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Abstract

We present the crystal structure of the catalytic SET domain of G9a-like protein (GLP) in complex 

with BIX-01294. The inhibitor is bound in the substrate peptide groove at the location where the 

histone H3 residues (Lys4 to Arg8) N-terminal to the target lysine would occupy. The inhibitor is 

positioned in place by residues specific for G9a and GLP using planar stacking contacts, polar 

hydrogen bonds and van der Waals interactions.

Methylation of histone H3 at lysine 9 (H3K9) occurs in heterochromatin, which requires 

trimethylation of histone H3 at lysine 9 (H3K9me3) by Suv39h 1,2, and in euchromatin, 

which requires mono- and di-methylation of H3K9 (H3K9me1 and H3K9me2) mostly by 

G9a and GLP 3,4. H3K9me1 and H3K9me2 are the only silencing marks that are lost when 

tumor suppressor genes, e.g. in colorectal cancer cells 5 and in breast cancer cells 6, are 

reactivated following treatment with 5-aza-2'-deoxycytidine (5-aza), a DNA demethylation 

drug 7. Thus, the enzymes that produce H3K9me1 and H3K9me2 are appealing targets for 

inhibition. A small molecule, BIX-01294 (a diazepin-quinazolin-amine derivative), inhibits 

G9a enzymatic activity and reduces H3K9me2 levels at several G9a target genes 8. 

BIX-01294 was used as a replacement of Oct3/4 - one of the four original genetic factors 

used for reprogramming of mammalian somatic cells into induced pluripotent stem (iPS) 

cells 9 - in generating iPS cells from mouse fetal neural precursor cells 10, consistent with 

the observation that repressive H3K9 methylation by G9a is associated with Oct3/4 

inactivation during differentiation 11.
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RESULTS

BIX-01294 inhibits GLP as good as G9a

Here we show that the SET domain of human GLP (Supplementary Fig. 1) binds to 

BIX-01294 in a specific binding groove that prevents the peptide substrate from binding. 

We chose GLP to be the target of structural study for three reasons. First, the structure of 

GLP in complex with a H3 peptide substrate is available 12 (PDB 2RFI). Second, G9a and 

GLP share 80% sequence identity in their respective SET domains (Supplementary Fig. 2). 

Third, we found that BIX-01294 inhibits GLP as well or better than G9a (with IC50 values 

of 1.9 µM for G9a and 0.7 µM for GLP) when assayed under the linear reaction conditions 

(Fig. 1a–c). A previous report 8 that BIX-01294 inhibits GLP poorly (with IC50 of 38 µM) 

was conducted under conditions where the reaction was over-saturated, so that almost all 

substrate had been converted to trimethylated H3K9me3, a non-physiologically relevant 

product. In the same report 8, the G9a reaction was performed under conditions where 

mostly H3K9me1 and H3K9me2 were produced, and yielded similar IC50 to that observed 

here. In addition, K-ras mediated epigenetic silencing of the pro-apoptotic Fas gene, which 

can be reverted by 5-aza treatment 13 and RNAi mediated silencing of a number of 

epigenetic silencing effectors 14, is also reactivated by BIX-01294 treatment (Fig. 1d).

BIX-01294 occupies the binding site of histone peptide

BIX-01294 was soaked into a pre-formed crystal of binary complex of GLP SET domain 

with S-adenosyl-L-homocysteine (AdoHcy) (Fig. 2a) (Methods). We determined the ternary 

structure to a resolution of 2.42 Å (Table 1). G9a and GLP SET domains belong to the 

family of histone lysine methyltransferases (HKMTs) that contain Zn3Cys9 pre-SET and 

ZnCys3 post-SET regions (Fig. 2a) 15–17}. The SET domain contains a series of curved β 

strands that surround a knot-like structure by threading the C-terminal post-SET (magenta) 

region through an opening of a short loop formed by a preceding stretch of the sequence 

(light blue) (Fig. 2a). The knot-like structure forms an active site immediately next to the 

methyl-donor-binding pocket (Fig. 2b) and the peptide-binding groove where BIX-01294 

binds (comparing Fig. 2c and 2d). BIX-01294 lies in a location occupied by histone H3 

Lys4-Arg8 (H3K4-H3R8) – the substrate sequence N-terminal to the target Lys9 – in the 

peptide complex 12 (PDB 2RFI) (Fig. 2e). The target lysine-binding channel is open with 

only a tip of the BIX-01294 molecule peeps through from the side (Fig. 2f). The AdoHcy 

sulfur atom, where the transferable methyl group would be attached on S-adenosyl-L-

methionine (AdoMet), can be seen at the bottom of the channel.

BIX-01294 is bound to the acidic surface of the peptide-binding groove (Fig. 2b–d), 

sandwiched by helix αF-strands β10-β11 (bottom) and helix αZ (top) (Fig. 3a). The 

secondary structural elements of αF-β10-β11 are conserved among SET domains, while 

helix αZ (the last helix before the post-SET Zn binding) is unique to G9a and GLP 

(Supplementary Fig. 3). Other HKMTs have insertions in the corresponding regions 

(Supplementary Fig. 2), indicating selectivity could be achieved by targeting small 

molecules to these regions.
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BIX-01294 resembles the bound conformation of H3K4 to H3R8

BIX-01294 consists of a central quinazoline ring linked to a seven-membered diazepane ring 

and a benzylated six-membered piperidine (Fig. 3b). The contacts between the enzyme and 

BIX-01294 are mostly concentrated on the quinazoline ring, its associated dimethoxy 

moieties, and the diazepane ring (Fig. 3b–3c). The branched benzene moiety has little direct 

contact with the enzyme. Thus the corresponding electron density is broken between the 

piperidine and benzyl moieties (Fig. 3d). Arg1214 and Ile1218 of helix αZ, Leu1143 of 

strand β10, Cys1155 of strand β11, and Ala1134 of helix αF provide van der Waals contacts 

with the quinazoline, the diazepane, and the amine linker between quinazoline and 

piperidine moieties (Fig. 3e). BIX-01294 is surrounded by four aspartates, Asp1131 and 

Asp1135 of helix αF, Asp1140 of the turn between helix αF and strand β10, and Asp1145 of 

strand β10 (Fig. 2b–2e) – all unique to G9a and GLP. Two of them, Asp1140 and Asp1145, 

having their negative charges balanced by interacting with Lys1219 and Arg1214, 

respectively (Fig. 2a, 2c), are within hydrogen bonding distance of the linker NH group 

between the quinazoline and piperidine rings and the ring nitrogen atom (N1) of the 

quinazoline ring, respectively. The close distance (3.0–3.2 Å) suggests that the carboxylate 

oxygen atoms of Asp1140 and Asp1145 are also able to form O…H-C type hydrogen bonds 

with the C5 and C8 of the quinazoline ring, repectively (Fig. 3b), a type of hydrogen bond 

that also occurs in the SET domain active sites 18. BIX-01294 could carry formal charge(s) 

if the diazepine N4 or the piperidine N1 is protonated. The close contact (2.7 Å) between 

Asp1131 and the diazepane ring N4 atom suggests the presence of a protonated cation and a 

hydrogen bond between Asp1131 and the N4-H (Fig. 3c), whereas the N1 of piperidine is 

distant away from Asp1135 and Asp1140 (~4.9 Å).

The ring based BIX-01294 superimposes well with the H3 peptide encompassing residues 

K4-R8 (PDB 2RFI 12; Fig. 2e). The reason for this mimicry is that the near perpendicular 

side chains of H3K4 and H3R8, stabilized by salt bridges with Asp1131, Asp1145, and 

Asp1135, allow the peptide to adopt a large square-like structure (Fig. 3f). An intra-

molecular hydrogen bond between H3T6 and H3R8 further stabilizes the “square”. The side 

chain of H3R8 superimposes well with the entire left side of the quinazoline ring and the top 

half of the diazepane ring (Fig. 2e and colored green in Fig. 3b). The methyl group of the O6 

methoxy mimics the side chain of H3A7 (colored red in Fig. 3b). Asp1140 forms analogous 

interactions with the NH group between quinazoline and piperidine moieties (color cyan) 

and the main chain amide nitrogen of H3A7. Finally, part of the piperidine ring mimics the 

conformation of main chain atoms between H3Q5 and H3T6 (Fig. 2e; colored cyan in Fig. 

3b); and the 4-methyl-N4-C5 of diazepane mimics the side chain conformation of H3K4 

(colored magenta in Fig. 3b). Taken together BIX-01294 resembles the bound conformation 

of peptide substrate histone H3K4 to H3R8. Note that neither the benzyl moiety of 

BIX-01294 nor the side chain of H3Q5 in the peptide have any direct interaction with and 

point away from the enzyme (Fig. 2e).

Conformational change of Arg1214 upon binding of BIX-01294

From the protein side, the biggest difference between the peptide-bound 12 and the BIX-

bound structure is the side-chain conformation of Arg1214 (Fig. 3a). When the peptide 

substrate is bound, Arg1214 forms a salt bridge with Asp1217 of helix αZ. When the BIX is 
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bound, the guanidinium group of Arg1214 moves toward the compound and forms a salt 

bridge with Asp1145, replacing the salt bridge between Asp1145 and H3R8 when the 

peptide substrate was bound (Fig. 3f). The movement of Arg1214 also allows the 

hydrophobic portion of its side chain (and the rest of helix αZ) to stack with the quinazoline 

ring of BIX-01294, generating a large buried interface of 886 Å2 between the enzyme and 

the compound, comparable to the interface between the enzyme and peptide substrate of 

H3K4-H3R8 (870 Å2). The maximized shape complementarity between BIX-01294 and 

helix αZ, which is absent in other HKMTs, is primarily responsible for the selectivity of 

G9a and GLP over other methyltransferases examined 8. This selectivity is achieved despite 

the overall structural similarity of active sites (Supplementary Fig. 3).

BIX-01294 inhibits non-histone substrate

GLP and G9a also methylate non-histone substrates 19–21, including DNA 

methyltransferase 1 (DNMT1) (Fig. 1e, lanes 1 and 5). BIX-01294 is able to inhibit the 

methylation of DNMT1 by GLP and G9a (lanes 2–4 and 6–8), but not by Set7/9 (a protein 

methyltransferase 22,23) or DIM-5 (a H3K9me3 methyltransferase 15,16) that also 

methylate DNMT1 in vitro (lanes 9–14). These data indicate the inhibitor is enzyme specific 

rather than substrate specific. G9a, possibly GLP, mostly recognizes an Arg-Lys sequence 

19 and the Arg side chain (the residue immediately preceding the target Lys) is the major 

site imitated by BIX-01294 (colored green in Fig. 3b), allowing the small molecule to inhibit 

fairly divergent substrates perhaps with varied potency.

DISCUSSION

The GLP SET-BIX structure is the first example of an inhibitor bound enzymatic SET 

domain structure of a HKMT. Comparison with the peptide-bound structure 12 illustrates 

similarity in their modes of binding, providing avenues for improving the potency and 

selectivity of the inhibitor. First, extending the branch of O7-methoxy-CH3 into the target 

lysine-binding channel (Fig. 2f) should provide additional binding energy by increasing the 

surface area of binding. Second, placement of a reactive group near the seven-membered 

diazepane ring (e.g. a sulfhydryl group or a Michael acceptor) would allow for the formation 

of a covalent linkage with Cys1155; thereby enhancing inhibitor potency (Fig. 3e). Third, 

the apparent interaction between Asp1131 and the diazepane ring N4 - might be protonated 

at physiological pH (Methods) -suggest that inhibitor potency could be further improved by 

replacing the ring group with group(s) that better maximize the placement of complementary 

positively charged groups (Fig. 2b–c). Fourth, the benzyl moiety of the compound can be 

eliminated (if it does not affect the delivery of the compound across the cell membrane) or 

replaced with group(s) that maximizes the interaction with Asp1135. These modifications 

could increase the potency of this already proven important G9a/GLP inhibitor. In addition, 

the G9a/GLP-mediated DNMT1 methylation (Fig. 1e) adds one more dimension to the 

complex relationship between DNA methylation and G9a/GLP-mediated H3K9 methylation 

24–26. BIX-01294 and its improved derivatives may ultimately allow for the generation of 

iPS cells in more chemically defined conditions, as well as treatment of cancer cells in 

conjunction with DNA methylation inhibitor(s).
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METHODS

Protein purification

We obtained the expression constructs of human GLP (residues 951–1235) and G9a 

(residues 913–1193) from the Structural Genomics Consortium, University of Toronto. The 

N-terminal hexahistidine-tagged SET domain of human GLP residue 951–1235 (pXC681) 

or G9a residue 913–1193 (pXC682) was expressed in Escherichia coli BL21 (DE3)-Gold 

cells (Stratagene) with the RIL-Codon plus plasmid. Expression was induced with 0.4 mM 

isopropyl β-D-thiogalactoside for 16 h at 16°C in Luria-Bertani broth. The protein was 

isolated on a nickel-chelating column (GE Healthcare). After imidazole elution, the 

hexahistidine tag was cleaved by thrombin protease during overnight dialysis at 4 °C. Two 

extraneous N-terminal amino acids (GlySer) were fused to the N-terminal residues. The 

protein was further purified by ion exchange (HiTrap-Q) and gel filtration chromatography 

(Superdex-75 or -200, GE Healthcare).

Crystallography

The BIX-01294 dissolved in DMSO was soaked into preformed crystals of GLP-AdoHcy in 

the presence of DMSO. The purified GLP protein was incubated with AdoHcy at 1:2 molar 

ratio before concentrating to ~22 mg ml−1 in 20 mM Tris, pH 8.0, 400 mM NaCl, and 1% 

(v/v) glycerol. Clusters of needle (or rod)-shaped crystals were obtained using the hanging-

drop vapor-diffusion method at 16 °C, with mother liquor containing 0.1 M HEPES pH 7.5, 

18–20 % polyethylene glycol 4000 and 7–10 % isopropanol, in the absence or presence of 

DMSO (6–36%). BIX-01294 (ALEXIS) was dissolved in DMSO and kept in 20 mM stock. 

Preformed crystals were soaked into mother liquor supplemented with 6 mM BIX-01294 for 

4 h (space group P212121). X-ray diffraction data were collected, at the SER-CAT beamline 

APS-22BM, and processed with HKL2000 27, from crystals cyroprotected by the mother 

liquor supplemented with 25% ethylene glycol and flash frozen in liquid nitrogen.

We used the molecular replacement program PHASER 28 to obtain crystallographic phases 

using the coordinates of the binary structure of human GLP SET domain in complex with 

AdoHcy (PDB 2IGQ). The resulting electron density map for BIX-01294 and the structured 

portion of the two loops (residues 1146–1153 and 1220–1224) disordered in the binary 

structure was easily interpretable, using the model building program O 29. CNS 30 scripts 

were used for refinement. The statistics shown in Table 1 were calculated for the entire 

resolution range. The initial model of BIX-01294 and its topology parameters were 

generated by PRODRG 31. Because the current resolution of 2.42 Å is not sufficient to 

distinguish the chair vs. the boat conformations of the seven-membered diazepane ring and 

the six-membered piperidine ring, we constrained both rings in their chair conformations 

(which have lower energy than that of the boat conformations; see below). The R-free and 

R-work values were calculated for 5% (randomly selected) and 95%, respectively, of 

observed reflections. We assigned side chain of Arg1199 in two conformations, and 

manually assigned 119 water molecules with appropriate hydrogen bonds. The first 24-

residues (951–974) were not assigned due to discontinued, residual densities.
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There are two complexes (A and B) in the crystallographic asymmetric unit. While the 

protein components of the two complexes are highly similar, with root-mean-square 

deviation of less than 0.4 Å comparing 260 pairs of Cα atoms, the bound BIX molecule in 

complex B has lower thermal factors (40 vs. 53 Å2) compare to that in complex A. The 

electron density is broken between the piperidine and benzyl moieties in complex B, 

whereas no density is observed for the benzyl moiety in complex A.

Mass spectrometry-based inhibition assay

Histone H3 peptide (residues 1–15) was used as substrates for G9a and GLP, under the 

conditions of 10 µM peptide, 100 µM AdoMet, 20 mM Tris pH 8.5, 5 mM dithiothreitol, and 

temperature at 30 °C. We first determined the linear range of the reaction for both enzymes 

in terms of enzyme concentration and reaction time (Fig. 1a). We chose the enzyme 

concentrations (0.03 µM of G9a and 0.12 µM of GLP) and reaction time of 7 min such that 

approximately 80% of the substrate peptide has been mono- or di-methylated, but not yet tri-

methylated (a slow reaction for both enzymes 32), in the absence of inhibitors.

Inhibition assays were carried out by pre-incubating various concentrations of the inhibitor 

with the reaction mixture lacking the substrate on ice for 15 min followed by 5 min at 30°C. 

The reaction was started by addition of the substrate and stopped by addition of 

trifluoroacetic acid (TFA) to 0.1%.

For mass measurement, 1 µL of the reaction mixture with TFA was added directly to 1 µL 

saturated solution of a-cyano-4-hydroxycinnamic acid (CHCA) on a MTP 384 target plate 

(Bruker part no. 209520) and rapidly air-dried. Mass was measured by MALDI-TOF on a 

Bruker Ultraflex II TOF/TOF instrument (Biochemistry Department, Emory University 

School of Medicine) operated in reflective mode, externally calibrated with peptide 

calibration standard II (Bruker). Each measurement was the accumulation of three spectra 

collected at ten different positions with 600 shots per position (examples are shown in 

Supplementary Fig. 4). FlexAnalysis 3.0 software (Bruker Daltonik GmbH) was used to 

integrate area under each mass peak.

The sum of areas under each mass species gives rise to the total area of unmodified (me0), 

mono (me1), and di (me2)-methylated peptides, termed as A(n), n=0, 1, 2. The percentage of 

total area of intensity for each mass species, P(n) (n = 0, 1, 2), is calculated as P(n) = 100 × 

A(n) / [A(0)+A(1)+A(2)] (Fig. 1c). Methylation activity is defined as the number (N) of 

methyl groups added onto each peptide (Fig. 1a) and is calculated as N(i) = [P(1) + 2 × 

P(2)]/100 under various concentrations of inhibitor (i). Note the di-methylation requires two 

rounds of methyl transfer. The percentage of inhibition is calculated as I(%) = 100 × [1-N(i)/

N(0)] (Fig. 1b). For each concentration of inhibitor, N(i) is the mean of two duplicated 

measurements. Untreated control N(0) is the mean value of six independent measurements. 

Curves were fit using Origin 7.0 software (OriginLab Corporation) in a sigmoidal fashion 

[I(%) = 100/(1+10(LogIC50-X))] where X is the logarithm of concentration of BIX-01294.

Fas reactivation

K-ras NIH 3T3 transformed cells (ATCC, CRL-6361) were grown in Dulbecco's Modified 

Eagle Medium, 10% New Born Calf Serum. After 12 h the media was changed and the cells 
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were treated with BIX-01294 at 2.5 µM, 5-aza at 25 µM, or DMSO for 72 h. After the 

treatment the cells were lysed with 100 µl Radio Immunoprecipitation Assay buffer and 

sonicated for 5 s. After that, the samples were prepared for SDS-PAGE by boiling each 

sample with 25 µl loading buffer. The SDS-PAGE was performed on a 12.5% TRIS-HCl 

gel. The proteins were transferred to an Immobilon-P membrane (Millipore). Fas expression 

is monitored by immunoblot analysis. The anti-Fas antibody (Santa Cruz) was applied at a 

concentration of 1:100 in 5% dried milk / PBST 0.05% over night and detected using a 

HRP-labeled 2° antibody followed by ECL. Actin expression is shown as a loading control. 

Anti-actin antibody (Sigma-Aldrich) was used at 1:10,000.

Methylation of DNMT1

Reaction (20 µl) contained 1.1 µM purified human DNMT1 (expressed in Pichia pastoris), 

2.8 µM [methyl-3H]AdoMet, 1.8 µM enzyme (GLP, G9a, Set7/9 or DIM-5), and the 

indicated amount of BIX-01294 in 20 mM Tris (pH 8.5), and 5 mM dithiothreitol. The 

enzymes and the BIX compound were first incubated on ice for 15 min followed by 30°C 

for 5 min, then the reactions were started by addition of the substrate and lasted for 1.0–1.5 

h at 30°C. Samples were analyzed by SDS-PAGE and fluorography and by precipitation 

with 10% trichloroaceitc acid (TCA) 15,16.

BIX-01294 pKa Values

The inhibitor structure was evaluated by the ACD pKa methodology 33 (www.acdlabs.com) 

produce pKa values of 8.94 and 8.79 for the piperidine N1 and the diazepane N4 nitrogen 

atoms, respectively. Close contact (2.7 Å) between the Asp1131 carboxylate and the 

diazepane N4 strongly suggests the presence of an ammonium cation at this center, 

affording an effective salt bridge (Fig. 3c). The benzylated N1 nitrogen is between both 

Asp1135 and Asp1140 with identical N…O distances of 4.9 Å.

BIX-01294 Conformations and Docking

To evaluate the relative energies of BIX-01294 conformations, the structure was built in 3D 

with the Spartan software (Wavefunction Inc., http://www.wavefun.com/) and optimized 

with MMFF/GBSA/H2O 34 as the boat-boat, chair-boat and chair-chair conformations with 

respect to the piperidine and the diazepane rings. All structures with boat forms proved to be 

6–11 kcal/mol high in energy relative to the chair-chair conformers, while the N4-Me axial 

forms raise the calculated energy by 3–5 kcal/mol. However, since there is precedence in the 

small molecule X-ray literature for axial NH+-Me conformations 35 we decided to consider 

such forms in the ligand-protein docking.

There are four possible conformations involving the 1,4-diazepane ring, two arise by 

rotation around the C-N bond linking the quinazoline and diazepane rings (the asymmetric 

nature of the diazepane placing N4 in different locations in space), and two additional 

conformers result from populating the axial and equatorial N4-methyl forms. The lowest 

energy chair-chair conformer of BIX-01294 from the Spartan optimizations was transferred 

to Maestro 8.5.111 (Schrödinger, Inc., http://www.schrodinger.com/) and extra precision 

flexible Glide docking 36,37 of the N4 protonated forms (the axial-equatorial nature of the 

N4-methyl group) into the binding site of GLP was performed. Two N4-Me equatorial 
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conformers were observed with different spatial locations of the N-Me groups due to 

rotation about the C-N bond linking the quinazoline and diazepane rings. The NH+-Me 

cation places the NH+ functionality near Asp1131. The potential hydrogen bond between 

N4+-H and Asp1131 (Fig. 3c) allows a rather straightforward selection of one of the chair-

chair-equatorial conformers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of BIX-01294
(a) Progression of methylation as a function of reaction time. The arrows point to the 

conditions used for subsequent inhibition studies. (b) The inhibition on G9a and GLP by 

various concentrations of BIX-01294. (c) Variation in the relative abundance of each peptide 

species (me0, me1, and me2) as a function of BIX-concentration. (d) Ras-mediated 

epigenetic silencing of Fas is derepressed with both BIX-01294 and 5-aza treatments. (e) 

Methylation of DNMT1 by G9a and GLP and inhibition by BIX-01294; the autoradiography 
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image and relative activity by TCA counts. Error bars in panels b, c and e indicate s. d. for 

two duplicated measurements.
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Figure 2. Structure of GLP SET-AdoHcy-BIX complex
(a) Structure of the GLP SET domain. (b) AdoHcy and BIX-01294 bind in two distinctive 

pockets. (c and d) BIX-01294 binds in the substrate peptide-binding groove (panel c), 

occupied by H3K4 to H3R8 (panel d; PDB 2RFI). (e) Superimposition of H3 peptide 

(yellow) and BIX-01294. (f) Water molecules (small red spheres) occupy the target lysine 

bind channel.
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Figure 3. Details of GLP SET-BIX interactions
(a) Arg1214 undergoes large conformational change upon the binding of BIX-01294. (b) 

Summary of the SET-BIX interactions; mc, main-chain mediated contacts; dashed lines, 

hydrogen bonds; curved lines, hydrophobic contacts. (c) The hydrogen bonds with distances 

shown in angstroms. (d) Omit electron densities, Fo-Fc (red mesh) and 2Fo-Fc (green 

mesh), contoured at 4σ and 1.2σ above the mean, respectively, are shown for BIX-01294. (e) 
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Cys1155 interacts with diazepane ring. (f) Network of hydrogen bonds centered on histone 

H3K4 to H3R8 (PDB 2RFI).
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Table 1

X-ray Data collection and refinement statistics (molecular replacement)

Data collection GLP SET-AdoHcy-BIX

Space group P212121

Cell dimensions (α=β=γ=90°)

  a (Å), b (Å), c (Å) 75.3, 95.2, 101.7

Beamline APS 22-BM (SER-CAT)

Wavelength (Å) 1.00000

Resolution (Å) * 30.26-2.42 (2.51-2.42)

Rmerge * 0.097 (0.430)

I/σI * 10.3 (2.0)

Completeness (%) * 91.7 (70.8)

Redundancy * 4.4 (3.4)

Observed reflections 116,317

Unique reflections * 26,244 (1995)

Refinement

Resolution (Å) 2.42

No. reflections 24,680

Rwork / Rfree 0.221 / 0.262

No. of atoms

Protein 4154

AdoHcy 52

BIX 72

Water 119

Zn 8

B-factors (Å2) 39.4 (overall)

Protein molecule A molecule B

38.1 38.5

AdoHcy 58.2 51.2

BIX 52.8 40.2

Zn (pre/post-SET) 29.9/48.6 26.6/36.7

Water 37.7

R.m.s. deviations

Bond lengths (Å) 0.006

Bond angles (°) 1.3

Dihedral angles (°) 24.5

Improper angles (°) 0.8

*
Highest resolution shell is shown in parenthesis.
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