary syndrome

have an increased frequency of

mutated T cell nuclei.

2. Manual, in which cells from a

healthy patient are again naively an-

notated as healthy, and 1,000

expertly identified pathological

T cells are annotated as diseased.

Although disease-associated cells

are explicitly identified, this

approach still results in morpholog-

ically abnormal T cells from healthy

individuals being labeled as

‘‘healthy,’’ so there is still the poten-

tial for distortion of the model pre-

dictions.

Although both strong and weak ap-

proaches were able to distinguish be-

tween healthy and diseased patients,

the weakly supervised training produced

the most pronounced separation of
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healthy and diseased classifier scores,

estimating �14% prevalence of diseased

cells in healthy and 85% in diseased pa-

tients.

In a nice addition to the scope of the pa-

per, the authors use a custom-built micro-

fluidic system to obtain the T cell images.

This contains a 45 3 45 mm channel, in a

polydimethylsiloxane (PDMS) monomer

on a glass substrate, which elasto-inter-

tially focuses cells within the fluid stream

and can image >2,000 cells per patient.

Image capture is achieved by using a

360 objective lens and a CMOS camera.

The technical simplicity of this device

and the streamlined machine learning

analysis provide an ideal toolset for ready

adoption within clinical laboratories.

Although weakly supervised machine

learning has previously been used in

conjunction with imaging flow cytometry

to analyze blood samples (Doan et al.,

2020), this study by Otesteanu et al.

(2021) is the first to use the approach to

demonstrate disease diagnosis. Its data-

driven approach is tailor made for clinical
application because the medical determi-

nation of a patient’s illness becomes the

input label when training the neural

network and the output decision of the

machine. This opens the way to cell-

agnostic diagnoses where the presence

of disease can be detected but its effect

on specific morphological traits of cells

remains unknown. The black box nature

of machine learning might be seen as an

advantage in this situation given that it al-

lows clinicians to bypass the complexity

of cell morphology and its alteration by

disease, safe in the knowledge that the

accuracy of the computational decision

making has been verified by comparison

to expert medical opinion.
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