
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Short read DNA fragment anchoring algorithm
Wendi Wang*†, Peiheng Zhang† and Xinchun Liu†

Address: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, PR China

Email: Wendi Wang* - wangwendi@ncic.ac.cn; Peiheng Zhang - zph@ncic.ac.cn; Xinchun Liu - lxc@ncic.ac.cn

* Corresponding author †Equal contributors

Abstract
Background: The emerging next-generation sequencing method based on PCR technology boosts
genome sequencing speed considerably, the expense is also get decreased. It has been utilized to
address a broad range of bioinformatics problems. Limited by reliable output sequence length of
next-generation sequencing technologies, we are confined to study gene fragments with 30~50 bps
in general and it is relatively shorter than traditional gene fragment length. Anchoring gene
fragments in long reference sequence is an essential and prerequisite step for further assembly and
analysis works. Due to the sheer number of fragments produced by next-generation sequencing
technologies and the huge size of reference sequences, anchoring would rapidly becoming a
computational bottleneck.

Results and discussion: We compared algorithm efficiency on BLAT, SOAP and EMBF. The
efficiency is defined as the count of total output results divided by time consumed to retrieve them.
The data show that our algorithm EMBF have 3~4 times efficiency advantage over SOAP, and at
least 150 times over BLAT. Moreover, when the reference sequence size is increased, the efficiency
of SOAP will get degraded as far as 30%, while EMBF have preferable increasing tendency.

Conclusion: In conclusion, we deem that EMBF is more suitable for short fragment anchoring
problem where result completeness and accuracy is predominant and the reference sequences are
relatively large.

Background
The emerging next-generation sequencing method based
on PCR technology boosts genome sequencing speed con-
siderably, the expense is also get decreased. It has been uti-
lized to address a broad range of bioinformatics problems
including: gene re-sequencing, polymorphism detection,
small RNAs analysis, transcriptome profiling, chromatin
remodelling, and etc. Limited by reliable output sequence

length of next-generation sequencing technologies, we are
confined to study gene fragments with 30~50 bps in gen-
eral [1] and it is relatively shorter than traditional gene
fragment length. For example: In [2], researchers used
sequences in 2 K~100 Kbps range for gene alignment algo-
rithm study. Genome query algorithm studied in [3], is
based on 600 bps gene fragment in average. So we cannot
use those older assembly or query algorithms on short-

from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009)
Beijing, China. 13–16 January 2009

Published: 30 January 2009

BMC Bioinformatics 2009, 10(Suppl 1):S17 doi:10.1186/1471-2105-10-S1-S17

<supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S17

© 2009 Wang et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/S1/S17
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
read sequences directly [4]. On the other hand, because of
inefficiency, those existing algorithms cannot fully
explore the high-throughput capability of next-generation
sequencing devices. To illustrate the existing gap between
raw data generating and processing speed, we take the
throughput capability of Genome Analyzer System from
Illumina for evaluation [1]. Meanwhile, we conservatively
presume that the covering factor for re-sequencing process
is 20. The net output sequence size would be 30 Gbps in
single read mode (60 Gbps in paired read mode) for
human gene. To evaluate the up-to-date processing speed,
we use the 134 s/5 Mbps speed data from SOAP [5], also
assume that this speed could be scaled linearly. By brief
calculation, there will be at least 134*30 Gbps/5 Mbps =
228.7 CPU hours to match the raw data output capabili-
ties!

Anchoring gene fragments in long reference sequences is
an essential and prerequisite step for further assembly and
analysis works. Due to the sheer number of fragments
produced by next-generation sequencing technologies
and the huge size of reference sequences, anchoring
would rapidly becoming a computational bottleneck [6].
Also the accuracy and completeness of anchoring results
would influence the quality of assembly result drastically.
Basically, to solve the anchoring problem, we need to
address three issues: (1) Error-tolerant strategies should
be included. As a result, the candidate hit space will get
amplified. Properly filtering out false-positive positions is
the key to achieve high accuracy and speed; (2) For short-
read sequences, new query paradigm should be devised to
replace de facto "Seed-and-Extend" paradigm; (3) Deal
with possible system degradation caused by huge data size
or query count.

In this paper we divided sequence anchoring work into 2
phases: first an index structure based on frequency trans-
formation was used to rule out most unqualified search-
ing areas; in phase 2, an accurate matching process based
on simplified Smith-Waterman algorithm[7] (SW for
short) was used. The rest of the paper is organized as fol-
lowing: the remaining of this section will introduces some
related works on gene sequence query algorithms. We
introduce our algorithm in methods section, including
how to identify differences between sequences and how to
build index structure efficiently. We give experiment data
to evaluate the performance of our algorithm in results
section and followed by conclusions and future works as
final section.

As gene sequences could be expressed as readable strings,
lots of common string matching algorithms [8] could be
used directly to solve the gene sequence query problem. In
order to improve efficiency, sensitivity or accuracy of the
baseline solution, quite a lot of research works have been

done [9-12]. In general, we could categorize the sequence
query problems into k-NN and range query [13]. If we
care about highly identical results only, k-NN query
would be helpful, where the query process could termi-
nate after finding enough results of interests. In range
query, the executing time and result accuracy could be
fine-turned by initial parameters to suit for wide range of
applications.

The various requirements from different bioinformatics
applications result in performance and implementation
divergence between different query algorithms. When
data set and query count are relatively small, the tradi-
tional brute-force algorithms [7,14] could bring all
needed data into memory, thus acceptable performance
could be achieved without pre-processing work. However,
the complexity of those algorithms will become intracta-
ble when problems size and query count get increased. By
pre-processing the reference sequences and build fast
searching index structure, we could avoid those unneces-
sary traverses of all data in each query request. To handle
the index explosion [15-17], compression based indexing
techniques are introduced in [18-20]. In [21], based on
frequency and wavelet transformation, the researchers
devised a multi-dimensional indexing method for fast
sequence similarity search in DNA and protein database.
On the other hand, when the query sequences remain
unchanged, or we want to detect specific patterns in refer-
ence sequences, pre-processing the query sequence as well
could be used to improve performance, such as HMM
[22,23], FSM [17], suffix-tree [24] methods.

Best performance could be delivered by separating query
work into two phases: approximate filtering and accurate
matching. And it has been utilized by most query algo-
rithms recently. The essential reason behind this method
is that filtering work is relatively simpler than matching
one, however with some degradation of result accuracy.
Fast ruling out unqualified areas by filtering work, the
workload passed to matching phase could be greatly
reduced. Furthermore, we could transform the filtering
work to frequency space problem, and make balance
between efficiency and accuracy of different transforming
mechanism. The matching phase could also be acceler-
ated by converting it to sorting [18], best seed generating
[25], covering and error rate model [19], approximate
string matching [17], longest common substring [26] or
other equivalent problems to solve.

On the other hand, usually researchers are concerning
about the sensitivity and error rate of query results. We
could evaluate the sensitivity as the completeness of
result; it indicates that if all quantified positions could be
found. And the error rate is antonym of accuracy; it could
be expressed as if there have any false-positive positions in
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
output results. These parameters would become fluctu-
ated under different query workloads. By introducing
scoring matrix to measure difference between bio-
sequences, like BLOSUM [27], PAM [28], suitable matrix
could be used for specific applications in order to get high
sensitivity and low error rate; some algorithms, as SSAHA
[3], MRS [13], Pattern Hunter [25], resort to find a biolog-
ical independent and generalized algorithm. The sensitiv-
ity and error rate are differed from one and another; for
the other algorithms, as BLAT [18], IDC based method
[19], the output result is deeply influenced by the similar-
ity between input sequences. To get expected sensitivity
and error rate, these methods require input sequences
comply with certain restrictions.

The research area for short-read sequencing technology is
relatively new, however there already have some basic
achievements. In [4,29], short read sequence alignment
algorithms are devised. Also, there exists some solutions
to solve short read sequence anchoring problem, as Maq
[30] could handle 2~3 miss match error; SOAP could han-
dle either 1~3 continuous gap error or 1~2 miss match
errors in querying and aligning problems.

Methods
The algorithms studied in this paper could be expressed as
range query with error tolerance of 2 miss match or 1 gap,
and is dedicated to Illumina-Solexa sequencing technol-
ogy. The sequence errors are largely incurred by equip-
ment and experiment process fault, as the high per base
read accuracy (> 98.5%) given in [1], considering arbitrary
errors would be unnecessary. Because of those included
errors, during comparing process, if the two sequences
under test cannot be identified as equal, measuring met-
rics should be established to capture their difference.
Instead of doing the time consuming char-by-char com-
parison work directly, we could transform given string
into multi-radix frequency vector, and using various vec-
tor approximation or compression methods to simplify
comparing cost [15]. In following section, we will use 8
bps fixed window length to sample reference sequences
and then transform those extracted substrings to corre-
lated frequency vectors over a 4-dimentional frequency
space. Also an Euler distance is introduced to capture vec-
tor variation in this space.

Frequency transforming
As there would require at least 4k operations to calculate
the distance between two k-gram frequency vectors. The
frequency transforming used in this paper is confined to
1-gram semantics [13]. Because only in this way could we
get the expected simplification for comparing work. For a
given sequence S = s1s2 ... sn, let |S| = n donate the
sequence length, and express the alphabet of the sequence
as ∑ = {a1, a2,..., am}. We define a frequency vector F = {f1,

f2,......, fm} for each sequence. The elements of F satisfy
relationship expressed in equation (1):

The definition of Euler distance is relatively simple as fol-
lowing.

Definition 1 The Euler operation on a m-radix vector V =
{v1, v2,..., vm} is to add another equal dimensional vector
C = {c1, c2,..., cm} on it.

Definition 2 If a frequency vector V = {v1, v2,..., vm} com-
plied with equation (1) we say it is valid; If a m-radix
transforming vector C = {c1, c2,... cm} complied with
equation (2) we say it is valid.

Definition 3 An Euler operation on a valid frequency vec-
tor F = {f1, f2 ..., fm} is valid, if the result vector F' = {f'1,
f'2,..., f'm} is still valid.

In order to maintain the validity of Euler operation, we
need to restrict the content of transforming vector C in
theorem 1.

Theorem 1 For valid transforming vector C and valid fre-
quency vector V, if ci = -1 then vi! = 0 holds for each ele-
ment in C and V, then after apply vector C on V, the result
vector is valid.

Proof: C is valid, so there have only 2 non-zero elements
in C, note as ci = 1, and cj = -1. After Euler operation we get
result vector V', where only two elements differ from V as:
v'i = vi+ci = vi+1, v'j = vj+cj = vj-1. Because vj! = 0, vi < n, we
get 0 ≤ v'i, v'j ≤ n and ∑v'i = ∑vi+1-1 = ∑vi. As V is valid so
∑vi = n holds, we get ∑v'i = n. According to definition 2, V'
is valid.

Definition 4 We call two valid frequency vector V1 and V2
are similar, if |V1| = |V2| and ∑V1 = ∑V2 holds.

Definition 5 The Euler distance between two similar fre-
quency vectors is defined as minimal Euler operation
required to transform one frequency vector into the other.

We could use equation (3) to calculate Euler distance
between two similar vector U and V.

i f n f ni i) 0
1

≤ ≤ =
≤ ≤
∑ii)

i m

(1)

c c ci

i m

i

i m

i= = ∈ −
≤ ≤ ≤ ≤
∑ ∑0 2 1 0 1

1 1

; | | ; { , , }; (2)

ECD U V
ui vi

i m

(,) =
−

≤ ≤
∑ 2

1

(3)
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
Until now, we haven't considered gap errors when build-
ing transforming vectors yet. The gap errors would incur
the offset of consecutive sequence, so it contradicts with
the method introduced in this section where accurate
positional information is used. However, in following sec-
tion, this problem could be solved properly by a block-
reading technique with initial offset.

Blocked frequency transforming
Although by calculating Euler distance between two fre-
quency vectors, the time-consuming char-by-char com-
paring work could be avoided. However, after the
converting work, certain positional information will get
lost. Moreover the sampling window length is restricted
by the total sequences length we studied in this paper, so
we devised a novel way to pre-processing reference
sequences: firstly, the original sequences were divided
into blocks, and then frequency transforming was taken
on each individual block, finally we using 4 consecutive
blocks to build a 4-dimensional bounding space similar
as the 2-dimensional MBR given in [13]. It's clear that the
positional information between blocks is maintained,
while with some information loss within each block. The
Euler distance between query and reference sequences is
calculated by sum the 4 block's ECD value respectively.
Next, we introduce valid partition concept for dividing
gene sequence into blocks.

Definition 6 The partition result of a given sequence S =
s1s2 ... sn is a set of blocks B = {b1, b2,..., bk}. If B satisfies
following conditions: (i) For any element si ∈ S, there
have and only have one block say bj in B, so that si ∈ bj.
(ii) All elements in B are nonempty. We say this partition
B is valid.

Definition 7 For a valid partition B, if the covering rate
keeps above p with any drop of ε blocks, we say B is a ε-p
partition.

For example if we want to build an index structure with 16
bps entry on 32 bps input sequences, and want to tolerate

2 arbitrary errors. It's needed to give a 2-0.5 partition, so
that when there have 2 arbitrary errors, we still have
32*0.5 = 16 bps accurate characters to use as accurate
sequence to retrieve index structure. When using fixed-
length and non-overlapping sample window, table 1 gives
the comparison of coding length and compression rate
between binary coding and vectorized coding styles. It's
clear the when increasing sample window length, com-
pression result will get improved, but with more data loss.
To evaluate general filtering effect, however, quite a lot of
factors should be considered as: similarity between
sequences, frequent transforming strategies, the length of
sample window, and etc [21]. In the remaining part we
will set the sample window and blocking length to 8 bps
for simplicity.

Filtering and matching algorithm
Before give out our algorithm, we make formal definition
of filtering and matching problem first.

Definition 8 For restriction p ≥ 0, assume that S could be
divided equally into n blocks with equal length. If there
have at least n-p blocks which have one-by-one mapping
relationship with n-p blocks within the other sequence T,
then we say S, T has hit relation under restriction p.

Definition 9 For restriction G ≥ 0, M ≥ 0, if sequence S and
T satisfy either of two following conditions: (1) If there
have G1 gaps in S, G2 gaps in T, and G1+G2 ≤ G. The
remaining min{|S|-G1,|T|-G2} positions in S and T are
identical. (2) If there have M miss matches in S and T, the
remaining min{|S|-M,|T|-M} positions in S and T are
identical. We say that S, T has match relation under restric-
tion G and M.

Definition 10 Give sequence S and T, and assume that |S|
> |T|, set maximum tolerated miss match errors to M, and
maximum tolerated gap errors to G. The filtering problem
is to find any offset i in S, so that S [i, i+|T|-1] and T have
hit relation under restriction max(M, G).

Table 1: Coding results for variable sampling window length.

Sample window length 1 2 3 4 5 6 7 8 9

Vector count 4 10 20 35 56 84 120 165 220

Binary coding length 2 4 6 8 10 12 14 16 18

Vector coding length 2 4 5 6 6 7 7 8 8

Compression rate 0% 0% 16.7% 25% 40% 41.7% 50% 50% 55.6%

The compression rate is calculated as the difference between binary coding length and vector coding length divided by binary coding length. The
vector count is calculated as C(w+m-1, w) where w is the sampling window length, m is the size of alphabet used to form the sequences. The
vector coding length is the minimum value n which let 2n > vector count holds.
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
Similarly, we could define the matching problem as fol-
lowing, and theorem 2 explains the correlation between
filtering and matching relationship.

Definition 11 Give same conditions as in definition 10.
The matching problem is to find any offset i in S, so that
S [i, i+|T|-1] and T have match relation under restriction G
and M.

Theorem 2 For sequence S and T, hit relation is a neces-
sary condition for their matching relation.

Proof: Assume that S and T have matching relation, how-
ever don't have hit relation. According to definition 8, for
restriction p = MAX{G, M}, the number of blocks in S and
T which have one-to-one correspondence will less than n-
p, namely the miss match block number q will large than
p. When those unmatched blocks was caused by gap
errors, as G1+G2 = q > p = MAX{G, M} ≥ G, we get G1+G2
> G. Similarly, when those unmatched blocks was caused
by miss errors only, we will get q > M. It contradicts with
definition 9, so the assumption is incorrect, and the theo-
rem holds.

Now we consider how we could solve arbitrary gap errors.
For N-bps sequence, when partition it equally into m bps
blocks, we get N/m = n blocks. One arbitrary miss error
would contaminate 1 block at most, so for p miss
matches; there still have n-p accurate blocks to deduce hit
relationship in definition 8. However, one gap error
would contaminate all its consecutive neighbours. Figure
1 illustrated a sequence reading method with initial offset
which could be used to solve gap error. Generally, to tol-
erate G arbitrary gap errors, we need to consider G+1 read-
ing frames; however when using blocking method, only L-
1 arbitrary gap errors could be tolerated, where L is the
length of sampling window.

The EMBF (Euler-distance Mapping based on Block Filter-
ing) algorithm is given in table 2. The kernel of the EMBF
algorithm is a two-level index structure. Different combi-
nation of blocks is used as address to access a map-liked
index structure. The output (usually a pointer or block set
number) is used to retrieve continuous blocks in second
level index. Then we calculate Euler distance on different
blocks, Euler distance of a sequence is represented as the
summation of Euler distances of its sub-blocks. Notice
that, we could terminate the distance calculation; if the
summation up to one block is already exceeds the prede-
fined threshold.

We studied 3 different index structures given in figure 2.
Taking the sample blocks in up-right corner for example,
we could organize them into an inverted-index structure
as show in figure 2(a). The content of a block is used as an
offset to shift a base address to access a continuous array.
If query block have occurrence in the reference sequence,
its first position will be stored in the array element with
the other positions followed. The query process is consid-
erable simple and efficient for inverted-index, however
the wasted storage is also considerable, as shown in figure
2(a) the utilization rate of this example is only 7/256.
Meanwhile, it's not suitable to build index structure for
long sequences. In figure 2(b), hash method was used to
distribute blocks into different storage locations. Besides
providing efficient hash algorithm; we should solve the
increased overheads caused by long conflict chaining. The
n-radix query tree could also be used to organize index
structure as illustrated in figure 2(c), the challenges lies in
how to overcome building overheads and explore efficient
parallel query algorithm. We have chosen the hash strat-
egy for implementation considering their efficiency and
simplicity. The other two structures will be studied further
in future work.

The filtering output results will have some false-positive
errors, so detailed matching phase is needed to refine
those raw results. The difference on total length between
query and reference sequence is oblivious, also the
expected arbitrary errors in each reading frames are also
limited. A simplified version of SW algorithm which only
consider those leading diagonal and some sub-diagonals
are already efficient enough. For example, to tolerate G
gap errors, by transposing the scoring matrix, we could
confine our query space to G+1 diagonal in upper/lower
triangular score matrix. Compared with systolic array, the
computational complexity is optimized from O(n2) to
O(Gn+n), the space complexity is improved from O(n) to
O(G+1).

Blocking strategy with initial offsetFigure 1
Blocking strategy with initial offset. As shown in part A
and B, seq1 and seq2 are divided into 5 blocks containing 4
bps each. The gap error caused by missing of character C at
7th position in seq1 made it fail to match with seq2. However,
as show in part C with additional reading frame for seq1 with
1 bp shift left. We could collect enough matching blocks
(highlighted with dark background) to deduce the hit rela-
tionship.
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
Table 2: Procedure of EMBF algorithm.

Input: Block length L, n bps reference sequence S, m bps query sequence T, miss match error threshold M, gap error threshold
G.

Let B1 = <Fences>Qn/L<Fences>N, B2 = <Fences>Qm/L<Fences>N, E = MAX(M, G);
1. For offset = 1 to L do

1.1 Divide S [offset, n] into L bps blocks, as Soffset = {soffset,1,..., soffset, B1};
1.2 Convert Soffsetto frequency vectors, as ESoffset = {esoffset,1,..., esoffset, B1};

2. For offset = 1 to L do
2.1 Sequentially choose B2 blocks from ESoffset, and set the start position as p; Using all possible combinations to get B2-E blocks. And combine
them as ADDR variable. Set the remaining E blocks as r;
2.2 Mapping pair (ADDR,(r, p)) into a hash map M, and chaining possible conflicts;
2.3 Iteratively scan ESoffset for next B2 blocks in ESoffset;

3 First level filtering process
3.1 Divide T into L bps blocks, as T = {t1, t2,..., tB2} and convert them to frequency vector as ET = {et1, et2,..., etB2};
3.2 Choose B2-E blocks from ET and combining them as ADDR variable, set the remaining E blocks as t;
3.3 Query ADDR in M and pass all returned results as R = {(r1, p1), (r2, p2),...... } to step 4;

4 For i = 1 to | R| do
if ECD(t, ri) < E then record pi;

Output: All recorded pi from step 4.

The step 1~2 in EMBF are pre-processing steps where a two-level index structure was constructed. Index entry addresses are generated according
to different combination of blocks, and require L*n/L*C(m/L,2) = nm2/L2 operations in total. The computing overheads to generate ADDR could be
set as constant c, so the total pre-processing costs to build the index is cnm2/L2 ≈ O(n). Step 3 is the first level filtering phase with constant
computing cost. The output result count is related to the length of index seed and the size of reference sequence. The second level filtering work is
processed in step 4 with time complexity of O(rm/L), where r is the average output count of step 3, see results section for accurate evaluation of
the value r. So by excluding the pre-processing steps, the timing complexity of EMBF is O(rm/L) << O(n). The space complexity could be
interpreted as memory space used to implement the two-level index structure (see results section for detailed analysis). In order to fit first index
into fast storage device to achieve best performance, we could adjust the size of reference sequence and the length of index seed to fine tune the
index size and access overheads.

3 Difference index structuresFigure 2
Three difference index structures. The numbers in right-up part of the figure gives the offset in reference sequences
where the given sequence fragment have identical occurrence. In part A, blocks with dark background indicates placeholder
where no actual data exists. In part B, a hash function H is performed to hash input sequences into buckets labelled with 0~4,
possible conflicted sequences are chained together. Part C illustrates a binary search tree, and the number at the beginning of
each block is used as the search key.
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
Fine-grained parallelization
The executing cost of different part of EMBF under various
working set is listed in table 3. When the working set gets
increased, the overhead introduced by filtering phase will
become the dominant one; the increment of time cost in
percentage from 38.93% to 63.78% properly justified this
phenomenon. At the same time we cannot ignore the
overheads caused by matching phase, so it's needed to
accelerate those two parts simultaneously. We could sim-
ply add parallel matching units to solve the contentions
caused by sequential matching. Moreover, as there do not
have data sharing relationship between different parts of
reference sequences, it's expected to get linear scalability.
For the filtering phase, in order to increase data locality,
we divided large reference sequences into smaller chunks,
and built structured index for each chunk individually.
Thus the unnecessary data sharing overheads caused by
big centralized index structure is eliminated. Those pre-
calculated small index structures could be stored in an
index pool. Those index structures are downloaded to dif-
ferent parallel processing units at runtime. After the calcu-
lation, a result collecting unit will gather output results
and upload it to higher level of system. In filtering unit,
further fine-grained parallelism could be explored, as we
could divide the index structure by different block combi-
nations as explained in EMBF algorithm, and do filtering
work concurrently on different block combination. By
eliminating those unnecessary data sharing, embarrass-
ingly parallel possibility would be expected.

Results and discussion
We used 4, 7, 11 and X human genome contig sequences
from NCBI [31] to synthesize the reference data sets with
total size of 33.7 Mbps, 69.3 Mbps, 134 Mbps and 359
Mbps each. The short read sequences were synthesized by
randomly extract 32 bps fragments from each data set and
insert arbitrary miss match or gap error into them. To
rewrite synthesized sequence we introduce 1 miss match
with possibility of 8%, 1% for 2 miss matches and 1% for

1 gap. The remaining 90% are left untouched. The SW
algorithm, BLAT and SOAP algorithms are tested against
EMBF to compare their performance. In order to eliminate
possible infection caused by pre-processing and warm-up
step, only the computing kernels are profiled blow.

The BLAT and SOAP algorithms have a broader error tol-
erant capacity than EMBF does, so we carefully adjusted
the input parameters for BLAT and SOAP in order to min-
imize this influence. For example we set the tile size in
BLAT to 10 bps, and using the ooc tag to enable the mask-
ing strategy for overused tiles introduced in BLAT, also the
maximum gap between tile was set to 1; for SOAP 12 bps
seed was used, it is set to scan both chain and output all
hit results, also the allowed miss match and gap errors
were set to 2 and 1 respectively. The memory utilization
was largely due to the space cost to implement different
index structures, which will be analyzed in following sec-
tion.

Index structure overheads
The memory consumption of different index structure
under 33.7 Mbps dataset is listed in table 4. EMBF uses the
hash index as shown in figure 2(b), while SOAP uses
inverted-index structure as shown in figure 2(a). Although
only 12 bps index seed length is used in SOAP, the mem-
ory consumption is already 2 times when compared with
EMBF-12 bps. The concepts of BTree index is similar with
n-radix query tree as shown in figure 2(c), it's clear that
there do not have memory consumption advantages for
BTree when compared with SOAP and EMBF. In figure 3
we compared memory consumption of EMBF when the
dataset size is varied. Because of the inherent clustering

Table 4: Memory consumption to implement index structure
(MB).

Index name First-level Second-level Total

EMBF-12 bps 28.24 247 275.24

EMBF-16 bps 49 99 148

BTree-11 bps 176 397 573

BTree-16 bps 342 397 739

BLAT - - 60

SOAP - - 562

We divide the memory consumption for EMBF and BTree to two
separate parts, the first part is used to build a hash map for EMBF and
a traversal query tree for BTree; the second part is used to store
positional information for EMBF and remaining sequences for BTree.
The -xbps suffix in index name column indicates that the algorithm
using seed with length of x bps.

Table 3: Executing time analysis of EMBF

Data Set Filtering Matching Addressing Others

33.7 Mbps 38.93% 42.13% 3.57% 15.37%

69.3 Mbps 41.00% 38.71% 3.06% 17.23%

134 Mbps 63.78% 22.41% 1.6% 12.12%

The filtering and matching column corresponds to time consumed in
percentage for step 3 and step 4 in EMBF algorithm repetitively. We
also separated the overhead to generate the index access address,
and listed it in addressing column. The others column include
sequence reading, results writing and some log utility overheads. The
value in this table is the mean value of 10 K anchor executing results.
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
property of gene sequences, although the first level index
could be compressed when decrease index seed length.
However, the second level index will considerable
increased as more and more positional information need
to be stored. We set seed length to 16bps for EMBF, in
order to balance the size of the two-level index.

Filtering result analysis
To evaluate the quality of filtering result, we fit the discrete
output result count with Gumbel extreme distribution
[32]. Figure 4 gives the fitting curve and residue analysis,

and result could be expressed as equation (4). By integrat-
ing this equation, we calculated the ceiling probability for
different output count value. For example: the probability
that the output count is less than 7205.8 is 99%, less than
63.9 is 95%, less than 42.01 is 90%.

Performance analysis
In table 5 we listed the relative speedup. The results are
collected by using SW, EMBF, SOAP and BLAT separately
to execute the same 10 K query on 35.7 Mbps dataset. To
explain the speed advantage of SOAP, we need to notice
that only 3 of the 6 possible block combinations are used
to build index structure in SOAP, thus the total workload
did in SOAP is actual 1/4 of what EMBF did. The conse-
quence is that lots of match positions will get lost in
SOAP; similar problem also exists for BLAT, especially
when enabling the over-occurrence tile filtering property.
It is assumed that the output of SW is accurate and com-
plete, so could be used as reference to quantify other algo-
rithms. As shown in table 6, the output result of EMBF is
identical with SW, however, the output result of SOAP
and BLAT is far from satisfaction. We also implemented a
simplified version of EMBF, the EMBF-3#, where only 3 of
the 6 possible block combinations are used as SOAP did.
So we say EMBF have advantages on results accuracy and
completeness over the others.

y y A z e

z x xc w

y xc w A

z= + − − +
= −

= = = =

−0 1

0 0 014 1 251 0 138

* exp()

() /

. ; . ; . ; 33 528.

(4)

Filtering results of 10 K query on 359 Mbps datasetFigure 4
Filtering results of 10 K query on 359 Mbps dataset. We collected filtering results by anchoring 10 K synthesized
sequences on 359 Mbps dataset. The maximum of percentage (3.528%) occurs when x = 1.251, the correspondent filtering
result count is 17.834. The residual percentage is well below ± 0.8%, which indicates that the output result count in step 3 of
EMBF comply with Gumbel extreme distribution.

Memory cost of EMBFFigure 3
Memory cost of EMBF. The data was collected from 33.7,
69.3, 134 and 359 Mbps data set respectively. To evaluate the
influence of different seed length 12 bps and 16 bps seed was
tested.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
Efficiency and scalability analysis
The share-nothing relationship between different parts of
reference sequences made the scalability analysis of EMBF
algorithm simplified. By applying the divide-and-conquer
methods, only single node scalability needs to be tested.
In figure 5, average querying time consumed by BLAT,
EMBF and SOAP on different data set is given. When ref-
erence sequences get increased, they both suffer from per-
formance degradation. This phenomenon also justified
the conclusion given in previous section that we need to
separate large centralized index into smaller distributed
ones, in order to overcome possible high access and shar-
ing overheads. Also the SOAP algorithm have some speed
advantages over EMBF, however it's based on great accu-
racy loss as illustrated in table 6. They both outperformed
BLAT for 25~200 times.

In figure 6, we compared algorithm efficiency for BLAT,
SOAP and EMBF. The efficiency is defined as output result
count divided by total time consumed. The data in figure
6 show that EMBF have 3~4 times efficiency advantage
over SOAP, and at least 150 times over BLAT. Moreover,
when the reference sequence size is increased, the effi-
ciency of SOAP will get degraded as far as 30%, while
EMBF have preferable increasing tendency.

Conclusion
By defining a gapless Euler distance and a sequence read-
ing technique with initial offset, we introduce a frequency
transforming method based on fix-length blocking mech-
anism. In our approach, the filtering phase could consid-
erably alleviate the workload passed to the time-
consuming matching phase, and in turn those false-posi-
tive results caused by inaccuracy of filtering process could
be further refined. In order to accelerate filtering speed, a
two-level index structure based on hash method is devel-
oped. By adjusting input parameters, as index seed length
and the size of reference sequences, we could trade off

between implementation and query overheads to get opti-
mized performance. We also show that to avoid the
unnecessary data sharing, a large centralized index struc-
ture could be divided to smaller distributed ones, which is
much more suitable for massive parallelization. Efficiency
of EMBF algorithm is 3~4 times better than up-to-date

Scalability analysisFigure 5
Scalability analysis. BLAT with ooc tag enabled will have a
better performance, but the completeness of output result
will get degraded. The average value of 10 K anchor request
was used to smooth out jitter and vibration of individual
query request.

Table 5: Relative speedup comparison.

Speedup EMBF EMBF-3# SW BLAT SOAP

EMBF 1 1/1.57 48838 42.66 1/3.1

EMBF-3# 1 76734 67.02 1/1.97

SW 1 1/1145 1/151385

BLAT 1 1/132.3

SOAP 1

The value indicates the speedup when comparing row algorithm with
column algorithm. A value n > 1 means that the row algorithm
performs n times fast than column algorithm. All data were collected
from average performance of 10 K anchor requests.

Table 6: Result accuracy comparison.

Algorithm 33.7 Mbps 69.3 Mbps 134 Mbps

SW 202676 300375 NO DATA

EMBF 202676 300375 1433261

EMBF-3# 129930 198788 900084

SOAP 24544 47202 107297

BLAT 44298 77891 217973

BLAT-OOC10 42907 76840 213766

The NO DATA indicates that the executing time to get final result
was so long, which will be ignored in this paper.
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
fastest one, while with comparable executing overheads.
Moreover when problems size gets increased, the effi-
ciency of EMBF have preferable increasing tendency. Also
EMBF was devised for short sequences, where the length is
usually around than 30~50 bps, when the length of query
sequence get increased we could use enlarged sampling
window length to make it more adaptive, however their
need further experiments to evaluate efficiency of EMBF
under different input sequence length, which will be list
as future work.

In conclusion, we deem that EMBF is more suitable for
short sequence anchoring problem where result com-
pleteness and accuracy is predominant and the reference
sequences are relatively large. The future work includes:
developing of specialized hardware devices to accelerate
the index access, exploration and implementation of fine-
grained parallelism, index compression, revise the algo-
rithm to consider arbitrary errors and input length.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
WDW carried out algorithms design, and drafted and
revised the manuscript; he also gives the design of the
experiment and performed the result analysis. PHZ partic-
ipated in the alignment algorithms design and evaluation,
he also helped to revise the manuscript. XCL participated
in the alignment algorithms design and evaluation. All
authors read and approved the final manuscript.

Acknowledgements
We are grateful for the resourceful feedback from our anonymous review-
ers and Dongbo Bu at the Bioinformatics Lab, University of Waterloo.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 1, 2009: Proceedings of The Seventh Asia Pacific Bioinformatics
Conference (APBC) 2009. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/10?issue=S1

References
1. Genome Analyzer System [http://www.illumina.com/]
2. Weber James L, Myers Eugene W: Human Whole-Genome Shot-

gun Sequencing. Genome Res 1997, 7:401-409.
3. Ning Z, Cox AJ, Mullikin JC: SSAHA: A fast search method for

large DNA databases. Genome Res 2001, 11:1725-1729.
4. Chaisson MJ, Pevzner PA: Short read fragment assembly of bac-

terial genomes. Genome Res 18(2):324-330. February 1, 2008
5. Ruiqiang Li, et al.: SOAP: short oligonucleotide alignment pro-

gram. Bioinformatics 2008, 24:713-714.
6. Francisco M, Marth Gabor T, Granger S: Computational tools for

next-generation sequencing applications. Pacific Symposium on
Biocomputing 13:87-89.

7. Smith TF, Waterman MS: Identification of Common Molecular
Subsequences. Journal of Molecular Biology 1981, 147(1):195-197.

8. Navarro G: A guided tour to approximate string matching.
ACM Computing Surveys 2001, 33(1):31-88.

9. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci 1988, 85:2444-2448.

10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215:403-410.

11. Gibbs AJ, McIntyre GA: The diagram, a method for comparing
sequences. It's use with amino acid and nucleotide
sequences. Eur J Biochem 1970, 16:1-11.

12. Cooper G, Raymer M, Doom T, Krane D, Futamur N: Indexing
genomic databases. Fourth IEEE symposium on bioinformatics and
bioengineering (BIBE'04), Taichung, Taiwan 2004.

13. Kahveci T, Singh AK: An Efficient Index Structure for String
Databases. VLDB, Roma, Italy 2001:351-360.

14. Myers E: An O(ND) difference algorithm and its variations.
Algorithmica 1986:251-266.

15. Ferhatosmanoglu H, Tuncel E, Agrawal D, El Abbadi A: Vector
Approximation based Indexing for Non-uniform High
Dimensional Data Sets. Proceedings of the 9th ACM International
Conference on Information and Knowledge Management (CIKM), Wash-
ington, DC, USA 2000:202-209.

16. Califano A, Rigoutsos I: FLASH: a fast look-up algorithm for
string homology. International conference on intelligent systems for
molecular biology, Bethesda, MD 1993:56-64.

17. Michailidis PD, Margaritis KG: A programmable array processor
architecture for flexible approximate string matching algo-
rithms. J Parallel Distrib Comput 2007, 67:131-141.

18. Kent WJ: BLAT: the BLAST-like alignment tool. Genome
Research 2002, 12:656-664.

19. Lee HP, Tsai YT, Sheu TF, Tang CT: An IDC-based algorithm for
efficient homology filtration with guaranteed seriate cover-
age. Fourth IEEE symposium on bioinformatics and bioengineering
(BIBE'04), Taichung, Taiwan 2004.

20. Sun Hong, Ozturk Ozgur, Ferhatosmanoglu Hakan: CoMRI: A
Compressed Multi-Resolution Index Structure for Sequence
Similarity Queries. IEEE Computer Society Bioinformatics Conference
(CSB'03) 2003:553.

21. Ozturk O, Ferhatosmanoglu H: Effective Indexing and Filtering
for Similarity Search in Large Biosequence Databases. Proc
of IEEE Sym on Bioinformatics and Bioengineering 2003:359-366.

22. Oliver T, Yeow LY, Schmidt B: High Performance Database
Searching with HMMer on FPGAs. IPDPS 2007 2007:1-7.

23. Buhler Jeremy, Keich Uri, Sun Yanni: Designing seeds for similar-
ity search in genomic DNA. Journal of Computer and System Sci-
ences 2005, 70:342-363.

24. Makinen Veli, Navarro Gonzalo: Succinct suffix arrays based on
run-length encoding. Nordic Journal of Computing 2005.

25. Ming L, Bin M, Derek K, John T: PatternHuter II: Highly Sensitive
and Fast Homology Search. Genome Informatics 2003,
14:164-175.

26. Bergroth L, Hakonen H, Raita T: A survey of longest common
subsequence algorithms. Proceedings of the 7th International Sym-
posium on String Processing and Information Retrieval 2000:39-48.

27. Henikoff S, Henikoff JG: Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci 1992, 89:10915-10919.

Efficiency comparisonFigure 6
Efficiency comparison. Efficiency is defined as total output
result count divided by total time consumed. The data show
that EMBF have 3~4 times efficiency advantage over SOAP,
and at least 150 times over BLAT.
Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S1
http://www.illumina.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18227114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18227114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5456129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5456129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5456129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297

BMC Bioinformatics 2009, 10(Suppl 1):S17 http://www.biomedcentral.com/1471-2105/10/S1/S17
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

28. Mount DW: Bioinformatics Sequence and Genome Analysis Cold Spring
Harbor Laboratory Press; 2001.

29. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: SHARCGS, a fast
and highly accurate short-read assembly algorithm for de
novo genomic sequencing. Genome Res 2007, 17(11):1697-1706.

30. Maq [http://maq.sourceforge.net/index.shtml]
31. Human Genome Resources [http://www.ncbi.nlm.nih.gov]
32. Karlin S, Altschul SF: Methods for assessing the statistical signif-

icance of molecular sequence features by using general scor-
ing schemes. Proc Natl Acad Sci 87:2264-2268.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17908823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17908823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17908823
http://maq.sourceforge.net/index.shtml
http://www.ncbi.nlm.nih.gov
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

