SCIENTIFIC REPORTS

natureresearch

Check for updates

OPEN Summary of discordant results between rapid diagnosis tests, microscopy, and polymerase chain reaction for detecting Plasmodium mixed infection: a systematic review and meta-analysis

Manas Kotepui^{1⊠}, Kwuntida Uthaisar Kotepui¹, Giovanni De Jesus Milanez² & Frederick Ramirez Masangkay²

Malaria rapid diagnostic tests (RDTs) are widely used to detect malaria parasites among patients who suspected malaria infections in malaria-endemic areas where microscopy is unavailable. Nevertheless, little is known about the performance of RDTs in detecting *Plasmodium* mixed infections. The present study aimed to evaluate the discordant results between RDTs and microscopy/polymerase chain reaction (PCR) in detecting Plasmodium mixed infections. The PubMed (MEDLINE), Web of Science, and Scopus databases were systematically reviewed to identify related studies that reported the performance of RDTs in detecting *Plasmodium* mixed infections. Studies were grouped according to the different RDT types including RDT type 2 (pf-HRP2/pan-aldolase), RDT type 3 (pf-HRP2/ pan-pLDH), RDT type 4 (Pf-LDH/pan-pLDH), RDT type 5 (Pf/Pv-pLDH), and RDT type 6 (pf-HRP2/ Pv-pLDH) for subgroup analysis. The estimates of the different proportions in each analysis group that were visually summarized in a forest plot showed the odds ratio (OR) and 95% confidence interval (CI). Plots were drawn using RevMan (version 5.3; Cochrane Community). Twenty-eight studies were included in the present study. Overall, the meta-analysis showed that RDTs could detect a significantly higher proportion of *Plasmodium* mixed infections than microscopy (p = 0.0007, OR = 3.33, 95% Cl 1.66–6.68). Subgroup analysis demonstrated that only RDTs targeting Pf-specific histidinerich protein 2 (HRP2)/pan-specific lactate dehydrogenase (LDH) could detect a significantly higher proportion of *Plasmodium* mixed infections than microscopy (p = 0.004, OR = 8.46, 95% CI 2.75–26.1). The subgroup analysis between RDTs and PCR methods demonstrated that RDTs targeting Pf-specific HRP2/Pv-specific LDH could detect a significantly lower proportion of Plasmodium mixed infections than PCR methods (p = 0.0005, OR = 0.42, 95% CI 0.26–0.68). This is the first study to summarize the discordant results between RDTs and microscopy/PCR in detecting Plasmodium mixed infections. Malaria RDTs targeting Pf-HRP2/pan-pLDH could detect a higher proportion of Plasmodium mixed infections than microscopy, while RDTs targeting Pf-HRP2/Pv-specific LDH could detect a lower proportion of *Plasmodium* mixed infections than PCR methods. The results of this study will support the selection and careful interpretations of RDTs for a better diagnosis of Plasmodium mixed-species infections and appropriate treatment of malaria patients in endemic and non-endemic settings.

¹Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand. ²Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines. [™]email: manas.ko@wu.ac.th

Abbreviations

RDTs	Rapid diagnostic tests
PCR	Polymerase chain reaction
CI	Confidence interval
OR	Odds ratio
HRP2	Histidine-rich protein 2
LDH	Lactate dehydrogenase
OUADAS	Ouality assessment of diagnostic accuracy studies

Malaria is a public health problem reported worldwide especially in the African region (213 million or 93%), with an estimated 405,000 deaths from malaria globally in the year 2018¹. Human malaria is caused by five species of Plasmodium spp. including P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi². Microscopy and rapid diagnostic tests (RDTs) are diagnostic tools to confirm the diagnosis in patients suspected of having malaria¹. Currently, the microscopic method is the gold standard for malaria detection and diagnosis. However, it is imperfect by nature, especially in the identification of mixed-infections among residents in communityendemic areas. Sub-microscopic mixed-infections with low parasite density are commonly missed by microscopic methodologies³. Therefore, mixed infections of *Plasmodium* spp. are often unrecognized and underestimated due to the low detection rate by microscopy (2%)^{4,5}. Misdiagnosis of *Plasmodium* mixed infections can lead to anti-malarial drug resistance and the development of severe malaria⁶. RDTs are easy to use and cost effective. They play a crucial role in the control of malaria when microscopy is unavailable and are convenient to use in field surveys or remote areas where laboratory capacity is limited. RDTs are immunochromatographic lateral flow devices of which commonly targeting histidine-rich protein-2 (HRP2), lactate dehydrogenase (LDH), and aldolase RDTs for rapid malaria detection⁷⁻¹⁰. RDTs targeting HRP2 are specific for the detection of *P. falciparum*, while RDTs targeting LDH can be used for the detection of P. falciparum, P. vivax, or pan-specific (e.g., four Plasmodium species) LDH antibodies; aldolase is another common target for RDTs to detect all Plasmodium species⁷⁻¹⁰. Recently used commercial dipsticks for the detection of HRP-2 include PfHRP2 CareStart¹¹⁻¹³, SD Bioline Malaria Ag Pf^{14,15}, and SD BIOLINE Malaria Ag P.f/Pan¹⁶, and one recently used for the detection of pLDH is CareStart pLDH(pan)¹⁵. A recently used commercial dipstick for the detection of Pan-aldolase is Para-Hit Total, while a recently used commercial dipsticks for the detection of *P. vivax* aldolase is mAb 1C3-12 F10¹⁷. Recently used commercial dipsticks for the detection of HRP-2/pLDH include SD BIOLINE Malaria Ag P.f/Pan¹⁶ and CareStart malaria HRP2/pLDH (Pf/pan) Combo test¹⁸. Finally, recently used commercial dipsticks for the detection of HRP-2/pan-aldolase include Malaria P.f/Pan Rapid Test Device Acon¹⁹ and ParaHIT Total Dipstick²⁰.

Even though a large number of RDTs are available for malaria detection, the widespread use of RDTs causes the missed detection of mixed-species infections in individuals²¹. Moreover, their performance for the detection of mixed-species infections is less requires well more comprehensive studies. Since the accurate detection of mixed-species infections of malaria is very critical for successful malaria control programmes, the objective of this systematic review and meta-analysis was to summarise and analyse the performance of malaria RDTs in detecting *Plasmodium* mixed infections. This study aims to highlight the big knowledge gap on the performance of malaria RDTs in detecting these mixed-species infections and to help make informed decisions on the use of RDTs for prompt treatment, which will help eliminate malaria in endemic and non-endemic areas.

Methods

Search strategy. Searches of Medline (PubMed), Web of Science, and Scopus were systematically performed using the search terms provided in Supplementary Table S1. The searches were limited to the English language. Searches were carried out and finished on 1 April 2020. All reference lists of all eligible and included studies as well as Google Scholar search was performed to further increase the number of included articles for review.

Definition of malaria RDTs and microscopy. Types of malaria RDTs were classified according to the study by Bell et al.⁷. They classified malaria RDTs into seven types according to the antigen used in the reagent strip, including type 1 (HRP2 (falciparum-specific), 2 (pf-HRP2/pan-aldolase), 3 (pf-HRP2/pan-pLDH), 4 (Pf-LDH/pan-pLDH), 5 (Pf/Pv –pLDH), 6 (pf-HRP2/Pv-pLDH), and 7 (aldolase). RDTs types 2, 3, 4, 5 and 6 can detect mixed or concurrent infections. Interpretation of *Plasmodium* mixed-infections by RDT was based on details provided by authors of the included studies. The gold standard for malaria detection is still microscopy where the examinations of thin and thick blood films lead to the demonstration of malaria parasites.

Inclusion and exclusion criteria. Cross-sectional studies that reported the number of *Plasmodium* mixed infections evaluated by any of the five types of RDTs (types 2, 3, 4, 5 and 6) in comparison to microscopy or PCR were included in the present study. Studies reporting the results of RDTs and microscopy from the same patient samples or those reporting the results of RDTs and PCR from the same patient samples were included in the study. The following types of literature were excluded; studies that reported mixed-infections only for RDTs but did not report microscopy or PCR, incomplete data, no RDT results, co-infections with other agents, experimental studies, review articles, case reports and case series, polymorphism/mutation studies, knowledge about malaria/practice assessments, animal/mosquito studies, studies of haematological alterations, guidelines, and clinical drug trials. Studies with no full text and present data in the local language were also excluded.

Data extraction. All studies acquired through the search were stored in EndNote reference manager software (version X9; Clarivate Analytics). The data extractions started with screening the titles and abstracts after

duplicate studies removed. Studies that were not related to the inclusion criteria were excluded. Then, the studies were screened for full-text articles, and those that did not comply with eligibility criteria were excluded with tags indicating the reason for exclusion. The data from full-text articles that passed the inclusion and exclusion criteria were then exclusively examined and extracted by two independent authors (MK and KUK) using an Excel spreadsheet for further analysis. Any inconsistencies relating to included studies and data extraction were resolved by a third or a fourth reviewer (FRM or GDM).

Statistical analysis. Studies were grouped (subgroup) according to the different RDT types for comparative analysis. The meta-analysis of the proportion of the number of *Plasmodium* mixed infections per the total number of total malaria positives were performed as follows: (1) the summary estimate of the difference in the proportion (odds ratios, ORs) of RDTs to detect mixed infections compared with microscopy and (2) the summary estimate of the difference in the proportion (ORs) of RDTs to detect mixed infections compared with PCR methods were estimated. The subgroup analysis of RDT types, blood collection methods (finger prick or venipuncture), and types of *Plasmodium* mixed species confirmed by PCR were analysed in the present study. All analyses were conducted using Review Manager Version 5.3 (Cochrane, UK). The statistical analysis used to calculate the difference between groups was the Mantel–Haenszel test with a random-effects model. The metaanalysis for each study and the overall studies are presented with OR and 95% confidence intervals (CIs) as effect measures and summarized in forest plots. Cochrane's Q test and Higgins's I² statistics were performed to assess the heterogeneity of the included studies.

Quality of included studies. The quality of the individual studies included in the present study was assessed by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)²². The tool includes 4 domains including the following: (1) report the review question, (2) develop review-specific guidance, (3) review the published flow diagram, and (4) judge bias and applicability. Each domain was assessed in terms of the patient selection, index test, reference standard, and flow timing. Patient selection was the method of patient selection reported in the included studies. The index test was the RDT method that was conducted and interpreted in the included studies. The reference standards were microscopy or the PCR method that was conducted and interpreted. The flow and timing described any patients who did not receive the index tests or reference standard. Each question was answered with a "yes," "no," or "unclear" response. The results of the QUADAS assessment for all included studies were then summarized in the methodological quality graph and summary created by Review Manager.

Publication bias. Publication bias is the publication of studies due to the statistical significance of the results²³, which can lead to overestimated effect sizes and the dissemination of false-positive results²⁴. The publication bias was assessed by visual inspection of funnel plot asymmetry (the asymmetrical distribution of the included studies in the graph between the OR and SE (logOR)). The publication bias was also assessed with Egger's test. Both tests aimed to determine small-study effects leading to more or less beneficial summaries of OR estimates²⁵.

Results

Characteristics of the included studies. The search retrieved 1,340 records. After removing 144 duplicates, 1,196 records were left for the title and abstract screening. Title and abstract screening resulted in the exclusion of 946 records. The full texts of 250 articles were assessed for their eligibility, and 231 of these were excluded with tags indicating the reason for exclusion. The most common reason for exclusion was no report of RDT in their articles. Other reasons for exclusion are shown in Fig. 1. As a result, 19 articles were included in the present study^{26–44}. Further searches on the references of the selected publications which passed the inclusion criteria and Google Scholar search resulted in the inclusion of 9 additional articles^{19,21,45–51}. Overall, 28 articles were selected, extracted, and analysed.

Among the 28 articles included in the present study, 3 reported mixed infections by RDT type 2 (pf-HRP2/pan-aldolase) and microscopy^{27,41,51}, 13 by RDT type 3 (pf-HRP2/pan-pLDH) and microscopy^{19,21,27,28,30,31,33,35,38,40,43,44,47}, 3 by type 4 (Pf-LDH/pan-pLDH) and microscopy^{34,36,51}, 1 by RDT type 5 (Pf/Pv-pLDH)⁴⁶, and 9 by RDT type 6 (pf-HRP2/Pv-pLDH)^{21,26,36,42,43,46,48-50}. Among 27 articles included in the present study, 1 reported mixed infections by RDT type 2 and PCR³², 5 on RDTs type 3 and PCR ^{21,28,33,43,45} and 5 by RDT type 6 and PCR^{21,26,29,37,43}. Most of the included studies (8/26, 30.8%) were conducted in Ethiopia^{27,30,31,38,42,45,48,50}, India (3/26, 11.5%)^{32,39,49}, and Kuwait (2/26, 7.7%)^{34,46}. Additional data are shown in Table 1.

WHO product testing of malaria RDTs. The WHO product testing of malaria RDTs began in 2008⁵². All companies manufacturing malaria RDTs under the ISO-13485 Quality System Standard were invited to submit up to three tests for evaluation⁵². The results of the WHO product testing of malaria RDTs are demonstrated in Table 2. RDTs from the eight studies^{30,34,36,40,41,46,49,51} were not subject to the WHO product testing program as these RDTs were developed and used before 2008, while the results of malaria RDTs from the four studies^{28,37,43,47} was not found on the WHO testing product.

Methodological quality of the included studies. The methodology and reporting of the selected studies varied highly (Fig. 2; Supplementary Fig. 1). All 28 included studies had cross-sectional designs. Most of the included studies (25/28, 89.3%) used a consecutive or random sample of patients. Two studies did not enrol a

consecutive or random sample of patients^{21,36}. In another study¹⁹, the sampling method for participants enrolled was unclear. Microscopic examination was used as the reference standard in 24 studies. PCR was used as a refer-

		Study area		Microscopy				RDTs						Molecular tech	niques		
No (Ref.)	Author	(years of the	Participants	Malaria	Mono	Mixed	Method	Manufacturers	Antigen	Type	Malaria	2Mono infections	Mixed	PCR method	Malaria	Mono	Mixed
	Addior	survey		positive	millions	meetions	Thick and	Onsite Pf/Pv (CTK Biotech Inc, USA)	pf-HRP2/Pv- pLDH	6	178	173	5 ^d	Real time	positive	mitections	meetions
1. Ref. ²⁶	Alam et al., 2011	Bangladesh (2009-2010)	Febrile patients (338)	189	186	3	thin blood films	FalciVax Pf (Zephyr Biomedicals, India)	pf-HRP2/Pv- pLDH	6	191	189	2 ^d	PCR (18S rRNA)	188	180	8
								CareStart (Access Bio, Inc., USA)	pf-HRP2/pan- pLDH	3	716	396	320				
2. Ref. ²⁷	Ashton et al., 2010	Ethiopia (2009)	Febrile patients (2,383)	552	543	9	Thick and thin blood films	ParaScreen (Zephyr Biomedicals, India)	pf-HRP2/pan- pLDH	3	719	383	336	ND	ND	ND	ND
								ICT Combo (ICT Diag- nostics, South Africa)	pf-HRP2/pan- aldolase	2	737	399	338				
3. Ref. ²⁸	Berzosa et al., 2018	Equatorial Guinea (2013)	Residents (1,741)	655	580	0	Thick and thin blood films	NADAL Malaria 4 spe- cies test (Test cassette) (Nal von Minden, Germany)	pf-HRP2/pan- pLDH	3	761	527	212	Semi-nested multiplex PCR (18S rRNA)	787	772	15
4. Ref. ¹⁹	Bouyou et al., 2014	Gabon (2013)	Febrile patients (287)	94	93	1	Thick and thin blood films	SD BIOLINE Malaria Ag -Pf/ Pan (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/pan- pLDH	3	103	102	1ª	ND			
5. Ref. ⁴⁸	Chanie et al., 2011	Ethiopia (2009–2010)	Febrile patients (1,092)	226	224	2	Thick and thin blood films	CareStart Malaria Pf/Pv Combo test (Access Bio, Inc., USA)	pf-HRP2/Pv- pLDH	6	243	239	4 ^d	ND			
6. Ref. ²⁹	Edwards et al., 2015	Cambodia (2013-2014)	Febrile patients (3,206)	ND	ND	ND	ND	SD BIOLINE Malaria Ag P.f/P.v (Stand- ard Diagnostics Inc., Republic of Korea)	pf-HRP2/Pv- pLDH	6	103	101	2	Reverse Transcription PCR (18S rRNA)	174	154	20
								First Response Malaria Antigen pLDH/ HRP2 Combo (Premier Medi- cal, India)	pf-HRP2/pan- pLDH	3	91	77	14				
7. Ref. ²¹	Ehtesham et al., 2015	Iran (2012)	Malaria-posi- tive (100)	100	98	2	Thick and thin blood films	Car- eStart Malaria HRP-2/pLDH (Pf/pan) Combo (Access Bio, Inc., USA)	pf-HRP2/pan- pLDH	3	90	78	12	Nested PCR (18S rRNA)	100	88	12
								CareStart Malaria HRP2/ pLDH(Pf/Pv) Combo (Access Bio, Inc., USA)	pf-HRP2/Pv- pLDH	6	94	87	74				
8. Ref. ³⁰	Endeshaw et al., 2010	Ethiopia (2007)	Febrile patients (1997)	475	391	84	Thick and thin blood films	ParascreenPan/ Pf (Zephyr Biomedicalsys- tems, India)	pf-HRP2/pan- pLDH	3	372	297	75ª	ND			
9. Ref. ³¹	Feleke et al., 2017	Ethiopia (2015-2016)	Febrile patients (320)	41	36	5	Thick and thin blood films	CareStart Malaria HRP2/ pLDH (Pf/ PAN) Combo (Access Bio, Inc., USA)	pf-HRP2/pan- pLDH	3	43	38	5*	ND			
10. Ref. ⁴⁵	Getnet et al., 2015	Ethiopia (2014)	Febrile patients (359)	ND	ND	ND	ND	CareStart Malaria HRP2/ pLDH (Pf/ PAN) Combo (Access Bio, Inc., USA)	pf-HRP2/pan- pLDH	3	80	66	14	Not reported	116	79	6
11. Ref. ³²	Haanshuus et al., 2016	India (2011–2012)	Febrile patients (1,564)	ND	ND	ND	ND	ParaHIT-Total Ver. 1.0 Device 55IC204- 10 (Span Diagnostics Ltd, India)	pf-HRP2/pan- aldolase	2	75	46	27	Nested PCR (185 rRNA)	268	221	30
12. Ref. ³³	Imwong et al., 2015	Vietnam	Residents (2,177)	229	225	0	Thick and thin blood films	SD BIOLINE Malaria Ag P.f/Pan POCT (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/pan- pLDH	3	224	216	8	Quantitative real-time PCR (18S rRNA)	988	521	56
13. Ref. ³⁴	Iqbal et al., 2001	Kuwait (1997–1998)	Febrile patients (515)	163	151	12	Thick and thin blood films	OptiMAL (Pf-pLDH/ pan-pLDH) (Biorad, France)	Pf-LDH/pan- pLDH	4	142	134	8°	ND			
14. Ref.**	Iqbal et al., 2002	Kuwait (1999–2002)	Febrile patients (750)	271	247	24	Thick and thin blood films	ICT Malaria Pf/Pv (ICT Diagnostics, Australia) OptiMAL (Bio-	pf-HRP2/Pv- pLDH	6	178	166	12 ^d	ND			
								rad, France)	Pf/Pv -pLDH	5	230	212	18				
15. Ref. ³⁵	Jahan et al., 2019	Pakistan (2013)	Febrile patients (2,033)	359	320	39	Thick and thin blood films	First response Malaria Ag, pLDH/HRP2 Combo Card test kit (Pre- mier Medical Corporation Ltd.)	pf-HRP2/pan- pLDH	3	266	22	39ª	Nested PCR (18S rRNA)	95	95	0
Continued	1	1	1	1	1	I	I	1	1	1	I	1	1	1	I	I	L

		Star day array		Microscopy				RDTs	DTs Molecular techniques								
No. (Ref.)	Author	(years of the survey)	Participants (N)	Malaria positive	Mono infections	Mixed infections	Method	Manufacturers	Antigen	Туре	Malaria positive	2Mono infections	Mixed infections	PCR method (gene)	Malaria positive	Mono infections	Mixed infections
16. Ref. ⁴⁷	Khorashad et al., 2014	Iran (2009–2010)	Febrile patients (178)	52	47	5	Thick and thin blood films	Malaria 102 (p.f/p.v) POCT kits (InTec Products Inc., China)	pf-HRP2/pan- pLDH	3	40	35	5*	ND			
								OptiMAL (Bio- rad, France)	Pf-LDH/pan- pLDH	4	174	171	3°				
17. Ref. ³⁶	Kim et al., 2008	Korea (2003–2007)	Malaria-posi- tive (182) Healthy (100)	182	179	0	Thick and thin blood films	SD Malaria Antigen Pf/ Pv (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/Pv- pLDH	6	172	169	34	Conventional PCR (PvMSP- 1, PfCSP-1)	ND	ND	3
18. Ref. ³⁷	Li et al., 2016	China (2011-2012)	Febrile patients (103)	ND	ND	ND	ND	Malaria Pv/ Pf Test Device, Tycolpharm Co., Limited, UK)	pf-HRP2/Pv- pLDH	6	61	60	1	Nested PCR (18S rRNA)	69	66	3
19. Ref.*	Meena et al., 2009	India (2007)	Febrile patients (1,189)	71	69	2	Thick and thin blood films	FalciVax (Orchid Biomedical Laboratories, India)	pf-HRP2/Pv- pLDH	6	75	74	1 ^d	ND			
20. Ref.44	Mehlotra et al., 2019	Madagascar (2015–2016)	Febrile patients (963)	452	452	0	Thick and thin blood films	SD BIOLINE Malaria Ag P.f/ Pan (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/pan- pLDH	3	461	89	372	PCR/LDR- FMA	559	535	24
21. Ref. ³⁸	Moges et al., 2012	Ethiopia (2011)	Febrile patients (254)	114	98	6	Thick and thin blood films	CareStart Malaria HRP2/ pLDH (Pf/pan) (Access Bio, Inc., USA)	pf-HRP2/pan- pLDH	3	100	74	26	ND			
22. Ref. ³⁹	Ranjan P. and Ghoshal U, 2016	India (2013–2015)	Febrile patients (561)	64	64	0	Thick and thin blood films	Not reported	Not reported	Not reported	92	89	3	Nested PCR (18S rRNA)	78	75	3
23. Ref. ⁴⁰	Ratnawati et al., 2008	Indonesia (2006)	Febrile patients (89)	78	56	22	Thick and thin blood films	Rapid One- Step Malaria test (Arista Biologicals Inc., USA)	pf-HRP2/pan- pLDH	3	72	50	22ª	ND			
24. Ref. ⁴¹	Richter et al., 2004	Germany (1999–2004)	Febrile patients (674)	69	65	4	Thick and thin blood films	The Now Malaria test (Binax, Inc., USA)	pf-HRP2/pan- aldolase	2	59	28	4 ^b	ND			
25. Ref. ⁵⁰	Sharew et al., 2009	Ethiopia (2008)	Febrile patients (668)	314	304	10	Thick and thin blood films	CareStart Malaria Pf/Pv Combo test (Access Bio, Inc., USA)	pf-HRP2/Pv- pLDH	6	331	321	10 ^d	ND			
	van den Broek et al., 2006	Colombia (2005)	Febrile patients (896)	140	133	7	Thick and thin blood films	Optimal-IT (Diamed AG, Switzerland)	Pf-LDH/pan- pLDH	4	134	128	7°	ND			
26. Ref. ⁵¹								NOW Malaria ICT (Binax, USA)	pf-HRP2/pan- aldolase	2	134	126	8 ^b	ND			
27. Ref. ⁴²	Woyessa et al., 2013	Ethiopia (2008–2010)	Febrile patients (2,394)	479	474	5	Thick and thin blood films	CareStart Malaria Pf/ Pv combo test (Access Bio, Inc., USA)	pf-HRP2/Pv- pLDH	6	686	672	14 ^d	ND			
		Myanmar	Febrile nations				Thick and	Wondfo One Step Malaria HRP2/pLDH (P.f/Pan) Test	pf-HRP2/pan- pLDH	3	93	60	33	Nested PCP			
28. Ref. ⁴³	Yan et al., 2013	(2011)	(350)	98	87	11	thin blood films	Malaria Pv/ Pf test device (Tycolpharm Co., Limited, UK)	pf-HRP2/Pv- pLDH	6	90	82	8 ^d	(18S rRNA)	113	92	21

Table 1. Characteristics of the included studies. 18 studies in total yielded identical results with RDT and microscopy. *ND* not determine. ^aSix studies (4, 8, 9, 15, 16, and 23) yielded identical results with RDT type 3 and microscopy. ^bTwo studies (24 and 26) yielded identical results for RDT type 2 and microscopy. ^cThree studies (13, 17, and 26) yielded identical results for RDT type 4 and microscopy. ^dNine studies (1, 5, 7, 14, 17, 19, 25, 27, and 28) yielded identical results for RDT type 6 and microscopy.

.....

ence standard in 12 studies. The sensitivity and specificity of RDTs to detect *Plasmodium* mixed infections could not be calculated due to the inadequate data of the included studies to retrieve full 2×2 tables.

Discordance between RDTs and microscopy. All 24 studies reporting on the performance of RDTs for detecting mixed infections compared to microscopy were explicitly designed for this purpose^{19,21,26–28,30,31,33–36,38–44,46–51} (Fig. 3). In total, six different RDT types including RDT types 2, 3, 4, 5 and 6 were included in the analysis. One study did not report the type of RDT used in their study³⁹. Six studies used more than one RDT type/brand in their studies^{21,26,27,35,36,43}. Four studies^{28,33,36,44} reported mixed infections by RDT, but no mixed infections were reported by microscopy. The results of an individual study demonstrated that 18 studies in total^{19,21,26,30,31,34–36,40–43,46–51} had identical results for RDT and microscopy. Six studies^{19,30,31,35,40,47} gave identical results for RDT type 3 and microscopy. Two studies^{41,51} gave identical results for RDT type 4 and microscopy. Nine studies^{21,26,36,42,43,46,48–50} gave identical results for RDT type 6 and microscopy. The summary estimate of ORs

		Microscop	y	-	RDTs						PCR results		
No. (ref.)	Authors	Positivity	Plasmodium	Blood collection methods	Manufacturers	Antigen	WHO product testing	False positive (%) <i>Plasmodium</i> spp. infection in clean- negative samples	Number of mixed infections	Types of mixed infections	Number of mixed infections	Types of mixed infections	
	41		P.		Onsite Pf/Pv (CTK Biotech Inc, USA)	pf-HRP2/ Pv-pLDH	Round 2	0	5	P. falciparum/P. vivax		Р.	
1. Ref. ²⁶	Alam et al., 2011	3	falciparum/P. vivax	venipunc- ture	FalciVax Pf (Zephyr Biomedicals, India)	pf-HRP2/ Pv-pLDH	Round 2	4.5	2	P. falciparum/P. vivax	8	falciparum/P. vivax (8)	
					CareStart (Access Bio, Inc., USA)	pf-HRP2/ pan- pLDH	Round 1	3.0	320	P. falciparum/P. vivax			
2. Ref. ²⁷	Ashton et al., 2010	9	P. falciparum/P. vivax	Finger prick	ParaScreen (Zephyr Biomedicals, India)	pf-HRP2/ pan- pLDH	Round 1	1.2	336	P. falciparum/P. vivax			
					ICT Combo (ICT Diag- nostics, South Africa)	pf-HRP2/ pan- aldolase	Round 1	0.6	338	P. falciparum/P. vivax			
3. Ref. ²⁸	Berzosa et al., 2018	0		Finger prick	NADAL Malaria 4 spe- cies test (Test cassette) (Nal von Minden, Germany)	pf-HRP2/ pan- pLDH	Not found in WHO product testing records	Not found in WHO prod- uct testing records	212	Not specified	15	Not specified	
4. Ref. ¹⁹	Bouyou et al., 2014	1	P. falciparum/P. malariae	Venipunc- ture	SD BIOLINE Malaria Ag -Pf/ Pan (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/ pan- pLDH	Round 4	1.3	1	P. falciparum/P. malariae			
5. Ref. ⁴⁸	Chanie et al., 2011	2	P. falciparum/P. vivax	Finger prick	CareStart Malaria Pf/ Pv Combo test (Access Bio, Inc., USA)	pf-HRP2/ Pv-pLDH	Round 2	0	4	P. falciparum/P. vivax			
6. Ref. ²⁹	Edwards et al., 2015				SD BIOLINE Malaria Ag P.f/P.v (Stand- ard Diagnostics Inc., Republic of Korea)	pf-HRP2/ Pv-pLDH	Round 4	2.8	2	P. falciparum/P. vivax	20	P. falciparum/P. vivax (19), P. vivax/P. malariae (1)	
					First Response Malaria Antigen pLDH/ HRP2 Combo (Premier Medi- cal, India)	pf-HRP2/ pan- pLDH	Round 2	0	14	P. falciparum/P. vivax			
7. Ref. ²¹	Ehtesham et al., 2015	2	P. falciparum/P. vivax	Venipunc- ture	CareStart Malaria HRP-2/ pLDH (Pf/pan) Combo (Access Bio, Inc., USA)	pf-HRP2/ pan- pLDH	Round 1	0	12	P. falciparum/P. vivax	12	P. falciparum/P. vivax	
					CareStart Malaria HRP2/ pLDH(Pf/Pv) Combo (Access Bio, Inc., USA)	pf-HRP2/ Pv-pLDH	Round 2	0	7	P. falciparum/P. vivax			
8. Ref. ³⁰	Endeshaw et al., 2010	84	P. falciparum/P. vivax	Finger prick	ParascreenPan/ Pf (Zephyr Bio- medicalsystems, India)	pf-HRP2/ pan- pLDH	Not assessed	Not assessed	75	P. falciparum/P. vivax			
9. Ref. ³¹	Feleke et al., 2017	5	P. falciparum/P. vivax	Venipunc- ture	CareStart Malaria HRP2/ pLDH (Pf/ PAN) Combo (Access Bio, Inc., USA)	pf-HRP2/ pan- pLDH	Round 5	0.4	5	P. falciparum/P. vivax			
Continued													

		Microscop	y		RDTs	RDTs									
No. (ref.)	Authors	Positivity	Plasmodium spp.	Blood collection methods	Manufacturers	Antigen	WHO product testing	False positive (%) <i>Plasmodium</i> spp. infection in clean- negative samples	Number of mixed infections	Types of mixed infections	Number of mixed infections	Types of mixed infections			
10. Ref. ⁴⁵	Getnet et al., 2015				CareStart Malaria HRP2/ pLDH (Pf/ PAN) Combo (Access Bio, Inc., USA)	pf-HRP2/ pan- pLDH	Round 5	0.4	14	P. falciparum/P. vivax	6	P. falciparum/P. vivax (5), P. vivax/P. malariae (1),			
11. Ref. ³²	Haanshuus et al., 2016				ParaHIT-Total Ver. 1.0 Device 55IC204-10 (Span Diagnos- tics Ltd, India)	pf-HRP2/ pan- aldolase	Round 4	0	27	P. falciparum/ Pan	30	P. falciparum/P. vivax (27), P. falciparum/P. malariae (2), P. vivax/P. malariae (1),			
12. Ref. ³³	Imwong et al., 2015	0		Venipunc- ture	SD BIOLINE Malaria Ag P.f/ Pan POCT (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/ pan- pLDH	Round 5	0	8	P. falciparum/P. vivax	56	P. falciparum/P. vivax (56)			
13. Ref. ³⁴	Iqbal et al., 2001	12	P. falciparum/P. vivax	Not speci- fied	OptiMAL (Pf-pLDH/pan- pLDH) (Biorad, France)	Pf-LDH/ pan- pLDH	Not assessed	Not assessed	8	P. falciparum/P. vivax					
14. Ref. ⁴⁶	Iqbal et al., 2002	24	P. falciparum/P.	Finger prick	ICT Malaria Pf/Pv (ICT Diagnostics, Australia)	pf-HRP2/ Pv-pLDH	Not assessed	Not assessed	12	P. falciparum/P. vivax	_				
			vivax	1	OptiMAL (Bio- rad, France)	Pf/Pv -pLDH	Not assessed	Not assessed	18	P. falciparum/P. vivax					
15. Ref. ³⁵	Jahan et al., 2019	39	P. falciparum/P. vivax	Finger prick	First response Malaria Ag, pLDH/HRP2 Combo Card test kit (Premier Medical Corpo- ration Ltd.)	pf-HRP2/ pan- pLDH	Round 5	0	39	P. falciparum/P. vivax	0				
16. Ref. ⁴⁷	Khorashad et al., 2014	5	P. falciparum/P. vivax	Finger prick	Malaria 102 (p.f/p.v) POCT kits (InTec Products Inc., China)	pf-HRP2/ pan- pLDH	Not found in WHO product testing records	Not found in WHO prod- uct testing records	5	P. falciparum/P. vivax					
					OptiMAL (Bio- rad, France)	Pf-LDH/ pan- pLDH	Not assessed	Not assessed	3	P. falciparum/P. vivax					
17. Ref. ³⁶	Kim et al., 2008	0		Venipunc- ture	SD Malaria Antigen Pf/ Pv (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/ Pv-pLDH	Not assessed	Not assessed	3	P. falciparum/P. vivax	3	P. falciparum/P. vivax			
18. Ref. ³⁷	Li et al., 2016				Malaria Pv/ Pf Test Device, Tycolpharm Co., Limited, UK)	pf-HRP2/ Pv-pLDH	Not found in WHO product testing records	Not found in WHO prod- uct testing records	1	P. falciparum/P. vivax	3	P. falciparum/P. vivax			
19. Ref. ⁴⁹	Meena et al., 2009	2	P. falciparum/P. vivax	Finger prick	FalciVax (Orchid Biomedical Laboratories, India)	pf-HRP2/ Pv-pLDH	Not assessed	Not assessed	1	P. falciparum/P. vivax					
Continued															

		Microscop	y		RDTs					-	PCR results		
No. (ref.)	of) Authors Positivity sup		Blood collection methods	Manufacturers	Antigen	WHO product testing	False positive (%) <i>Plasmodium</i> spp. infection in clean- negative samples	Number of mixed infections	Types of mixed infections	Number of mixed infections	Types of mixed infections		
20. Ref. ⁴⁴	Mehlotra et al., 2019	0		Finger prick	SD BIOLINE Malaria Ag P.f/ Pan (Standard Diagnostics Inc., Republic of Korea)	pf-HRP2/ pan- pLDH	Round 5	0	372	<i>P. falciparum/</i> Pan	24	P. falciparum/P. vivax (13), P. falciparum/P. malariae (5), P. falciparum/P. ovale (1), P. malariae/P. ovale (2), P. falciparum/P. malariae/P. ovale (3),	
21. Ref. ³⁸	Moges et al., 2012	6	P. falciparum/P. vivax	Finger prick	CareStart Malaria HRP2/ pLDH (Pf/pan) (Access Bio, Inc., USA)	pf-HRP2/ pan- pLDH	Round 1	3.0	26	<i>P. falciparum/</i> Pan			
22. Ref. ³⁹	Ranjan P. and Ghoshal U, 2016	0		Venipunc- ture	Not reported	Not reported	-	-	3	P. falciparum/P. vivax	3	P. falciparum/P. vivax	
23. Ref. ⁴⁰	Ratnawati et al., 2008	22	P. falciparum/P. vivax	Not speci- fied	Rapid One-Step Malaria test (Arista Biologi- cals Inc., USA)	pf-HRP2/ pan- pLDH	Not assessed	Not assessed	22	P. falciparum/P. vivax			
24. Ref. ⁴¹	Richter et al., 2004	4	P. falciparum/P. ovale (3), P. falciparum/P. malariae (1)	Not speci- fied	The Now Malaria test (Binax, Inc., USA)	pf-HRP2/ pan- aldolase	Not assessed	Not assessed	4	P. falciparum/P. ovale (3), P. falciparum/P. malariae (1)			
25. Ref. ⁵⁰	Sharew et al., 2009	10	P. falciparum/P. vivax	Not speci- fied	CareStart Malaria Pf/ Pv Combo test (Access Bio, Inc., USA)	pf-HRP2/ Pv-pLDH	Round 2	0.5	10	P. falciparum/P. vivax			
26 Pof ⁵¹	van den	7	P. falciparum/D	Finger	Optimal-IT (Diamed AG, Switzerland)	Pf-LDH/ pan- pLDH	Not assessed	Not assessed	7	<i>P. falciparum/</i> Pan			
20. Kel.	et al., 2006	/	vivax	prick	NOW Malaria ICT (Binax, USA)	pf-HRP2/ pan- aldolase	Not assessed	Not assessed	8	<i>P. falciparum/</i> Pan			
27. Ref. ⁴²	Woyessa et al., 2013	5	P. falciparum/P. vivax	Not speci- fied	CareStart Malaria Pf/ Pv combo test (Access Bio, Inc., USA)	pf-HRP2/ Pv-pLDH	Round 4	0	14	P. falciparum/P. vivax			
	Van et al		Р.	Finger	Wondfo One Step Malaria HRP2/pLDH (P.f/Pan) Test	pf-HRP2/ pan- pLDH	Round 1	0	33	<i>P. falciparum/</i> Pan		Р.	
28. Ref. ⁴³	2013	11	falciparum/P. vivax	prick	Malaria Pv/ Pf test device (Tycolpharm Co., Limited, UK)	pf-HRP2/ Pv-pLDH	Not found in WHO product testing records	Not found in WHO prod- uct testing records	8	P. falciparum/P. vivax	21	falciparum/P. vivax	

Table 2. Characteristic of *Plasmodium* mixed infections.

between type 2 RDTs and microscopy to detect mixed infections ranged from 1.18 to 51.1. Based on the analysis of three included studies, the summary estimate of ORs between type 2 RDTs and microscopy was 4.33 (95% CI 0.24–79.8, p = 0.32, $I^2 = 96\%$). The summary estimate of ORs between type 3 RDTs and microscopy to detect mixed infections based on the analysis of 13 included studies was 8.46 (95% CI 2.75–26.1, p = 0.0002, $I^2 = 96\%$). When the four studies^{28,33,39,44} that reported mixed infections detected by RDT but did not reported mixed infections by microscopy were ignored in the meta-analysis of type 3 RDTs and microscopy, the summary estimate of ORs between type 3 RDTs and microscopy to detect mixed infections based on the analysis of 13 included studies was 4.02 (95% CI 1.46–11.12, p = 0.007, $I^2 = 95\%$) (Supplementary file 1). The summary estimate of ORs between type 4 RDTs and microscopy to detect mixed infections based on the analysis of three included studies, was 0.99 (95% CI 0.48–2.04, p = 0.97, $I^2 = 8\%$). The summary estimate of ORs between type 5 RDTs and

Figure 2. Methodological quality of the included studies.

	RDT	r	Microso	CODV		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Type 2							
Ashton et al., 2010 (ICT Combo) Righter et al., 2004 (The New Malaria tect)	338	737	9	552	3.5%	51.11 [26.04, 100.33]	
van den Broek et al., 2009 (New Malaria ICT)	4	134	7	140	3.4%	1.21 [0.43, 3.42]	.
Subtotal (95% CI)		930		761	10.0%	4.33 [0.24, 79.81]	
Total events	350		20				
Heterogeneity: Tau ² = 6.32; Chi ² = 49.69, df = 2 (P < 0 Test for overall effect: 7 = 0.99 (P = 0.32)	.00001); I²	= 96%					
1.1.2 Type 3		74.0			0.50	10 75 10 1 00 05 75	
Ashton et al., 2010 (CareStart) Ashton et al., 2010 (ParaScreen)	320	710	9	552	3.5%	48.75 [24.82, 95.75] 52 93 [26 95 103 94]	
Berzosa et al., 2018	212	761	Ŭ	655	2.3%	506.98 [31.53, 8150.71]	
Bouyou et al., 2014 (SD BIOLINE Malaria Ag-Pf/Pan)	1	103	1	94	2.3%	0.91 [0.06, 14.79]	
Ehtesham et al., 2015 (CareStart Malaria)	12	90	2	100	3.1%	7.54 [1.64, 34.68]	
Entesham et al., 2015 (First Response)	14	91	2	100	3.1%	8.91 [1.97, 40.38]	
Endesnaw et al., 2010 (Parascreen Pariter) Feleke et al. 2017	/5	43	84 5	4/5	3.0%	0.95 (0.83, 1.66)	
Imwong et al., 2015	8	65	Ū	229	2.2%	67.85 [3.86, 1192.86]	→
Jahan et al., 2019	39	266	39	359	3.6%	1.41 [0.88, 2.27]	
Khorashad et al., 2014	5	40	5	52	3.2%	1.34 [0.36, 5.00]	
Meniotra et al., 2019 Meneo et al., 2012	372	461	0	452	2.3%	3/66.62 [232.99, 60891.74] 6 22 12 49 16 121	
Ratnawati et al. 2008	20	72	22	78	3.5%	1 12 [0 55 2 26]	_ _
Yan et al., 2013 (One Step Malaria Pf/Pan test)	33	93	11	98	3.5%	4.35 [2.04, 9.28]	
Subtotal (95% CI)		3992		3951	46.3%	8.46 [2.75, 26.05]	-
Total events	1480	. 17 . 0.0	195				
Test for overall effect: Z = 3.72 (P = 0.0002)	< 0.00001)	; I*= 96	%				
1 1 3 Tune /							
in Signer 4	8	142	12	163	3.4%	0.75/0.30/1.891	
Kim et al., 2008 (OptiMAL)	3	174	0	182	2.2%	7.45 [0.38, 145.27]	
van den Broek et al., 2009 (Optimal-IT)	7	134	7	140	3.3%	1.05 [0.36, 3.07]	
Subtotal (95% CI)		450		485	8.9%	0.99 [0.48, 2.04]	•
Lotal events Hotorogonality Tou ² = 0.04: Chi ² = 2.17, df = 2.7P = 0.2	18 //\\:I= 000		19				
Test for overall effect: $Z = 0.04$ (P = 0.97)	/4/,1 = 0.0	,					
1.1.4 Type 5							
lgbal et al., 2002 (OptiMAL)	18	230	24	271	3.5%	0.87 [0.46, 1.65]	
Subtotal (95% CI)		230		271	3.5%	0.87 [0.46, 1.65]	•
Total events	18		24				
Heterogeneity: Not applicable Test for everall effect: 7 = 0.41 (P = 0.69)							
Testion overall ellect. 2 = 0.41 (P = 0.06)							
1.1.5 Type 6	_						
Alam et al., 2011 (FalciVax Pf)	5	178	3	189	3.1%	1.79 [0.42, 7.61]	
Alam et al., 2011 (Onsite P//PV) Chanie et al., 2011 (CareStart TM Malaria Pf/Pv)	2	191 243	3	189	2.9%	0.00 [0.11, 3.97] 1.87 [0.34, 10.33]	
Ehtesham et al., 2015 (CareStart Pw/Pf Combo)	7	94	2	100	3.0%	3.94 [0.80, 19.48]	
lqbal et al., 2002 (ICT Malaria Pf/Pv)	12	178	24	271	3.5%	0.74 [0.36, 1.53]	
Kim et al., 2008 (SD Malaria Antigen Pf/Pv)	3	174	3	182	3.0%	1.05 [0.21, 5.26]	
Meena et al., 2009 (FalciVax) Rearge et al., 2009 (CoreCtart Malaria Rf/Re)	1	75	2	71	2.5%	0.47 [0.04, 5.26]	
Wovessalet al., 2009 (Carestan Marana Fivev)	10	686	5	479	3.4%	1.98 [0.71, 5.52]	
Yan et al., 2013 (Malaria PwPftest device)	8	90	11	98	3.4%	0.77 [0.30, 2.01]	_
Subtotal (95% CI)		2240		2119	31.3%	1.07 [0.74, 1.55]	•
Total events	66		65				
Test for overall effect: $Z = 0.37$ (P = 0.71)	03); I* = 0%)					
1.1.6 Not specified							
Ranjan P. and Ghosha U.	9	92	0	64		Not estimable	
Subtotal (95% CI)	-	0		0		Not estimable	
Total events	0		0				
Heterogeneity: Not applicable Test for overall effect: Not applicable							
Total (95% CI)		7842		7597	100 0%	103 3 3 1 1 5 5 5	
Total events	1932	1042	323	1 307	100.070	5.55 [1.00, 0.00]	-
Heterogeneity: Tau ² = 3.47; Chi ² = 522.01, df = 31 (P	< 0.00001)	; I² = 94	%				
Test for overall effect: Z = 3.40 (P = 0.0007) Test for subgroup differences: Chi ² = 13.88, df = 4 (P	= 0.008), lª	² = 71.2	%				RDT had lower proportion RDT had higher proportion

Figure 3. Discordance between RDTs and microscopy.

Study or Subgroup Events Total Events Total Weight IV, Random, 95% CI IV, Random, 95% CI 1.2.1 Finger prick Ashton et al., 2010 (CareStart) 320 716 9 552 4.5% 48.75 [24.82, 95.75] Image: Final Ashton et al., 2010 (CareStart) 338 737 9 552 4.5% 51.11 [26.04, 100.33] Image: Final Ashton et al., 2010 (ParaScreen) 336 719 9 552 4.5% 52.95, 103.94] Image: Final Ashton et al., 2010 (ParaScreen) 336 719 9 552 4.5% 52.93 [26.95, 103.94] Image: Final Ashton et al., 2010 (ParaScreen Pan/Pf) 75 372 84 475 4.7% 1.18 [0.83, 1.66] Image: Final Ashton et al., 2010 (ParaScreen Pan/Pf) 75 372 84 475 4.7% 1.18 [0.83, 1.66] Image: Final Ashton et al., 2019 Image: Final Ashton et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Image: Final Ashton et al., 2019
1.2.1 Finger prick Ashton et al., 2010 (CareStart) 320 716 9 552 4.5% 48.75 [24.82, 95.75] Ashton et al., 2010 (CareStart) 338 737 9 552 4.5% 51.11 [26.04, 100.33] Ashton et al., 2010 (CareStart TM Malaria P0Pv) 338 737 9 552 4.5% 51.11 [26.04, 100.33] Chanie et al., 2010 (ParaScreen) 336 719 9 552 4.5% 51.93 [26.95, 103.94] Chanie et al., 2010 (Parascreen Pan/Pf) 75 372 84 475 4.7% 1.87 [0.34, 10.33] Endeshaw et al., 2010 (Darascreen Pan/Pf) 75 372 84 475 4.7% 1.88 [0.83, 1.66] Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] 4 Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] 4
Ashton et al., 2010 (CareStart) 320 716 9 552 4.5% 48.75 [24.82, 95.75] Ashton et al., 2010 (CT Combo) 338 737 9 552 4.5% 51.11 [26.04, 100.33] Ashton et al., 2010 (CT Combo) 336 719 9 552 4.5% 51.11 [26.04, 100.33] Ashton et al., 2010 (ParaScreen) 336 719 9 552 4.5% 52.93 [26.95, 103.94] Chanie et al., 2010 (ParaScreen Pan/Pf) 75 372 84 475 4.7% 1.87 [0.34, 10.3] Idpal et al., 2010 (Parascreen Pan/Pf) 75 372 84 475 4.7% 1.81 [0.83, 1.66] Idpal et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.7% 1.34 [0.36, 5.00] Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Mehlotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] + Moges et al., 2012 26 100 6
Ashton et al., 2010 (ICT Combo) 338 737 9 552 4.5% 51.11 [26.04, 100.33] Ashton et al., 2010 (ParaScreen) 336 719 9 552 4.5% 52.93 [26.95, 103.94] Chanie et al., 2011 (CareStart TM Malaria Pt/Pty) 4 243 2 226 3.7% 1.87 [0.34, 10.33] Endeshaw et al., 2010 (Parascreen Pan/Pt) 75 372 84 475 4.7% 1.18 [0.83, 1.66] Igbal et al., 2002 (ICT Malaria Pt/Pty) 12 178 24 271 4.5% 0.74 [0.36, 1.53] Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] Molges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12]
Ashton et al., 2010 (ParaScreen) 336 719 9 552 4.5% 52.93 [26.95, 103.94] Chanie et al., 2011 (CareStart TM Malaria Pt/Pv) 4 243 2 226 3.7% 1.87 [0.34, 10.33] Endeshaw et al., 2010 (Parascreen Pan/Pt) 75 372 84 475 4.7% 1.18 [0.83, 1.66] Igbal et al., 2020 (ICT Malaria Pt/Pv) 12 178 24 271 4.5% 0.74 [0.36, 1.53] Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Molges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] van den Broek et al., 2019 8 134 7 140 4.3% 1.21 [0.43, 3.42]
Chanie et al., 2011 (CareStart TM Malaria P0Pv) 4 243 2 226 3.7% 1.87 [0.34, 10.33] Endeshaw et al., 2010 (Parascreen Pan/Pf) 75 372 84 475 4.7% 1.18 [0.83, 1.66] Igbal et al., 2010 (CT Malaria P0Pv) 12 178 24 271 4.5% 0.74 [0.36, 1.53] Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.86, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Moges et al., 2012 26 100 6 52 2.7% 3766.62 [232.99, 60891.74] Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] Van den Broek et al., 2019 8 134 7 140 4.3% 121 [1.043, 3.42]
Endeshaw et al., 2010 (Parascreen Pan/Pf) 75 372 84 475 4.7% 1.18 [0.83, 1.66] Igbal et al., 2010 (ICT Malaria Pt/Pv) 12 178 24 271 4.5% 0.74 [0.36, 1.53] Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Mehlotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] van den Broek et al., 2019 8 134 7 140 4.3% 1.21 [0.43, 3.42]
Iqbal et al., 2002 (ICT Malaria P0Pv) 12 178 24 271 4.5% 0.74 [0.36, 1.53] Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2009 1 75 2 71 3.0% 0.47 [0.04, 5.26] Mehlotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] van den Brek et al., 2009 (Now Malaria ICT) 8 134 7 140 4.3% 1.21 [0.43, 3.42]
Jahan et al., 2019 39 266 39 359 4.6% 1.41 [0.88, 2.27] Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Mehlotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] wan den Broek et al. 2009 (Now Malaria ICD) 8 134 7 140 4.3% 1.21 10.43 421
Khorashad et al., 2014 5 40 5 52 4.1% 1.34 [0.36, 5.00] Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Mehotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] van den Broek et al. 2009 (Now Malaria ICT) 8 134 7 140 4.3% 1.21 [0.43, 3.42]
Meena et al., 2009 (FalciVax) 1 75 2 71 3.0% 0.47 [0.04, 5.26] Mehlotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] ▶ Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12] ▶ van den Broek et al. 2009 (Now Malaria ICT) 8 134 7 140 4.3% 1.21 [0.43, 3.42] ▶
Mehlotra et al., 2019 372 461 0 452 2.7% 3766.62 [232.99, 60891.74] Image: Constraint of the state of the
Moges et al., 2012 26 100 6 114 4.4% 6.32 [2.48, 16.12]
van den Broek et al. 2009 (Now Malaria ICT) 8 134 7 140 4 3% 121 10 43 3 421
van den Broek et al., 2009 (Optimal-IT) 7 134 7 140 4.3% 1.05 (0.36, 3.07)
Yan et al. 2013 (Malaria PWP/test device) 8 90 11 98 4.3% 0.77 (0.30, 2.01)
Yan et al. 2013 (One Step Malaria Pt/Pan test) 33 93 11 98 4.5% 4.35 (2.04.9.28)
Subtotal (95% Cl) 4358 4152 62.5% 4.41 [1.72, 11.29]
Total events 1584 225
Heterogeneity: Tau ² = 3.09; Chi ² = 300.85, df = 14 (P < 0.00001); l ² = 95%
Test for overall effect: Z = 3.09 (P = 0.002)
1.2.2 Venipuncture
Alam et al., 2011 (FalciVax Pf) 5 178 3 189 3.9% 1.79 [0.42, 7.61]
Alam et al., 2011 (Onsite Pt/Pv) 2 191 3 189 3.6% 0.66 [0.11, 3.97]
Bouyou et al., 2014 (SD BIOLINE Malaria Ag-Pf/Pan) 1 103 1 94 2.7% 0.91 [0.06, 14.79]
Ehtesham et al., 2015 (CareStart Malaria) 12 90 2 100 3.9% 7.54 [1.64, 34.68]
Ehtesham et al., 2015 (CareStart Pv/Pf Combo) 7 94 2 100 3.8% 3.94 [0.80, 19.48]
Ehtesham et al., 2015 (First Response) 14 91 2 100 3.9% 8.91 [1.97, 40.38]
Feleke et al., 2017 5 43 5 41 4.0% 0.95 (0.25, 3.55)
Imwong et al., 2015 8 65 0 229 2.6% 67.85 [3.86, 1192.86]
Kim et al., 2008 (OptiMAL) 3 174 0 182 2.6% 7.45 [0.38, 145.27]
Kim et al., 2008 (SD Malaria Antigen Pt/Pv) 3 174 3 182 3.8% 1.05 [0.21, 5.26]
Ranjan P. and Ghosha U. 9 92 0 64 2.6% 14.68 [0.84, 256.87]
Subtotal (95% CI) 1295 1470 37.5% 3.04 [1.44, 6.43]
Total events 69 21
Heterogeneity: Tau ² = 0.67; Chi ² = 18.00, df = 10 (P = 0.06); l ² = 44%
Test for overall effect: Z = 2.91 (P = 0.004)
Total (95% CI) 5653 5622 100.0% 3.97 [1.96, 8.01]
Total general 1653 246
Total resents 1003 240
Destroyed in the second seco
Test for subgroup differences: Chi = 0.37 df = 1 (P = 0.55) F = 0% Favours [control]

Figure 4. The subgroup analysis of blood collection methods for microscopy.

microscopy to detect mixed infections based on the analysis of one included study was 0.87 (95% CI 0.46–1.65). The summary estimate of ORs between type 6 RDTs and microscopy to detect mixed infections based on the analysis of nine included studies was 1.07 (95% CI 0.74–1.55, p = 0.71, $I^2 = 0\%$). Overall, the significant summary estimate of ORs between all types of RDTs and microscopy to detect mixed infections was found (OR = 3.33, 95% CI 1.66–6.68, p = 0.009, $I^2 = 94\%$).

The subgroup analysis of blood collection methods for microscopy was performed using 18 included studies. The results demonstrated that no subgroup difference (p = 0.55) was found among studies using blood from the finger prick method and those using blood from venipuncture. The summary estimate of ORs between all types of RDTs compared to those performing microscopy using blood from the finger prick method to detect mixed infections was significantly different among 11 studies (OR = 4.41, 95% CI 1.72–11.29, p = 0.002). The summary estimate of ORs between RDTs and microscopy using blood from the venipuncture method was significantly different among seven studies (OR = 3.04, 95% CI 1.44–6.43, p = 0.004) (Fig. 4).

Discordance between RDTs and PCR. Overall, 12 studies reported on mixed infections detected by both RDTs and PCR^{21,26-29,32,33,37,39,43-45}, as shown in Fig. 5. Among 12 studies, three different types of RDTs were reported including RDT types 2, 3, and 6. The summary estimate of ORs between type 2 RDTs and PCR to detect mixed infections was 8.21 (95% CI 4.51–15.0). The summary estimate of ORs between type 3 RDTs and PCR based on the analysis of six included studies to detect mixed infections was 4.05 (95% CI 0.73–7.84, p=0.07, $I^2=97\%$). The summary estimate of ORs between type 6 RDTs and PCR based on the analysis of five included studies to detect mixed infections was 0.42 (95% CI 0.26–0.68, p=0.0005, $I^2=0\%$). Another study with no description on the type of RDT showed that the summary estimate of ORs between RDTs and PCR to detect mixed infections was 0.84 (95% CI 0.17–4.3). Overall, the summary estimate of ORs between all types of RDTs and PCR to detect mixed infections was 1.17 (95% CI 1.54–0.53, p=0.42, $I^2=96\%$). The subgroup analysis of detection of *Plasmodium* mixed-species infections between RDT and PCR found that the summary estimate of ORs between RDT and PCR was comparable in *P. falciparum* mixed infections with *P. vivax* (OR=0.81, 95% CI 0.51–1.27, p=0.36, $I^2=51\%$) and in *P. falciparum/P. vivax* and *P. falciparum* mixed infections with other *Plasmodium* spp. (OR: 6.96, 95% CI 1.50–32.4, p=0.01, I^2 : 99%) (Fig. 6).

	RD	r	PCF	2		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.1.1 Type 2							
Haanshuus et al., 2016 Subtotal (95% CI)	27	75 75	30	468 468	7.0% 7.0 %	8.21 [4.51, 14.95] 8.21 [4.51, 14.95]	•
Total events	27		30				
Heterogeneity: Not applicable							
Test for overall effect: Z = 6.89 (P < 0.00001)							
2.1.2 Туре 3							
Berzosa et al., 2018	212	761	15	787	7.1%	19.87 [11.64, 33.93]	
Ehtesham et al., 2015 (CareStart Malaria)	12	90	12	100	6.9%	1.13 [0.48, 2.66]	_
Ehtesham et al., 2015 (First Response)	14	91	12	100	6.9%	1.33 [0.58, 3.06]	_
Getnet et al., 2015 (CareStart Pf/Pan)	14	80	6	116	6.8%	3.89 [1.43, 10.61]	
Imwong et al., 2015	8	224	56	988	6.9%	0.62 [0.29, 1.31]	
Mehlotra et al., 2019	372	461	24	559	7.1%	93.17 [58.24, 149.05]	
Yan et al., 2013 (One Step Malaria Pf/Pan test)	33	93	21	113	7.0%	2.41 [1.27, 4.55]	
Subtotal (95% CI)		1800		2763	48.6%	4.05 [0.88, 18.78]	
Total events	665		146				
Heterogeneity: Tau ² = 4.14; Chi ² = 214.89, df = 6 (P < 0.000	101); I ² =	97%				
Test for overall effect: Z = 1.79 (P = 0.07)							
2.1.4 Туре б							
Alam et al., 2011 (FalciVax Pf)	5	178	8	188	6.6%	0.65 [0.21, 2.03]	
Alam et al., 2011 (Onsite Pf/Pv)	2	191	8	188	6.2%	0.24 [0.05, 1.14]	
Edwards et al., 2015	2	103	20	174	6.3%	0.15 [0.03, 0.67]	
Ehtesham et al., 2015 (CareStart Pv/Pf Combo)	7	94	12	100	6.8%	0.59 [0.22, 1.57]	
Li et al., 2016	1	61	3	69	5.4%	0.37 [0.04, 3.62]	
Yan et al., 2013 (Malaria Pv/Pf test device)	8	90	21	113	6.9%	0.43 [0.18, 1.02]	
Subtotal (95% CI)		717		832	38.2%	0.42 [0.26, 0.68]	•
Total events	25		72				
Heterogeneity: Tau ² = 0.00; Chi ² = 3.45, df = 5 (P =	= 0.63); I ²	= 0%					
Test for overall effect: Z = 3.50 (P = 0.0005)							
2.1.5 Not specified							
Ranjan P. and Ghosha U.	3	92	3	78	6.1%	0.84 [0.17, 4.30]	
Subtotal (95% CI)		92		78	6.1%	0.84 [0.17, 4.30]	
Total events	3		3				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.21 (P = 0.84)							
T-1-1 (05% CI)		2004			100.0%	4 5 4 10 52 4 401	
Total (95% CI)		2684		4141	100.0%	1.54 [0.53, 4.46]	
l otal events	720		251				
Heterogeneity: Tau ² = 4.08; Chi ² = 341.82, df = 14	(P < 0.00	1001); l ²	= 96%				0.005 0.1 1 10 200
Test for overall effect: Z = 0.80 (P = 0.42)							RDT had lower proportion RDT had higher proportion
Test for subgroup differences: Chi ² = 59.20, df = 3	3 (P < 0.0)	0001). F	r = 94.9%				

Figure 5. Discordance between RDTs and PCR.

	RDT	Г	PCF	1		Odds Ratio	Odds Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl						
2.2.1 Pf/Pv mixed infection													
Alam et al., 2011 (FalciVax Pf)	2	178	8	188	6.2%	0.26 [0.05, 1.22]							
Alam et al., 2011 (Onsite Pf/Pv)	5	191	8	188	6.6%	0.60 [0.19, 1.88]							
Ehtesham et al., 2015 (CareStart Malaria)	12	90	12	100	6.9%	1.13 [0.48, 2.66]	_						
Ehtesham et al., 2015 (CareStart Pv/Pf Combo)	7	94	12	100	6.8%	0.59 [0.22, 1.57]							
Ehtesham et al., 2015 (First Response)	14	91	12	100	6.9%	1.33 [0.58, 3.06]							
Imwong et al., 2015	8	224	56	988	6.9%	0.62 [0.29, 1.31]							
Li et al., 2016	1	61	3	69	5.4%	0.37 [0.04, 3.62]							
Ranjan P. and Ghosha U.	3	92	3	78	6.1%	0.84 [0.17, 4.30]							
Yan et al., 2013 (Malaria Pv/Pf test device)	8	90	21	113	6.9%	0.43 [0.18, 1.02]							
Yan et al., 2013 (One Step Malaria Pf/Pan test)	33	93	21	113	7.0%	2.41 [1.27, 4.55]							
Subtotal (95% CI)		1204		2037	65.7%	0.81 [0.51, 1.27]	◆						
Total events	93		156										
Heterogeneity: Tau ² = 0.25; Chi ² = 18.38, df = 9 (P = 0.03); i ² = 51%													
Test for overall effect: Z = 0.92 (P = 0.36)													
2.2.2 Pf/Pv and other tyes of mixed infections in	fection												
Berzosa et al., 2018	212	761	15	787	7.1%	19.87 [11.64, 33.93]							
Edwards et al., 2015	2	103	20	174	6.3%	0.15 [0.03, 0.67]							
Getnet et al., 2015 (CareStart Pf/Pan)	14	80	6	116	6.8%	3.89 [1.43, 10.61]							
Haanshuus et al., 2016	27	75	30	468	7.0%	8.21 [4.51, 14.95]							
Mehlotra et al., 2019	372	461	24	559	7.1%	93.17 [58.24, 149.05]	\rightarrow						
Subtotal (95% CI)		1480		2104	34.3%	6.96 [1.50, 32.35]							
Total events	627		95										
Heterogeneity: Tau ² = 2.87; Chi ² = 101.77, df = 4 (P < 0.000	01); I ² =	= 96%										
Test for overall effect: Z = 2.48 (P = 0.01)													
Total (95% CI)		2684		4141	100.0%	1.54 [0.53, 4.45]							
Total events	720		251										
Heterogeneity: Tau ² = 4.06; Chi ² = 340.47, df = 14	(P < 0.00	001); l ^a	= 96%										
Test for overall effect: Z = 0.80 (P = 0.42)							Eavours (experimental) Eavours (control)						
Test for subgroup differences: Chi² = 6.94, df = 1	(P = 0.008	3), l² = 8	85.6%				ravouis (experimental) ravouis (control)						

Figure 6. The subgroup analysis of detection of Plasmodium mixed-species infections between RDT and PCR.

Figure 7. The funnel plot.

Publication bias. Visual inspection of the funnel plots demonstrated no publications bias found because there was a symmetrical distribution of the included studies (geometric shapes) in the graph between the OR and SE (logOR) (Fig. 7). The publication bias was further assessed with Egger's test. Egger's test showed no publication bias due to the small-study effects found (p-value = 0.166) (Table S2). Therefore, the summary estimates of ORs in the present meta-analysis were not confounded by publication bias of the included studies.

Discussion

This is the first study to summarize the available data on the discrepancy between RDTs and two gold/reference standards for the detection of malaria mixed infections. The summary ORs of discrepancies of RDT types 2, 3, 4, 5, and 6 in detecting malaria mixed infections compared to microscopy were 4.33, 8.46, 0.99, 0.87, and 1.07, respectively. Even though the overall summary estimate of ORs was significantly observed, subgroup analysis of RDT types demonstrated that only RDT type 3 could detect a significantly higher proportion of Plasmodium mixed infections than the microscopic method. Among the 8 studies conducted in Ethiopia^{27,30,31,38,42,45,48,50}, only a study by Ashton et al.²⁷ revealed a considerable difference in the proportion of mixed infections detected by RDT types 2 and 3 compared with microscopy. From 297 blood samples of P. falciparum mono-infection confirmed by the microscopy, 213 (213/297: 71.7%), 224 (224/297: 75.4%), and 223 (223/297: 75.1%) samples were interpreted as mixed infections by CareStart (AccessBio, USA), ICT Combo (ICT Diagnostics, South Africa), and ParaScreen (Zephyr Biomedicals, India), respectively. The remaining studies conducted in Ethiopia had identical numbers of mixed infections in 2 studies^{31,50} and high numbers of mixed infections in three studies^{38,42,48}, another study conducted in Ethiopia demonstrated more mixed infections detected by microscopy (84 cases) than by RDT (75 cases)³⁰. Another important difference in the proportion of mixed infections detected by RDT type 3 compared with microscopy was also demonstrated in the study conducted in Madagascar by Mehlotra et al., 2019 during 2015–2016 because 84.6% of blood samples with confirmed P. falciparum mono-infections by microscopy and by LDR-FMA analysis were positive for both the Pf-HRP2 and pan-pLDH test bands⁴⁴. In addition, an important difference in the proportion of mixed infections detected by RDT type 3 compared with microscopy was also demonstrated in the study conducted in Madagascar by Berzosa et al. because 0.87% of blood samples with confirmed P. falciparum mixed infections by PCR were false positive for Plasmodium mixed infections by RDT type 3 (212 cases, 12.3%)²⁸

The high proportion of mixed infections detected by RDT types 2 and 3 compared with microscopy reported in the included studies by Ashton et al., Mehlotra et al., and by Berzosa et al. may be due to the consistent false positive Pan-pLDH test lines among P. falciparum samples at high parasite densities, as reported in RDTs targeting Pv-pLDH⁵³. A high parasite density of *P. falciparum* can induce positivity of the pLDH band on RDTs, giving false positives of non-falciparum species²⁸. The false positive on Pan-pLDH test lines among *P. falciparum* samples at high parasite densities may be possible to use as the detection limit of the SD Bioline Malaria Ag P.f/ Pan RDT used in the study by Mehlotra et al. because the mean parasitaemia level in samples that were positive for both the PfHRP2 and pan-pLDH test bands was significantly higher than that in those that were positive only for the PfHRP2 band⁴⁴. In addition, the included study by Ashton et al., 2010, demonstrated the false-positive results in Pan-pLDH test lines of P. falciparum (38%) and P. vivax samples which might cause by high parasite densities (>5,000 parasites/ μ l)²⁷. Therefore, high *P. falciparum* or *P. vivax* parasitaemia could lead to incorrect interpretation of RDTs, particularly interpretation of mixed infections. The discordance between RDT types 2 or 3 and microscopy can be explained because RDT type 3 is specific to Pf-HRP2 and pan-pLDH and RDT type 2 is specific to pan-aldolase and thus cannot distinguish between a *P. falciparum* infection and a mixed infection when both test lines are observed. Other possible causes of discrepancy were false positive results from patients who had received any anti-malarial treatment in the previous four weeks as reported by the authors, parasitized erythrocytes cytoadhered to the microvasculature that were not seen in the peripheral circulation or on blood films although antigen continued to be released yielding RDT positivity⁵⁴, or a low parasite density of the mixed infection that was too low to be seen by the microscopists but with sufficient parasite antigen to yield RDT positivity⁵⁵.

The meta-analysis of RDTs and microscopy had no significant discrepancy among RDTs type 2, 4, and 6. In this analysis, the summary results of RDT type 5 performed by Iqbal et al.⁴⁶ and RDTs performed by Ranjan and Ghoshal³⁹ could not be interpreted because there were a small number of studies for subgroup analysis. Overall, the evidence was strong for RDT types 3 and 6 mainly because a large number of studies were available for inclusion. However, the summary estimate of RDT type 3 demonstrated high heterogeneity among the included studies ($I^2 = 96\%$) when compared to those of RDT type 6 ($I^2 = 0\%$). In this study, more than half of the studies (n = 18) relied solely on microscopy as the gold/reference standard for *Plasmodium* species identification. Therefore, the discordant results between RDTs and microscopy demonstrated in the present study might be due to the imperfect nature of the gold/reference standard because mixed infections with *P. falciparum* could be missed by microscopy. Because of these results, RDT types 2 and 3 could rectify the diagnosis of *P. falciparum* in mixed-species infections that might be missed by the microscopy method. These results supported that the selection of the most appropriate RDTs relative to malaria epidemiology and are very crucial to differentiated mixed infections because the identification of *Plasmodium* mixed-species infections would facilitate appropriate treatment with artemisinin-based combination therapies (ACTs), which could eliminate any mixed infection even if mixed infections were not detected by the gold/reference standard, the microscopy method⁵⁶.

Recently, the sensitivity and specificity for the detection and identification of malarial parasites have been improved using the Nested-PCR method, which amplifies the 18s rRNA gene⁵⁷. It has been proven to be more sensitive and accurate than routine diagnostic microscopy and provides the advantage of a higher proportion of detection in cases of mixed-species infections⁵⁷. In the present study, 12 included studies used PCR as a reference standard for *Plasmodium* species identifications. The discrepancy between RDT type 3 and PCR (OR = 4.05) appeared to be heavily influenced by the included studies by Berzosa et al. and by Mehlotra et al. in which the individual ORs were extremely high (19.9 and 93.2, respectively). This affirms that when compared with using PCR as the gold/reference standard, the high discrepancy between RDT type 3 targeting Pf-HRP2 and pan-pLDH leads to incorrect interpretation of mixed infections by RDTs, as we discussed earlier in the discrepancy of RDT type 3 and microscopy. The false positive results of RDTs when detecting mixed infections may be associated with decreased age because of the high prevalence of malaria in children, particularly children under 5 years of age, who are likely to develop severe malaria with high parasitaemia^{58,59}. The present meta-analysis demonstrated that the significant discordance between RDTs and PCR was found in studies using RDT type 6, which detects the pf-HRP2/Pv-pLDH antigen of malaria parasites. RDT type 6 could detect a lower proportion of Plasmodium mixed infections than the PCR reference method. This finding was similar to three previous studies^{21,60,61}. Therefore, the lower proportion of *Plasmodium* mixed infections detected by RDT type 6 than by PCR demonstrated in the present study might be due to the lower sensitivity and specificity of RDTs than of PCR methods. In practice, PCR methods have a higher sensitivity (approximately 0.0001 parasites/µL) than RDT (approximately 100 parasites/µL) and microscopy (approximately 50–500 parasites/µL)⁸, which allows for the detection of *Plasmodium* mixed infections at a low parasite density, which are routinely missed in microscopy⁶². The subgroup analysis of *Plasmodium* mixed-species infections as reported by the 6 included studies demonstrated that a comparable proportion detected P. falciparum mixed infections with P. vivax between RDTs and PCR, while there was a significant difference in the proportion that detected P. falciparum/P. vivax and P. falciparum mixed infections with other Plasmodium species. This subgroup analysis suggested that RDTs had identical results with PCR in detecting P. falciparum and P. vivax mixed infections. In contrast, RDTs had discordant results with PCR in detecting P. falciparum mixed infections with other Plasmodium species. Nevertheless, these results should be further confirmed by full experimental studies.

The present study had limitations. First, RDTs targeting HRP-2 and pan-pLDH or RDTs targeting HRP-2 and pan-aldolase are likely to be positive in P. falciparum mono-infections or mixed-species infections. Regarding this limitation of the RDTs in the included studies, the summary estimates of ORs between RDT types 2 and 3 and microscopy need to be carefully interpreted. Second, the overall evidence of the analysis between RDTs and PCR was weak, mainly because few studies were available for inclusion. Second, the lower sensitivity and specificity of RDTs than those of PCR was due to the limits of detection. The WHO has suggested that the clinical sensitivity of RDTs is highly dependent on conditions including the level of parasite density and the subset of any population, such as young children or pregnant women; thus, the interpretation of RDTs must be carefully interpreted⁶³. Third, the sensitivity and specificity of RDTs compared to the gold standard could not be calculated due to data on individual patient were lacking and the data on whether patients who gave positive results for RDT were the same patients who gave positive results for the gold/reference standard or not, as most of the included studies report the number of positive separately between RDTs and microscopy/PCR. Fourth, some eligible studies might have been missed through the search strategy. However, the additional search of reference lists of the included studies and searches of other sources such as Google search and Google Scholar, and performing extensive searching of reference lists and searching other sources with broad search terms, helped to reduce this limitation by further increasing the number of included studies. Fifth, the study aimed to clarify what proportion of *Plasmodium* mixed-infections could not be confirmed by a positive RDT result, and the proportion of Plasmodium mixed infections were often not the primary target of studies, which led to a low number of studies that were focused on mixed infections. In light of these, although the current data are still suggestive of high discrepancies of RDT type 3 for detecting Plasmodium mixed infections in comparison to microscopy and of RDT type 6 for detecting Plasmodium mixed infections in comparison to PCR methods, they provided a critical advantage on malaria treatment in resource-limited settings in which the results of microscopy could not be obtained. Further studies focused on the diagnosis of *Plasmodium* mixed-species infections by RDTs are needed to provide a better understanding of the performance of RDTs, guide the development of an improved diagnostic test for *Plasmodium* mixed infections, and facilitate the appropriate treatment of patients with ACTs. This will help with the elimination of malaria in endemic and non-endemic areas where laboratory capacity is limited.

Conclusion

In conclusion, the present study suggested that malaria RDTs showed some discordant results with microscopy and PCR. The selection interpretation of RDTs can facilitate a better diagnosis of *Plasmodium* mixed-species infections and appropriate treatment of malaria patients in endemic and non-endemic settings.

Consent for publication. All authors have read the manuscript and consent to its publication.

Data availability

The datasets used during the current study are available without restriction and demonstrated in the present manuscript and additional files.

Received: 13 April 2020; Accepted: 15 July 2020 Published online: 29 July 2020

References

- 1. WHO. World malaria report 2019. https://www.who.int/publications-detail/world-malaria-report-2019 (2019).
- Singh, B. & Daneshvar, C. Human infections and detection of *Plasmodium knowlesi*. Clin. Microbiol. Rev. 26, 165–184. https://doi.org/10.1128/CMR.00079-12 (2013).
- 3. Roper, C. *et al.* Detection of very low level *Plasmodium falciparum* infections using the nested polymerase chain reaction and a reassessment of the epidemiology of unstable malaria in Sudan. *Am. J. Trop. Med. Hyg.* **54**, 325–331. https://doi.org/10.4269/ajtmh .1996.54.325 (1996).
- 4. Looareesuwan, S., White, N. J., Chittamas, S., Bunnag, D. & Harinasuta, T. High rate of *Plasmodium vivax* relapse following treatment of falciparum malaria in Thailand. *Lancet* **2**, 1052–1055. https://doi.org/10.1016/s0140-6736(87)91479-6 (1987).
- 5. McKenzie, F. E. & Bossert, W. H. Multispecies Plasmodium infections of humans. J. Parasitol. 85, 12-18 (1999)
- Lee, G. C. et al. Development and evaluation of a rapid diagnostic test for Plasmodium falciparum, P vivax, and mixed-species malaria antigens. Am. J. Trop. Med. Hyg 85, 989–993. https://doi.org/10.4269/ajtmh.2011.11-0265 (2011).
- Bell, D., Wongsrichanalai, C. & Barnwell, J. W. Ensuring quality and access for malaria diagnosis: how can it be achieved?. Nat. Rev. Microbiol. 4, S7-20. https://doi.org/10.1038/nrmicro1525 (2006).
- 8. Moody, A. Rapid diagnostic tests for malaria parasites. *Clin. Microbiol. Rev.* 15, 66–78. https://doi.org/10.1128/cmr.15.1.66-78.2002 (2002).
- Rock, E. P. et al. Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin. Parasitology 95(Pt 2), 209–227. https://doi.org/10.1017/s0031182000057681 (1987).
- Makler, M. T., Piper, R. C. & Milhous, W. K. Lactate dehydrogenase and the diagnosis of malaria. *Parasitol. Today* 14, 376–377. https://doi.org/10.1016/s0169-4758(98)01284-8 (1998).
- 11. Kanwugu, O. N. *et al.* Prevalence of asymptomatic malaria among children in the Tamale Metropolis: how does the PfHRP2 CareStart RDT perform against microscopy?. *J. Trop. Med.* **2019**, 6457628. https://doi.org/10.1155/2019/6457628 (2019).
- 12. Mweu, M. M., Wambua, J., Njuga, F., Bejon, P. & Mwanga, D. Bayesian evaluation of the performance of three diagnostic tests for *Plasmodium falciparum* infection in a low-transmission setting in Kilifi County Kenya. *Wellcome Open. Res.* **4**, 67. https://doi. org/10.12688/wellcomeopenres.15204.3 (2019).
- Niyibizi, J. B. & Gatera, E. K. Diagnostic performance between histidine-rich protein 2 (HRP-2), a rapid malaria diagnostic test and microscopic-based staining techniques for diagnosis of malaria. J. Trop. Med. 2020, 5410263. https://doi.org/10.1155/2020/54102 63 (2020).
- 14. Abdalla, Z. A. *et al.* The diagnostic performance of rapid diagnostic tests and microscopy for malaria diagnosis in eastern Sudan using a nested polymerase chain reaction assay as a reference standard. *Trans. R Soc. Trop. Med. Hyg.* **113**, 701–705. https://doi. org/10.1093/trstmh/trz069 (2019).
- Coldiron, M. E. et al. Clinical diagnostic evaluation of HRP2 and pLDH-based rapid diagnostic tests for malaria in an area receiving seasonal malaria chemoprevention in Niger. Malar. J. 18, 443. https://doi.org/10.1186/s12936-019-3079-1 (2019).
- 16. Leski, T. A. *et al.* Use of real-time multiplex PCR, malaria rapid diagnostic test and microscopy to investigate the prevalence of Plasmodium species among febrile hospital patients in Sierra Leone. *Malar. J.* 19, 84. https://doi.org/10.1186/s12936-020-03163 -2 (2020).
- 17. Dzakah, E. E. *et al.* Comparative performance of aldolase and lactate dehydrogenase rapid diagnostic tests in *Plasmodium vivax* detection. *Malar. J.* **13**, 272. https://doi.org/10.1186/1475-2875-13-272 (2014).
- Bwire, G. M. *et al.* Diagnostic performance of CareStart malaria HRP2/pLDH test in comparison with standard microscopy for detection of uncomplicated malaria infection among symptomatic patients Eastern Coast of Tanzania. *Malar. J.* 18, 354. https:// doi.org/10.1186/s12936-019-2990-9 (2019).
- Bouyou-Akotet, M. K., Nkare, C. A., Mbouoronde, O. C. & Mawili-Mboumba, D. P. Performances of SD Bioline Malaria Ag-P.F/ Pan RDT for the diagnosis of malaria in febrile patients living in Gabon, central Africa. *Malar Chemoth Cont Elimin.* 3, 1000125 (2014).
- Barber, B. E. et al. Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum, and Plasmodium vivax. J. Clin. Microbiol. 51, 1118–1123. https://doi.org/10.1128/JCM.03285-12 (2013).
- Ehtesham, R., Fazaeli, A., Raeisi, A., Keshavarz, H. & Heidari, A. Detection of mixed-species infections of *Plasmodium falciparum* and *Plasmodium vivax* by nested PCR and rapid diagnostic tests in southeastern Iran. *Am. J. Trop. Med. Hyg.* 93, 181–185. https ://doi.org/10.4269/ajtmh.14-0650 (2015).
- Whiting, P. F. et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155, 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 (2011).
- 23. Rothstein HR, S. A., Borenstein M. Publication bias in meta-analysis. (Wiley, 2005).
- Lane, D. M. Estimating effect size: Bias resulting from the significance criterion in editorial decisions. Br. J. Math. Stat. Psychol. 31, 107–112 (1978).
- Cochrane. Cochrane handbook for systematic reviews of interventions, https://training.cochrane.org/handbook/archive/v5.1/ (2011).
- Alam, M. S. *et al.* Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh. *Malar. J.* 10, 9. https://doi.org/10.1186/1475-2875-10-175 (2011).

- Ashton, R. A. et al. Performance of three multi-species rapid diagnostic tests for diagnosis of Plasmodium falciparum and Plasmodium vivax malaria in Oromia Regional State Ethiopia. Malar. J. 9, 11. https://doi.org/10.1186/1475-2875-9-297 (2010).
- Berzosa, P. *et al.* Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea 11 Medical and Health Sciences 1108 Medical Microbiology. *Malar. J.* 17, 333. https://doi.org/10.1186/s12936-018-2481-4 (2018).
- Edwards, H. M. et al. Novel cross-border approaches to optimise identification of asymptomatic and artemisinin-resistant Plasmodium infection in mobile populations crossing cambodian borders. PLoS ONE 10, e0124300. https://doi.org/10.1371/journ al.pone.0124300 (2015).
- Endeshaw, T. et al. Comparison of Parascreen Pan/Pf, Paracheck Pf and light microscopy for detection of malaria among febrile patients, Northwest Ethiopia. Trans. R. Soc. Trop. Med. Hyg. 104, 467–474. https://doi.org/10.1016/j.trstmh.2010.03.003 (2010).
- Feleke, D. G., Tarko, S. & Hadush, H. Performance comparison of CareStartTM HRP2/pLDH combo rapid malaria test with light microscopy in north-western Tigray, Ethiopia: a cross-sectional study. *BMC Infect. Dis.* 17, 399. https://doi.org/10.1186/s1287 9-017-2503-9 (2017).
- 32. Haanshuus, C. G. *et al.* A high malaria prevalence identified by PCR among patients with acute undifferentiated fever in India. *PLoS ONE* **11**, e0158816. https://doi.org/10.1371/journal.pone.0158816 (2016).
- Imwong, M. et al. The epidemiology of subclinical malaria infections in South-East Asia: findings from cross-sectional surveys in Thailand-Myanmar border areas, Cambodia, and Vietnam. Malar. J. 14, 381. https://doi.org/10.1186/s12936-015-0906-x (2015).
- Iqbal, J., Hira, P. R., Sher, A. & Aziz Al-Enezi, A. Diagnosis of imported malaria by Plasmodium lactate dehydrogenase (pLDH) and histidine-rich protein 2 (PfHRP-2)-based immunocapture assays. *Am. J. Trop. Med. Hyg.* 64, 20–23. https://doi.org/10.4269/ ajtmh.2001.64.20 (2001).
- 35. Jahan, F. et al. Malaria epidemiology and comparative reliability of diagnostic tools in Bannu; an endemic malaria focus in south of Khyber Pakhtunkhwa Pakistan. Pathog. Glob. Health 113, 75–85. https://doi.org/10.1080/20477724.2019.1595904 (2019).
- Kim, S. H. et al. Evaluation of a rapid diagnostic test specific for Plasmodium vivax. Trop. Med. Int. Health 13, 1495–1500. https:// doi.org/10.1111/j.1365-3156.2008.02163.x (2008).
- Li, P. et al. Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area. Malar. J. 15, 1–10. https:// doi.org/10.1186/s12936-016-1605-y (2016).
- Moges, B. *et al.* Comparison of CareStart (TM) HRP2/pLDH COMBO rapid malaria test with light microscopy in north-west Ethiopia. *Malar. J.* 11, 6. https://doi.org/10.1186/1475-2875-11-234 (2012).
- Ranjan, P. & Ghoshal, U. Utility of nested polymerase chain reaction over the microscopy and immuno-chromatographic test in the detection of Plasmodium species and their clinical spectrum. *Parasitol. Res.* 115, 3375–3385. https://doi.org/10.1007/s0043 6-016-5098-y (2016).
- Ratnawati, H. M. & Smits, H. L. Point-of-care testing for malaria outbreak management. Trans. R. Soc. Trop. Med. Hyg. 102, 699-704. https://doi.org/10.1016/j.trstmh.2008.04.018 (2008).
- Richter, J., Göbels, K., Müller-Stöver, I., Hoppenheit, B. & Häussinger, D. Co-reactivity of plasmodial histidine-rich protein 2 and aldolase on a combined immuno-chromographic-malaria dipstick (ICT) as a potential semi-quantitative marker of high *Plasmodium falciparum* parasitaemia. *Parasitol. Res.* 94, 384–385. https://doi.org/10.1007/s00436-004-1213-6 (2004).
 Woyessa, A., Deressa, W., Ali, A. & Lindtjørn, B. Evaluation of CareStart[™] malaria Pf/Pv combo test for *Plasmodium falciparum*
- Woyessa, A., Deressa, W., Ali, A. & Lindtjørn, B. Evaluation of CareStart[™] malaria Pf/Pv combo test for *Plasmodium falciparum* and *Plasmodium vivax* malaria diagnosis in Butajira area, south-central Ethiopia. *Malar. J.* 12, 218. https://doi.org/10.1186/1475-2875-12-218 (2013).
- Yan, J. et al. Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area. Malar. J. 12, 73. https://doi.org/10.1186/1475-2875-12-73 (2013).
- Mehlotra, R. K. et al. Plasmodium falciparum parasitemia and band sensitivity of the SD Bioline Malaria Ag P.f/Pan rapid diagnostic test in Madagascar. Am. J. Trop. Med. Hyg. 100, 1196–1201. https://doi.org/10.4269/ajtmh.18-1013 (2019).
- Getnet, G. et al. Diagnostic performance of rapid diagnostic tests for the diagnosis of malaria at public health facilities in northwest Ethiopia. Trop. Med. Int. Health. 20, 1564–1568. https://doi.org/10.1111/tmi.12570 (2015).
- Iqbal, J., Khalid, N. & Hira, P. R. Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. J. Clin. Microbiol. 40, 4675–4678. https://doi.org/10.1128/jcm.40.12.4675-4678.2002 (2002).
- 47. Khorashad, A. S. & Roshanravan, M. The comparison of microscopic method and rapid diagnostic test in detecting *Plasmodium* species. *Int. J. Infect.* **1**, e21441 (2014).
- Chanie, M., Erko, B., Animut, A. & Legesse, M. Performance of CareStartTM Malaria Pf/Pv Combo test for the diagnosis of *Plasmodium falciparum* and *Plasmodium vivax* infections in the Afar Region, North East Ethiopia. *Ethiop. J. Health Dev.* 25, 206–211 (2011).
- 49. Meena, M. *et al.* Accuracy of a multispecies rapid diagnostic test kit for detection of malarial parasite at the point of care in a low endemicity region. *Trans. R. Soc. Trop. Med. Hyg.* **103**, 1237–1244. https://doi.org/10.1016/j.trstmh.2009.04.011 (2009).
- Sharew, B. *et al.* Evaluation of the performance of CareStart Malaria Pf/Pv combo and paracheck Pf tests for the diagnosis of malaria in Wondo Genet, southern Ethiopia. *Acta Trop.* 111, 321–324. https://doi.org/10.1016/j.actatropica.2009.05.014 (2009).
- van den Broek, I. et al. Evaluation of three rapid tests for diagnosis of P. falciparum and P. vivax malaria in Colombia. Am. J. Trop. Med. Hyg. 75, 1209–1215 (2006).
- WHO. Malaria rapid diagnostic test performance. Results of WHO product testing of malaria RDTs : round 1 (2008), https://www. who.int/malaria/publications/atoz/9789241598071/en/ (2009).
- Maltha, J. et al. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines. Malar. J. 9, 198. https://doi.org/10.1186/1475-2875-9-198 (2010).
- 54. Dondorp, A. M. *et al.* Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. *PLoS Med* **2**, e204. https://doi.org/10.1371/journal.pmed.0020204 (2005).
- Bell, D. R., Wilson, D. W. & Martin, L. B. False-positive results of a *Plasmodium falciparum* histidine-rich protein 2-detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. *Am. J. Trop. Med. Hyg.* 73, 199–203 (2005).
- 56. WHO. Guidelines for the treatment of malaria, https://www.who.int/malaria/publications/atoz/9789241549127/en/ (2015).
- Snounou, G., Viriyakosol, S., Jarra, W., Thaithong, S. & Brown, K. N. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. *Mol. Biochem. Parasitol.* 58, 283–292. https://doi.org/10.1016/0166-6851(93)90050-8 (1993).
- Laurent, A. *et al.* Performance of HRP-2 based rapid diagnostic test for malaria and its variation with age in an area of intense malaria transmission in southern Tanzania. *Malar. J.* 9, 294. https://doi.org/10.1186/1475-2875-9-294 (2010).
- Abeku, T. A. *et al.* Determinants of the accuracy of rapid diagnostic tests in malaria case management: evidence from low and moderate transmission settings in the East African highlands. *Malar. J.* 7, 202. https://doi.org/10.1186/1475-2875-7-202 (2008).
- Ebrahimzadeh, A., Fouladi, B. & Fazaeli, A. High rate of detection of mixed infections of *Plasmodium vivax* and *Plasmodium falciparum* in South-East of Iran, using nested PCR. *Parasitol Int* 56, 61–64. https://doi.org/10.1016/j.parint.2006.12.001 (2007).
- Zakeri, S. et al. Detection of mixed Plasmodium falciparum and P. vivax infections by nested-PCR in Pakistan, Iran & Afghanistan. Indian J Med Res 132, 31–35 (2010).
- Romay-Barja, M. et al. Rural-Urban Differences in household treatment-seeking behaviour for suspected malaria in children at Bata district Equatorial Guinea. PLoS ONE 10, e0135887. https://doi.org/10.1371/journal.pone.0135887 (2015).

63. WHO. Malaria rapid diagnostic test performance. Results of WHO product testing of malaria RDTs: round 8 (2016–2018), https://www.who.int/malaria/publications/atoz/9789241514965/en/ (2018).

Acknowledgements

The authors would like to thank the authors of all the published research that contributed to the data used in this study. This research was partially supported by the new strategic research (P2P) project, Walailak University, Thailand. The funders had a role in the collection, analysis, and interpretation of the data.

Author contributions

M.K., K.U.K., G.D.M., and F.R.M. participated in the study design, data analysis, and writing of the paper. All authors have read and approved the final paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-69647-y.

Correspondence and requests for materials should be addressed to M.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020