\

Yesl materials MDPI|
e w 7
Article

Deep Learning for Type 1 Diabetes Mellitus Diagnosis Using
Infrared Quantum Cascade Laser Spectroscopy

Igor Fufurin *

Anastasiya Scherbakova !, Pavel Demkin !, Olga Nebritova ! and Andrey Morozov

check for
updates

Citation: Fufurin, I; Berezhanskiy, P;
Golyak, I; Anfimov, D.; Kareva, E.;
Scherbakova, A.; Demkin, P;
Nebritova, O.; Morozov, A. Deep
Learning for Type 1 Diabetes Mellitus
Diagnosis Using Infrared Quantum
Cascade Laser Spectroscopy.
Materials 2022, 15, 2984. https://
doi.org/10.3390/ma15092984

Academic Editor: Dokyoung Kim

Received: 25 March 2022
Accepted: 17 April 2022
Published: 20 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Pavel Berezhanskiy 2(7, Igor Golyak (¥, Dmitriy Anfimov !, Elizaveta Kareva !,

1
1

1 Physics Department, Bauman Moscow State Technical University, Moscow 105005, Russia;

igorgolyak@yandex.ru (I.G.); dimananfimov97@gmail.com (D.A.); elisabethkareva@gmail.com (E.K.);
nastya_schs@mail.ru (A.S.); demkin.pavel1996@yandex.ru (P.D.); o.nebritova@outlook.com (O.N.);
amor59@mail.ru (A.M.)

Morozov Children’s Clinical Hospital, State Budgetary Healthcare Institution, Moscow Healthcare
Pulmonology Department, Moscow 119049, Russia; p.berezhanskiy@mail.ru

*  Correspondence: igfil@mail.ru; Tel.: +7-903-611-75-04

Abstract: An estimated 10.5% of the world’s population aged 20-79 years are currently living with
diabetes in 2021. An urgent task is to develop a non-invasive express-diagnostics of diabetes with high
accuracy. Type 1 diabetes mellitus (T1DM) diagnostic method based on infrared laser spectroscopy
of human exhaled breath is described. A quantum cascade laser emitting in a pulsed mode with
a peak power of up to 150 mW in the spectral range of 5.3-12.8 um and Herriot multipass gas cell
with an optical path length of 76 m were used. We propose a method for collecting and drying an
exhaled human air sample and have measured 1200 infrared exhaled breath spectra from 60 healthy
volunteers (the control group) and 60 volunteers with confirmed T1IDM (the target group). A 1-D
convolutional neural network for the classification of healthy and T1DM volunteers with an accuracy
of 99.7%, recall 99.6% and AUC score 99.9% was used. The demonstrated results require clarification
on a larger dataset and series of clinical studies and, further, the method can be implemented in
routine medical practice.

Keywords: diabetes; breath analysis; deep learning; infrared spectroscopy; quantum cascade laser;
biomarker

1. Introduction

Non-invasive diagnostics is one of the most important directions for the development
of modern medicine. An estimated 537 million adults aged 20-79 years worldwide (10.5%
of all adults in this age group) have diabetes, the International Diabetes Federation (IDF)
reported in 2021. IDF estimated the number of children (0-19 years) and adolescents
with type 1 diabetes to be about 1.2 million in 2021. This number is projected to rise to
643 million by 2030 and 783 million by 2045 [1]. The ability to monitor blood glucose
non-invasively by monitoring compounds in breath and emitted through the skin has been
demonstrated [2,3]. Recently, the interest has been focused on a compendium of the volatile
organic compounds (VOCs) emanating from the human body [4]. VOCs were shown to be
isolated from the breath (872 compounds), saliva (359 compounds), blood (154 compounds),
milk (256 compounds), skin secretions (532 compounds), urine (279 compounds), and feces
(381 compounds) in apparently healthy individuals. Exhaled breath contains many different
volatile organic compounds. However, the final list of such substances has not yet been
published. A list of compounds that have been observed in breath was published, e.g.,
by Manolis [5], Philips [6], and Selvaraj [7], including volatile inorganic [8] and organic
compounds (VOCs) [9]. For many of these substances it is unknown whether they are
produced endogenously, i.e., whether some of them are associated with smoking [10]. Quite
anumber of volatile compounds may be related to food consumption or medication [11], but
some of them can be identified with a possible human disease. Despite the fact that acetone
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is a biomarker of diabetes mellitus [12], the analysis of acetone alone is insufficient [13].
Others volatile organic compounds such as isoprene and methyl nitrate were associated
with diabetes mellitus [14]. The basis of diagnostics is related to disease-specific changes in
the concentration of VOCs in exhaled air [15].

The combination of chromatography and mass spectrometry allows rapid identifi-
cation of substances with high selectivity and sensitivity down to ppt levels [16]. These
techniques require accurate calibration of the chromatographic column and manual sam-
pling procedures [17]. Ion mobility spectrometry can be used for breath research [18],
but has limitations in separating components in multi-component gas mixtures. Infrared
femtosecond lasers can be used for thermal imaging including medical applications [19].
Modern quantum cascade lasers (QCLs) allow to study biomarker molecules with high
sensitivity and in the future to create portable devices with low cost of “one measure-
ment” [20,21].

A wide tuning range, emission in the “fingerprint” range, operation at room tem-
perature, and the miniature size of the laser chip make it possible to highlight QC lasers
for biomedical applications. Particularly promising is the use of QC lasers in portable
devices [22].

In biomedical applications one typically study VOCs at ppb-ppm levels that requires
highly sensitive methods. Spectroscopic methods like absorption spectroscopy are limited
in sensitivity by the optical path length. Longer path length improves the sensitivity and
detection limit. Richard [23] reported the usage of a distributed feedback quantum cascade
laser (DFB QCL) at A ~ 5.26 um. The NO detection limit of 60 ppt is achieved in a single
measurement of 140 ms and an average over 10 s shows sensitivity up to 8.3 ppt. Gorbani
et al. [24] used the same system to identify carbon monoxide (CO) in human exhaled breath
using a multi-pass gas cell and measured CO at 4.69 um with a detection limit of 9 &+ 5 ppbv
and data acquisition time of 0.07 s. McManus [25] reported sensitivity at sub-ppb levels for
a narrow band QCL and a 200 m Herriot multipass gas cell.

Aerodyne Research, Inc. (Billerica, MA, USA ) has started commercial production of a
compact gas analyzer based on mid-infrared QCL for recording trace amounts of CHy, N»O,
NO, NO,, CO, CO,, formaldehyde, formic acid, ethylene, acetylene, ammonia, etc. [26].

In the study [27] using QCL tuning in the 1150-1250 cm~! range, stable TIDM pa-
tients were shown to have concentrations in exhaled breath above the VOC concentration
range for healthy individuals. The advantage of using a single biomarker present in high
concentrations (e.g., acetone) is obvious, but it alone cannot directly correlate with blood
glucose concentrations for all diabetics [3]. Tuzson [28] for a spectral range between 2950
and 2980 cm~! showed that monitoring acetone in exhaled breath can indeed provide
useful information for monitoring of lifestyle interventions. Trefz [29] showed a significant
intersection of the values of acetone concentration in exhaled air for diabetic and healthy
people, but TIDM patients have significantly higher isopropanol concentrations than their
healthy peers.

Another approach is to look at a number of biomarkers and correlate the biomarker
pattern (i.e., biomarker combination and their concentrations) [30]. Simultaneous quantifi-
cation of several gaseous substances enables to observe correlations in their excretion with
the exhaled air and, thus, to investigate the interrelationships between various physiolog-
ical and biochemical processes in the body [31]. E. van Mastrigt [9] for broadband QCL
832-1262.55 cm ! showed prospects of machine learning methods for diagnosis of asthma
and cystic fibrosis for children. Pearson correlation is used to analyze broadband infrared
(IR) spectra analysis for remote sensing applications [32,33], but exhaled breath contains a
huge number of components and the usage of such methods becomes quite challenging.
Machine learning methods are a promising tool for VOC analysis in human breath [34,35].
Kistenev [36] used to apply machine learning for diagnosis of oral lichen planus. Zhu [37]
published a current review of deep learning applications for diabetes. It is shown that
610 papers have been published as of 20 October 2020 (the first in 2016). Deep learning
methods in medical research are actively developing. Song [38] used neural networks
to classify imbalanced oral cancer image data, Zhang [39] used Convolutional Neural
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Network (CNN) to accurately estimate optical properties of breast tissue in the presence of
the chest wall. Deep learning for diabetes diagnosis is a state-of-the-art technique, and it
is necessary to conduct extensive experimental and clinical trials to verify the possibility
of applying these methods for diabetes diagnosis using QC laser spectroscopy. Moreover,
deep learning models are regarded as “black boxes” with a lack of model transparency;
therefore, it is necessary to investigate the applicability of deep learning for spectral analy-
sis. Deep learning [40,41] is one of the most effective methods focusing on learning features
and building predictive models directly from large-scale datasets [42], and has demostrated
success in chemistry, biology, physics, and spectroscopy [43], and metabolomics [44]. CNN
is an important branch of deep learning technology inspired by the biological mechanism of
visual cognition. For example, Fan et.al. [45] use CNN for Raman spectroscopy applications.

In previous studies [46-48] we used machine and deep learning methods to classify
and identify VOCs, including multicomponent gas mixtures. The estimated sensitivity of
the proposed method was at levels of 10-100 ppb, which makes it possible to diagnose a
wide range of diseases using IR laser spectroscopy of exhaled breath.

Our current research is devoted to testing the feasibility of diagnosing T1IDM using
CNN and IR laser spectroscopy and evaluating the accuracy of the developed method.

In the present paper, an infrared quantum cascade laser and Herriot multi-pass
gas cell were used. Infrared spectra from 60 healthy volunteers (the control group) and
60 volunteers with confirmed T1DM (the target group) and used 1-D CNN for volunteer
classification were collected. We estimated the accuracy of the diagnosis of type 1 diabetes
based on the analysis of exhaled air. We describe in detail the structure and parameters of
the neural network and show its capabilities to give researchers an incentive for further
work in this area.

2. Materials and Methods
2.1. Diabetes Fruity Exhaled Breath

T1DM, previously known as juvenile diabetes, is a chronic autoimmune disease
characterized by elevated blood glucose levels (hyperglycemia), which are due to the
insulin deficiency that results from the loss of B-cells of the islets of Langerhans [49,50].
Type 1 diabetes is a condition in which your immune system destroys insulin-making cells
in your pancreas, while type 2 diabetes is a condition in which your body does not respond
to insulin the way it should.

The pathogenesis of autoimmune destruction of B-cells is associated with not-fully
understood interactions between predisposition genes, autoantigens, and environmental
factors. In type 1 diabetes, there is an absolute or relative lack of insulin production. This
leads to impaired carbohydrate metabolism as well as metabolic changes such as increased
blood glucose levels and intense lipolysis [51]. During lipolysis, fatty acids are quickly
mobilized and released from adipose tissue and the synthesis of fatty acids is suppressed
in the liver.

Frequently, patients with T1DM are hospitalized with the described symptoms as
well as hyperglycemia and sometimes diabetic ketoacidosis (DKA) [52]. DKA most often
occurs in patients with TIDM and develops when insulin levels are too low to meet
basic metabolic needs. When insulin is deficient, the body receives energy from lipid and
amino acid metabolism instead of glucose metabolism. Uncontrolled lipolysis results in
increased serum glycerol and free fatty acid levels; the level of alanine also increases due
to the catabolism of muscle tissue. Glycerin and alanine serve as substrates for hepatic
gluconeogenesis, which is stimulated by excess glucagon accompanying insulin deficiency.

At the same time, glucagon stimulates the conversion of free fatty acids into ketone
bodies in the mitochondria. Normally, insulin blocks ketogenesis by inhibiting the transport
of free fatty acid derivatives into mitochondria, but ketone bodies are formed in the absence
of insulin. The main ones are acetoacetic and beta-hydroxybutyric acids that determine
metabolic acidosis. Acetone formed from acetoacetic acid accumulates in the serum and
then is slowly excreted through the lungs. The described mechanism causes the specific
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fruity exhaled breath. Figure 1 shows the mechanism of the appearance of certain VOCs
(fruity smell) in TIDM human breath.
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Figure 1. The mechanism of VOC formation in TIDM human breath.

2.2. Experimental Setup

T1DM diagnostics is based on the analysis of volunteers’ exhaled breath. Figure 2
shows the basic principle of the developed diagnostic method. An infrared laser spec-
troscopy to analyze human breath was proposed. The breath sample is collected in a Urine
Bag ST 1300102 (Meridian, Moscow, Russia), it is then passed through a Nafion dryer and
placed into a Herriot multipass gas cell. IR radiation is emitted by an external cavity quan-
tum cascade laser then it enters to the gas cell and after the required number of reflections
is collected at the photodetector. The measured IR spectrum undergoes preprocessing
procedures and then comes to the convolutional neural network. A neural network trained
on the control and the target groups can classify healthy and T1DM volunteers by their IR
breath spectra.

The two mass flow controllers (MFC) type FC-201CV and GE50A (Bronkhorst High-
Tech B.V., Bronkhorst, The Netherlands), the pressure controller P-602CV (Bronkhorst
High-Tech B.V., Bronkhorst, The Netherlands) , and the vacuum pump MVP 015-2 DC
(Vacuumbrand GMBH and CO KG, Wertheim, Germany) with pressures up to 3.5 mbar
are used. The normal operating pressure is approximately 500 mbar. The exhaled breath
must be dehydrated after collection and for this purpose a Nafion gas dryer MD series
(Perma Pure LLC, 197 Lakewood, NJ, USA) is used. The pure nitrogen with a flow rate
about 40 standard cubic centimetres per minute (sccm) to dry the breath sample and a flow
rate of about 20 sccm to place the breath sample into a pre-vacuumed gas cell is used.

The optical scheme of the experimental setup is shown in Figure 3. The experimental
setup is based on the IR quantum cascade laser (Figure 3, pos. 1) and two thermoelectri-
cally cooled photoconductive HgCdTe (MCT-TE) photodetectors (reference photodetector
Figure 3, pos. 7, signal photodetector Figure 3, pos. 6, and laser pointer Figure 3, pos. 8).
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The teference photodetector is used only for adjusting to measure optical path length for
the IR beam in the gas cell. Unfortunately, the LaserTune system does not allow to apply an
external trigger to use the signal and reference photodetector simultaneously. One signal
detector is used for gas analysis and two photodetectors (signal and reference) to determine
the optical path by measuring the time delay of the beams traveling to the signal and
reference photodetectors. The QC laser (LaserTune, Block Engineering, Southborough, MA,
USA) emits in a pulsed mode with a peak power up to 150 mW, a pulse duration of about
50 ns and a repetition rate of about 1 MHz. The photodetector is an MCT-TE photodetector
with a detectivity of D* ~ 6 — 8 x 10° cm-Hz!/2/W and time resolution of at least 4 ns.
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Figure 2. Basic scheme for breath sample analysis method.

Figure 3. Optical scheme of the experimental setup.

The principle of optical scheme operation is as follows. The laser beam from the
QCL (Figure 3, pos. 1) through the mirror (Figure 3, pos. 2) enters the beam splitter
(Figure 3 pos. 3), where it is divided into two beams. The first beam falls on the reference
photodetector (Figure 3, pos. 7). The second beam through the mirror (Figure 3, pos. 4)
enters the gas cell (Figure 3, pos. 5) and, after reflections in the cell, falls on the signal
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photodetector (Figure 3, pos. 6). The laser pointer (Figure 3, pos. 8) is used when setting
up the system to obtain a given pattern of reflections [25], which allows you to obtain the
required number of reflections in the gas cell.

2.3. Neural Network

In the present paper, the shallow Convolutional Neural Network (CNN) that is a well-
known deep learning architecture inspired by the natural visual perception mechanism of
living organisms is used.

Figure 4 shows the shallow convolutional neural network that was created in this
work. The proposed CNN model contains an input layer, a single convolutional layer, a
max-pooling layer, a fully connected MLP layer (FCL), and the output layer. In this model
spectra (one-dimensional raw data arrays) are sent into the input layer. Then these spectra
are filtered by the convolutional layer. A one-dimensional kernel is used, because each
sample (i.e., spectrum) is represented as a one-dimensional array. The convolution layer
uses the ReLU [53] activation function. Then extracted feature arrays are sub-sampled
by the max-pooling layer, thus obtaining a reduced optimal feature set. These initial
layers represent the feature extraction mechanism. Next comes the flatten layer, where
a multidimensional array of features is transformed into a one-dimensional one. After
that comes a fully connected multilayer perceptron (MLP) layer with the ReLU activation
function and a fully connected output layer with the number of units equal to the number
of classes. The use of the softmax activation function on this output layer allows obtaining
the class prediction of the network in response to an input sample. The fully connected
layers represent the classification mechanism. The stochastic gradient descent (SGD) [54] is
used as an updating rule for weights in our neural network. The ‘Glorot’ initialization [55]
is chosen for the convolutional kernels and output layer weights because it helps us to keep
track of the seed which was used for randomization [56]. The neural network is created
using the open-source machine learning library TensorFlow, developed by Google to solve
various problems using machine and deep learning methods. API Keras (Google, Mountain
View, CA, USA) is also used to build and train models. Therefore the parameters of our
model and the range of their values are presented in Table 1.

Convolution layer

Convolution s )
(ReLU) . Pooling layer Fully
» (Max-pooling, valid) connected
layer
(ReLU)

Output layer
(Softmax)

FLATTENED

2x1

128x1

Figure 4. Scheme of the shallow Convolutional Neural Network used in this paper.
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Table 1. Ranges of values for the convolutional neural network model.

Parameter Value Value Range
Number of l.<ernels of the Kkernels (24,48}
convolutional layer
Size of kernels of the N [10,20]
convolutional layer
Stride for the convolution and
. s [1,2];
max-pooling
Momenturr} in the SGD momentum [0.1,0.9]
updating rule
Number of neurons in FCL neurons [128,256]
Learning rate Ir [1073,1074]
Number of epochs epoches [100, 600]

In order to find the best combination of parameter values, a random grid search
cross-validation framework (RGS-CV) [57] is used during the training phase to select the
configuration with the highest accuracy. Then the models are refitted using the whole
training data and applied to the test data to obtain classification accuracy. Thus, the optimal
parameters of our neural network have the following values: kernels =48, N =20;s =1,
momentum = 0.9, neurons = 256, Ir = 103, epochs = 600.

2.4. Groups under the Study

Figure 5 shows age and sex charts for the control and target groups. The experimental
research was conducted from August to October 2021 on the basis of Bauman Moscow State
Technical University (Moscow, Russia) and Morozov Children’s Clinical Hospital State
Budgetary Healthcare Institution of Moscow Healthcare Department (Moscow, Russia).

Female (>14 y.0.) — 17 Healthy  1ppe (0-14 y.0.) -8 Female (>14y.0.)—17 TIDM  Male (0-14 y.0) - 13

28% 13% 28% 22%
Female (0-14 y.0.)— 6 Male (>14 y.0.) —29 Female (0-14 y.o0.) -7 Male (>14 y.0.) — 24
10% 49% 11% 40%

Figure 5. Groups under the study.

The experimental research was conducted in accordance with the principles of Good
Clinical Practices. The protocol of the research was approved by the Ethics Committee
of the Morozov Children’s Clinical Hospital State Budgetary Healthcare Institution of
Moscow Healthcare Department (Moscow, Russia), Ref. number 174 on 18 January 2022.
All participants were informed about details of the research and signed an “informed
agreement” for the actions carried out.

Control group: 60 healthy volunteers between the ages of 8 and 21 were examined.
All volunteers from the control group had health group 1 based on in-depth preventive
examinations. Health group 1 includes persons without any chronic diseases and risk
factors for their occurrence. The results of medical examinations in this health group are
within the normal range. This category includes citizens with the most favorable level of
health. Based on the results of medical examination, preventive consultations and other
medical and recreational activities are carried out for persons in this category, with the main
purpose of promoting a healthy lifestyle and observing sanitary and hygienic standards.

The target group: 60 patients aged 6 to 17 years were examined. All volunteers had an
average degree of severity of the disease, four volunteers had acute ketoacidosis, the rest
had decompensation stage without ketoacidosis. The average glucose level at admission
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is 13.05 mmol/L (from 7.3 to 38 mmol/L). Diabetes experience: Average 7.7 years (from
1 year to 15 years).

2.5. Sampling Protocol

Exhaled breath samples were taken on an empty stomach without morning oral
hygiene procedures at a room temperature of 20-22 °C. A disposable Urine Bag ST type
1300102 (Meridian, Moscow, Russia) was used for breath sampling. The volunteer exhaled
the volume of their usual breath into the bag without taking a deep breath beforehand.
Volunteers were asked to avoid inhaling through the nose while exhaling through the
mouth due to the “lack” of air reflex.

Volunteers exhaled as much as they could into two-liter valve bags. Since the volume
of the gas cuvette is 0.5 liters and the operating pressure is about 500 mbar, the volume of
one exhalation is sufficient for sample analysis.

The preservation of the sample was checked in the urine bag and it was experimentally
established that the correlation coefficient of the sample of the infrared spectrum of the
volunteer’s air sample immediately after taking the sample and after 8 h of storage in the
sample bag is 0.97. This allowed us to transport the breath sample from a medical facility
to the laboratory.

3. Results
3.1. Sensitivity of Experimental Setup

The diagnosis of TIDM by human breath analysis is based on detecting the presence of
certain biomarker molecules (or its patterns), as well as on the excess of their concentrations
of a certain threshold. Thus, the developed experimental setup must have a sensitivity
(minimally detectable concentrations) no worse than the values of the certain threshold
corresponding to certain VOC and diseases. The relationship between the components of
exhaled air and human health pathologies is well known [3]. The average acetone concen-
tration in healthy breath varies from 293 to 870 ppb and ethanol from 27 to 153 ppb [58].
Average acetone concentration may exceed 1800 ppb for diabetic patients [59]. P. Trefz
et al [29] reported that TIDM patients exhaled significantly higher amounts of ethanol,
isopropanol, dimethyl sulfide, isoprene, and pentanal compared with healthy controls
(171, 1223, 19.6, 112, and 13.5 parts per billion by volume (ppbv) vs. 82.4, 784, 11.3, 49.6,
and 5.30 ppbV). M. Simic [60] reported that endogenous ethanol correlates with increased
glucose blood levels and can alert about TIDM. Acetone and ethanol as major biomarkers
for TIDM are examined.

A standard gas mixture with pure nitrogen with a concentration of 1000 ppm for
acetone and ethanol is used. First, the gas cell is pumped to a pressure of 1 mbar. Then
the gas mixture is fed from the cylinder at a given rate. The substance can be identified
in the described experimental setup if the correlation coefficient of the experimental and
base spectrum (registered at a high concentration of about 50-100 ppm) is at least 0.5
(corresponding to a time value of 2 s on Figure 6). The value of the minimum detectable
concentration is determined by calculating the flow rate of the gas mixture (red straight line
in Figure 6) and according to the Beer-Lambert law (box plot in Figure 6). To calculate the
concentration according to the Beer-Lambert law, the absorption cross-sections for some
VOCs at a given wavelength (Table 2) is experimentally determined. The systematic error
and measurement techniques cause different slopes of experimental results in Figure 6.
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Figure 6. Ethanol (a) and acetone (b) minimum detectable concentrations for test gas mixtures.

Table 2. The molecular cross-section for some VOCs.

No Substance Wavenumber, cm ! Crosi-lgectlzon,
107 em
1 Ammonia 930 4.28
2 Acetone 1217 3.37
3 Methanol 1033 7.16
4 Ethanol 1065 2.58

The minimum detectable concentrations for ethanol and acetone were experimentally
obtained at levels 51 and 42 ppb using the gas mixture flow rate calculations (red line on
Figure 6) and 157 and 67 ppb as median values for box plot Figure 6, with rms values equal
to 63 and 41 ppb for ethanol and acetone, respectively. The obtained results allowed us
to assert that the developed experimental setup makes it possible to detect typical TIDM
molecule biomarkers at the required concentration.

3.2. Classification of Volunteers by Infrared Breath Spectra

A balanced dataset consisting of 60 healthy volunteers and 60 TIDM volunteers aged
from 6 to 21 years was used. Breath samples of TIDM volunteers with type I diabetes were
taken in Morozov Children’s Clinical Hospital State Budgetary Healthcare Institution of the
Moscow Healthcare Department. Ten measurements were carried out with each volunteer.
Each measurement represents the spectrum of the exhaled air. A total of 1200 spectra
were obtained, including 46 girls and 74 boys (34 children under 14 years old and 86
children over 14 years old). Of the total number, 60% was taken for training, 20% of the
total number was taken for validation, and 20% of the total number of spectra was taken
for testing. Accuracy, which is an estimate of the probability that an arbitrary object is
classified correctly, was chosen as a metric for determining the quality of classification by a
neural network. To achieve the highest accuracy of the neural network, calculations were
conducted with the next optimum parameters: kernels =48, N = 20, s =1, momentum = 0.9,
neurons = 256, Ir = 1073, epochs = 600. To evaluate the effectiveness of the obtained neural
network parameters, cross-validation was performed on the entire training data. The results
of CNN training on Figure 7 are shown. The graph from Figure 7 shows that the median
accuracy was at least 99.5% on training dataset. After that, the trained neural network
on the remaining 20% test sample consisting of 24 people (240 spectra) was applied. The
results of TIDM and healthy volunteer classification by infrared breath spectra are shown
in the Table 3. The Table 3 shows the probability that an arbitrarily taken T1DM volunteer
is classified correctly (sensitivity, recall) is no less than 99%. Moreover, a probability that an
arbitrarily taken volunteer is classified correctly (accuracy) of at least 99% was achieved.
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Figure 7. CNN cross-validation results on the training dataset.

Table 3. Results of TIDM and healthy volunteer classification by infrared breath spectra.

Group Accuracy Precision Recall
All 99.7 99.5 99.6
Male 99.5 98.6 100
Female 99.7 99.9 99.8
Minors (less 14 y.0.) 99.5 99.6 99.5
Adults (more 14 y.0.) 98.9 99.3 99.3

Area under the curve (AUC) score for convolutional neural network classification
of healthy and T1DM volunteers for all sex and age groups achieved no less than 99.9%.
This result shows that a randomly selected object can be positively classified with a high
probability based on its IR spectrum. In contrast, in the spectra of healthy and T1IDM
volunteers, the neural network finds stable features necessary for classification. IR breath
spectra using a neural network and selected optimal parameters for high accuracy were
analyzed. As a result, the highest accuracy in the analysis of all volunteers was achieved,
dividing them into healthy and T1DM volunteers (99.6%). The use of training and cross-
validation on the entire data volume was shown. The expected reduction of the test
group within one gender slice should increase the classification accuracy. However, the
experiments showed that the classification accuracy for the entire dataset appears to be
the highest compared to the slices. This can be explained by the group size, which directly
affects the classification accuracy. It is possible to use data augmentation [61] to increase
the dataset, which can improve the accuracy of the neural network.

Advanced exhaled air diagnostic methods reveal a large number of VOCs. Changes in
their levels are frequently linked to specific diseases or metabolic disorders in general. The
determination of VOCs to search for prognostic markers for the development of metabolic
disorders, particularly diabetes mellitus, is promising. The use of such predictors in
screening large population groups and developing preventive measures on this basis is a
significant social as well as biomedical issue, particularly when it comes to children’s health.
Acetone is one of the potentially volatile compounds linked to metabolic abnormalities.
Variations in its content in exhaled air or urine fairly accurately reflect changes in lipid
metabolism, particularly lipid beta-oxidation. Type 1 diabetes mellitus occurs when the
pancreatic B-cells that produce insulin are destroyed by the immune system, necessitating
lifelong insulin therapy. Patients use home glucose meters to determine if they need
to administer insulin, and the ISO 15197 standard for available glucose meters allows a
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margin of error of £20% error. Therefore, it is very important to develop other ways to
control diabetes.

As a result of the conducted research, it is clear that the use of infrared laser spec-
troscopy is promising for the development of express methods for analyzing diabetes
mellitus biomarkers in large-scale surveys in order to implement appropriate preventive
and therapeutic interventions. However, more precise identification of the corresponding
gas-metabolic profiles in diabetic patients representing systemic metabolic rearrangements
under normal and pathological conditions is needed, because light hydrocarbons are in-
termediate or by-products of numerous metabolic cycles [62]. Acetone, for example, is
formed as a result of the involvement of fatty acids in the energy metabolism of diabetes
mellitus [63]. With starvation, prolonged intensive physical work [51], and changes in the
enteric environment [64], more acetone can be formed in exhaled air [65]. The properties
of light hydrocarbons in exhaled air can be used to predict individual metabolic features,
including those associated with risk factors for metabolic disorders [6]. The assessment
of acetone in exhaled air in conjunction with the clinical picture can be a reliable marker
of liver damage and necrosis, representing the severity of oxidative stress along with
the content of glycated hemoglobin in blood and products of lipid peroxidation. There
are marked dysmetabolic disorders in diabetes mellitus patients’ connective tissue, in
the endothelium, where active metabolites produced by oxidative stress potentiate the
formation of volatile organic compounds such as ethane and pentane, the assessment of
which will also be relevant in exhaled air, as it will help determine dysmetabolic changes in
express mode without taking biochemical blood tests. It is possible to create a gas metabolic
profile of diabetic-diabetes mellitus patients. The analysis of the whole spectrum of exhaled
breath as a pattern of components as well as various biomarkers for human health check
is promising.

We understand that the target group contained children in the acute stage of diabetes.
At this stage, we have tested the method and evaluated its accuracy. However, for early
diagnosis, it is necessary to create a target group with blood glucose values close to the
control group.

4. Conclusions

Infrared laser spectroscopy to analyze human exhaled air was used. The experimental
setup consisted of a quantum cascade laser emitting in a pulsed mode with a peak power
up to 150 mW in the spectral range of 5.3-12.8 um and a Herriot multipass gas cell with an
optical path length 76 m. The control group included 60 healthy volunteers aged from 8 to
21 years; the target group included 60 volunteers with confirmed T1DM aged from 6 to
17 years. A method for collecting and drying an exhaled human air sample and collecting
1200 infrared breath spectra (10 spectra for each of 120 individuals) was proposed. The 1-D
convolutional neural network to classify healthy and T1DM volunteers using IR breath
spectra was used. The whole IR breath spectra of each volunteer for analysis was used.
The optimal parameters of the neural network were obtained: kernels = 48, N = 20, s =
1, momentum = 0.9, neurons = 256, Ir = 1073, epochs = 600. With an optimally tuned
neural network, we achieved the probability that an arbitrarily taken TIDM volunteer is
classified correctly (recall) is no less than 99%. Moreover, the achieved probability that
an arbitrarily taken volunteer is classified correctly (accuracy) is at least 99%. The area
under the curve score for convolutional neural network classification of healthy and T1IDM
volunteers for all sex and age groups achieved no less than 99.9%. The obtained data require
clarification on a larger sample as well as investigation of the possibilities of diagnosing
other diseases. The most urgent task is to develop criteria for early rapid diagnosis of
patients in prediabetic condition.

We hope that the proposed experimental setup and neural network can be used to
create devices that will be used in routine medical research as a doctor’s decision-making
assistance system.
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