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The phenotype-genotype landscape is a projection coming from detailed phenotypic and genotypic data
under environmental pressure. Although phenome of microbes or microbial consortia mirrors the func-
tional expression of a genome or set of genomes, metabolic traits rely on the phenotype. Phenomics has
the potential to revolution functional genomics. In this review, we discuss why and how phenomics was
developed. We described how phenomics may extend our understanding of the assembly of microbial
consortia and their functionality, and then we outlined the novel applications within the study of phe-
nomes using Omnilog platform together with a revision of its current application to study lactic acid bac-
teria (LAB) metabolic traits during food processing. LAB were proposed as a suitable model system to
analyze and discuss the implementation and exploitation of this emerging omics approach. We intro-
duced the ‘phenotype switching’, as a new phenotype microarray approach to get insights in bacterial
physiology. An overview of methodologies and tools to manage and analyze the generated data was pro-
vided. Finally, pro and cons of pipelines developed so far, including the most innovative ones were crit-
ically analyzed. We propose an R pipeline, recently deposited, which allows to automatically analyze
Omnilog data integrating the latest approaches and implementing the new concepts described here.
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1. Introduction

During the last two decades, new omics approaches have gener-
ated deep insights into microbial community assembly and func-
tionality, also providing suitable knowledge on how to select
tailored starters for food, agriculture and pharmaceutical processes
[24]. The potential functionality of microbial consortia has been
extensively studied through comparative genomics and metage-
nomics [51], while mechanisms underlying niche adaptation have
been elucidated mainly via meta- and transcriptomics [58]. Never-
theless, metabolic traits of either single strain or microbial consor-
tia attain to phenotype expression.

Whilst technologies and data analysis methodologies for
sequence-based omics rapidly evolved, phenotype profiling unex-
pectedly remains hampered by some limitations [25]. Omnilog
high throughput technology (Biolog Inc., USA) became available
in 2001, making possible to screen thousands of phenotypes simul-
taneously. Such technology introduced phenomics as the newborn
of the omics techniques, whose implementation still has wide
margins.

Whether phenomics has successfully been applied to investi-
gate a plethora of microbes and consortia, here we proposed lactic
acid bacteria (LAB) as the model system to which refer the imple-
mentation and exploitation of this emerging omic. The successful
use of LAB to drive food and pharmaceutical processes relies on
the capability to colonize different ecological niches because of
their remarkable environmental adaptability [37,48]. Targeting
lactic acid bacteria, high throughput phenotyping has the potential
to unravel metabolic and functional diversities at species and
strains levels, metabolic traits specific for niche-adaptation,
enzyme activities, bioprocessing and detoxification of raw matri-
ces, diversities between mutant and wild strains, bacteriocin
receptors and chemical sensitivity.

Our aim is to critically review novel applications, introduce new
phenome concepts, and revise the suitability of the Omnilog plat-
form to characterize LAB metabolisms during food processing.
After reviewing methodologies and tools to manage and analyze
data, we also propose our R pipeline to automatically analyze
Omnilog data, which implements the latest approaches.
2. Traditional phenotyping

The term ‘phenotype’ has broadly been used to define observ-
able traits of an organism at different biological hierarchy levels
[25]. Here, we claim as phenotype the set of observable metabolic
traits that relate to cell physiology and growth such as substrate
consumption, resistance to chemicals and osmolyte tolerance.
Indeed, phenotyping deepens strain niche-specific metabolic traits,
which set the potential adaptation under specific environmental
conditions [57]. Variations on phenotype rely on environmental
pressure and genotype, inevitably merging the complex net of
interactions between the two determinants. Phenotype-genotype
landscape is a projection coming from detailed phenotypic and
genotypic data. Whilst DNA-based sequencing technologies were
rapidly developed and provided powerful genomic data, classical
phenotyping approaches (e.g., API 50 CHL stripes) for too long time
lacked sensitivity and yielded data of ambiguous interpretation.

Nineteen years ago, the Omnilog high throughput phenotyping
platform was developed. This technology relies on Biolog Pheno-
type Microarrays (PM), consisting on a wide set of metabolic chal-
lenges. PM are distributed into twenty 96-well plates comprising
one phenotype challenge per well: carbon (plate PM1-2), nitrogen
(PM3, 6–8), phosphorous and sulfur (PM4), nutritional supplement
(PM5), osmolyte and pH (PM9-10), and a set of chemical sensitiv-
ities (PM11-20). The inoculum of PM plate uses a suspension of
cells and tetrazolium dye. After growth on BUG + B agar plates
(Biolog, Inc, USA), cells are gathered with a cotton swap, re-
suspended into IF-0a GN/GP buffer (Biolog, Inc, USA) and inocu-
lated into PM plates. Other media are usable for cultivation before
inoculation (see Section 6). Detection of metabolic activity relies on
tetrazolium dye chemistry. NADH synthesized during cellular
metabolism reduces the colorless tetrazolium dye to the purple
formazan. Estimation of metabolic activity for certain substrates
can also be determined via cell growth. However, assessing pheno-
types through cell metabolism has an undoubted sensitivity and
specific value. Cellular metabolism does not necessarily imply cell
growth. Bacteria may have enzymes to metabolize certain carbon
sources and to synthesize energy, but they may lack the complete
enzyme machinery to convert such carbon sources into larger
molecules needed for cell division and growth [2]. Omnilog instru-
ment records kinetics of tetrazolium dye reduction every 15 min.
Based on cellular metabolism, color development over time
reassembles a sigmoidal curve. The analysis of the metabolic signal
uses the same traditional approaches than growth curves. The
expression of color formation is recorded in OL units, which corre-
spond to 500 times the optical density (OD) with a maximum value
of 400. A usual run of 48 h generates 18,432 reads per plate. Gen-
erated data are suitable for mathematical and statistical analyzes.
Theoretically, the reduction of tetrazolium dye is irreversible. In
practice, we observed a decreasing metabolic signal after reaching
the stationary phase (Fig. 1A). Some authors sustain that the meta-
bolic signal is subjected to low-frequency observational noise, thus
showing decreasing patterns due to measurement errors [46].

3. Phenotype microarrays

Although the formal definition of phenotype involves genotype
and environmental factors, the overall significance of an environ-
mental pressure is only partially reflected within it. Usually, an
environmental pressure tracks the evolution of an organism due
to the prolonged exposure to certain conditions. Such evolutionary
pressure drove the niche adaptation of many bacteria and left an
explicit metabolic fingerprint into their genomes. Many LAB under-
went genome reduction due to niche adaptation. Fructophilic lactic
acid bacteria (FLAB), which only live in fructose-rich habitats, and
Lactobacillus iners, which lives as a symbiont in human vagina, are
two classical examples of how the environmental pressure induced
genome reduction [14,61,62]. For such cases, phenotyping well
depicts the metabolic traits achieved during long-term exposure
to certain environmental pressures. On the opposite, Lactobacillus
plantarum has the largest genome within lactobacilli because it
did not undergo reductive evolution strategy. L. plantarum high
genomic diversity imparts metabolic flexibility and confers it the
typical nomadic lifestyle [51]. How L. plantarum shapes its meta-
bolic ensemble to adapt to different environmental conditions in
relative short-time is, consequently, of marked interest
[10,12,44,47]. Referring to standard phenotype profiling, we
believe this approach is not fully appropriate since environmental
conditions do not exert a long-term role that induces a steady
metabolic fingerprint into the bacterial genome. Nevertheless, phe-
notype microarrays are underexploited. Only 175 published items
(March 2020, PubMed) are retrievable in the last twenty years,
neglecting the possibility of studying phenotypes from another
perspective. We introduced ‘phenotype switching’ as the new phe-
notype microarray approach to track the effect of short-term expo-
sures (e.g., 24 h) to various environmental pressures, which get
reflected into the phenotype because of a metabolic switching. Sec-
tions 5.2 and 6 and 6 describe phenotype switching approach using
PM technology.

More in general, phenotype microarrays (high-throughput phe-
notyping) have been successfully applied to deepen into LAB phys-



Fig. 1. A) Omnilog reads over time for Lactobacillus plantarum in Phenotype Microarray (PM) plates PM1 for D-Mannitol. The decreasing metabolic signal pattern appears after
12 h. B) Metabolic curve for D-Gluconic Acid (PM1) showing two growth phases.
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iology and ecology during the last decade. The comparison between
phenotype and genotype of two Lactococcus lactis strains, isolated
from sourdough and dairy environments, highlighted themetabolic
features during sourdough propagation [41]. Carbon source profil-
ing showed that only the sourdough-derived L. lactis strain had
the capability of degrading some plant-derived carbohydrates.
Phenotyping highlighted the intra-species diversity among FLAB
isolated from honeybee gut [15]. The variable consumption of 83
substrates was associated to diverse metabolic pathways, likely
sugar metabolism, pectin digestion and nectar detoxification.
Strains were stratified into two clusters reflecting their metabolic
performance. The lowest coloration rate was associated with the
preferential consumption of additional substrates, suggesting a
niche-specific regressive evolution of FLAB towards a metabolic
simplification according to nutrient availability. Phenotype
microarrays highlighted the capability of FLAB to use phenolic acids
as external electron acceptors, which correlated to the plant-based
diet of honeybees [14]. Another example of strain metabolic strati-
fication based on carbohydrate preferences referred to strains of
Lactobacillus rhamnosus isolated from various habitats, including
human faeces and dairy products [3]. Using 58 different carbon
sources, L. rhamnosus strains stratified into threemetabolic clusters,
only in part correlated with the habitat of origin. Only one cluster
included strains specialized for stable nutrient-rich niches, while
the remaining two clusters grouped generalist strains potentially
adaptable to heterogeneous niches. The inability to metabolize lac-
tose within dairy strains suggested a specialized role as non-starter
cultures for late cheese ripening. Conversely, one dairy strain used
both dairy- and plant-derived carbohydrates, contrasting with the
conclusion that dairy lactobacilli only efficiently use low number
of carbohydrates. The source of isolation gives only partial informa-
tion about the putative strain metabolism while phenotyping
expands the knowledge on bacterial genotype for versatile species
migrating between different niches. Phenotyping was also success-
fully combined with genomics and transcriptomics [3,12,40,41].
The integration of phenotyping facilitated strain selection for sub-
sequent genomic analysis to identifying function-related markers
[3], depicted whether gene expression lead to variable phenotype
manifestations [12,15], and made possible the reconstruction of
metabolic pathways [40,41].

Although above examples are referred to carbohydrate utiliza-
tion, other relevant phenotypic traits are investigable through
phenotyping. A strain of Lactobacillus buchneri used a broad
spectrum of carbon sources under anaerobic conditions, which
included various C5 and C6 monosaccharides, and oligosaccha-
rides, resulting suitable for lingo-cellulosic biomass treatment
[50]. The same approach selected LAB to detoxify amygdalin-
containing foods and feeds [39]. Phenotype microarrays showed
amygdalin-degrading strains catabolized a wide variety of other
carbon sources (e.g., disaccharides with 1–3, 1–4 or 1–6 b-
glycoside bonds). Phenotyping had a role in gene knockout stud-
ies, since gene deletion conferred different phenotypes. The phe-
notypic responses of Lactobacillus acidophilus wild strains to
osmolytes, pH and hundreds of chemical substrates were com-
pared to those of its mutant lacking uracil phosphor-
ribosyltransferase activity. Phenotyping made possible the identi-
fication of bacteriocin receptors. Pediocin-like bacteriocins and
lactococcin A used the man-PTS receptor, thus resistant strains
harbour mutations leaded to the downregulation of man-PTS
genes or to non-functional man-PTS [32,45]. Accordingly, lacto-
coccin A and garvicin ML resistant mutants were phenotypically
negative for glucose and maltose as substrates of the respective
transporter/receptor [53].

More in general, phenotyping had the potential to highlight LAB
adaptive response under food-like processing conditions, which
mimic the in situ reactivity. Phenotype microarrays elucidated
the survival strategies of L. plantarum during plant fermentation
[15]. During growth and maintenance, carrot and pineapple juices,
the two opposite model systems, induced different carbon and
nitrogen metabolisms. Pentose sugars (e.g., ribose and arabinose)
were highly utilized during growth in carrot juice, whereas pineap-
ple juice caused a shift towards hexose and hexose derivatives
(e.g., galactose and mannitol) and oligosaccharides (e.g., trehalose,
maltotriose, and cellobiose). The increased flux of hexoses entering
the cell was likely the consequence of the high levels of carbohy-
drates in pineapple juice. Several bioprocessing applications
included ultrasound treatments affected cell membrane perme-
ability and, consequently, bacterial physiology and growth rate
[29,34]. Based on phenotyping, the use of carbon, nitrogen and
phosphorus sources by Lactobacillus sakei markedly drifted after
ultrasound treatments [40].

4. Meta-phenomics

The advent of next generation sequencing (meta-genomic and -
transcriptomic) has deepened into food microbial consortia, with-
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out needing of culture-dependent approaches. Meta-genomics
unravels the taxonomy and potential functionality of food meta-
communities, whereas meta-transcriptomics provides insights
not only at the taxonomic level but also on active population and
actively expressed genes under given environmental pressures.
Meta-phenome can be defined as the functional expression of a
set of genomes from a microbial community [9] and, more
recently, meta-phenomics also integrated meta-metabolomics,
-proteomics and -transcriptomics [26]. This multifaceted approach
studied the functional expression of meta-genomes from different
perspectives considering a single step of information flow inside
the central dogma of molecular biology. To our knowledge, the
meta-community phenotype is the end output of such information
flow given certain environmental pressures, which results in
observable metabolic traits reflecting the cell physiological state
rather than the integration of different omics. Meta-phenomics is
a new omics approach to study the physiological state of microbial
meta-communities. The transition from meta-genomics to meta-
phenomics occurs through a set of multi-omics approaches, which
give a detailed information on intermediate states (gene and pro-
tein expression) along the information flow. Meta-phenomics
approach is performed using the traditional EcoPlate, GEN III and
AN Microplates but also with the new PM plates (Biolog Inc,
USA). The first three traditional Biolog plates relied on tetrazolium
dye chemistry and were developed before the PM Omnilog plat-
form. Readings of traditional plates were end-point measurements
(e.g., every 24 h). PM plates for meta-phenomics not requiring
anaerobic conditions can be read using Omnilog platform to obtain
kinetic data. Shapes with multiple rates of color accumulation may
be present during experiments because of the concomitant activity
of different bacterial populations (Fig. 1B). Diauxic signals indicate
multiple cycles related to multiple metabolic pathways, which are
sequentially performed by multiple bacterial groups because of the
metabolite excretion followed by reutilization or the switch from
one bacterial group to another during substrate depletion. Sec-
tion 5.2 describes the analytical tools to retrieve biological infor-
mation during succession of metabolic cycles. Meta-phenomics
has been widely applied to study soil [4,8,11,33] and humanmicro-
biomes [23,35] but its potential to describe food fermentation
meta-communities is still at the infancy. The few applications con-
cerned the metabolic performances of interacting LAB and yeasts
during sourdough fermentation [49] and the succession of LAB
populations during vegetable and cheese fermentations [12].
5. Data analysis

Omics techniques mostly rely on qualitative (sequence-based
omics) data, where we define a DNA sequence as E = <s1 ,. . ., sn>
where s 2 S being S = {A, T, G, C}, usually retrieved from single time
point experiment. Prior to PM development, phenotype character-
ization was performed using GEN III, AN and EcoPlates (Biolog Inc.,
USA), where the absorbance reading was at certain time points. We
Table 1
Common estimation applied to single time point Biolog measurements.

Estimation Formula

Average Well Color Development
AWCD ¼ Pn

i¼1
Ci � Rð Þ=n

Absorbance Ratios Rsi ¼ Ci � Rð Þ=AWCD
Absorbance Ratios Pi ¼ Ci � Rð Þ=P Ci �ð
Shannon Index H0 ¼ �PP

i lnPi

Substrate Evenness Index E ¼ H0=lnS
refer to this approach as a single time-point analysis. Recording PM
metabolism kinetics over time with Omnilog platform introduces a
new longitudinal dimension, which adds a higher degree of com-
plexity to data. These sigmoidal-shaped data are analyzable simi-
larly to bacterial growth curves to retrieve biological information,
which further undergoes to hypothesis testing. However, summary
statistics may do not provide all the information encoded into
metabolic curves. The development of novel approaches to analyze
PM data overcomes and complements classical limitations of
parameter estimation. We critically reviewed data analysis meth-
ods for single time point and phenotype kinetics, and their applica-
tion on phenotype profiling and switching as well as on meta-
phenomics approaches.
5.1. Single end-point estimation

This approach performs the rapid comparison between func-
tionalities of LAB strains (AN plates) and meta-communities (Eco-
Plates). These plates comprise carbon source and chemical
sensitivity assays, which lead to the metabolic potential at strain
or community level. Reading of standard microplates is at
590 nm. Because of its high reproducibility, Biolog EcoPlate
method is largely used to study the functional diversity of complex
ecosystems (e.g., soil microbiota) [22]. Nevertheless, this approach
also successfully estimated the global metabolic network in starter
assisted food fermentations such as pineapple, sourdoughs [49]
and cheeses [63]. Being plate read at a given time point, the datum
corresponds to the absorbance of tetrazolium dye. Average well
color development (AWCD) has widely been applied when per-
forming single end-point measurements. AWCD indicates the
metabolic activities of a meta-community or a single strain. Values
of AWCD are categorized into SAWCD (substrate average well color
development) based on substrate guilds sharing chemical features
(e.g., carbohydrates, carboxylic acids and amino acids) [31]. AWCD
is incubation time dependent. Comparing different conditions,
AWCD should be calculated when all samples have theoretically
metabolized the same percentage of substrates or when the color
development has reached a plateau. To decrease noise levels,
absorbance values for all substrates should be corrected subtract-
ing the control well and normalized according to AWCD or by
absorbance ratio (Table 1) [20,42]. Once corrected, absorbance
undergoes down-stream statistics. The estimation of metabolic
functional abundance and evenness of microbial populations pro-
ceeds in parallel using common indices of microbial ecology
(Table 1). Shannon’s diversity index (H0), indicating the substrate
utilization pattern, has widely been applied in the analysis of single
time point Biolog data [11,20,31]. High values of H0 indicate that
microbial communities metabolize a wide range of substrates.
Substrate richness (S) measures the number of different substrates
used while substrate evenness (E) can be defined as the equitabil-
ity of activities across all utilized substrates, which is determined
considering the total number of utilized carbon sources (Table 1).
Description

Ci = absorbance value of each reaction well
R = absorbance of the control well (Optional)
N = number of substrates analyzed
(ECOplate n = Total number of substrates
(EcoPlate n = 31; AN and GENIII plates n = 95)

RÞ

S = Total number of utilized carbon sources



Table 2
Summary of data analysis workflows and methods available for Omnilog kinetic data.

Name Computing
availability

Pros Cons References

Kinetic and Parametric
Analysis

GUI* – Limited graphical and analysis. Only
allows pair-wise testing. No noise
correction. No normalization.

[1]

Grofit R programming Data derived from growth curves is fitted to different
parametric models provides a model free spline method and
bootstrapping for estimation of confidence intervals.

No noise correction.
No normalization.
Limited amount of metadata can be
included

[27]

PheMaDB GUI*.
Implementation for
GNU/Linux and
MacOS systems

Web-based relational database, which enables storage,
retrieval and limited analysis of the Omnilog PM data
Possibility of setting a threshold for noise.

Compares curves through graphical
analysis as Biolog proprietary
software.
No normalization
Limited noise correction

[5]

opm R programming Customized input and plot functions.
Possibility to add additional metadata

Grofit wrapper. No noise correction.
No normalization.

[54]

DuctApe Implementation for
GNU/Linux Systems

Noise correction through blank subtraction. Fits the curves to
different parametric models (Richars, Logistic, Gompertz).
Categorization of metabolic curves through AV index.
Integration of genomic and phenomic data allowing metabolic
network reconstruction as well as pan- and accessory genome
calculation.

Signal refinement may cause loss of
information

[18]

R-Biolog R programming and
BUGS

3 novel methods: Grouping of active/non-active profiles
through a custom EM algorithm.
Normalization and stabilization separately for active and non-
active profiles: based on logistic and linear model. Effect
identification of different experimental setups and their
interactions over time through a Bayesian approach.

Active profiles are fitted to logistic
model only.

[56]

mcmc-pma Implementation for
GNU/Linux Systems

Bayesian approach using adaptive Markov Chain Monte Carlo
(MCMC) algorithm to sample from the posterior distributions
of the parameters from fitted data using Baranyi and custom
Diauxic model.

No normalization [21]

Biolog Decomposition R programming Novel algorithm to identify different metabolic cycles based on
statistical decomposition of the time-series measurements into
a set of growth models.

– [46]

Micro4Food PM R programming Coupling of grouping and normalization/stabilization methods
proposed by Vehkala et al. [56] and grofit free splines param-
eter estimation. Removal of common non-active profiles in
switching mode

– This
review

* GUI: graphical user interface.
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5.2. Kinetic phenotyping

Although the development of the Omnilog PM platform dates
the beginning of 21st century, statistical and analytical methodolo-
gies did not grow as intensively as other omics techniques. Nowa-
days, most of the large longitudinal data produced during an
Omnilog experiment is still analyzed using the native Omnilog
PM software [1], with several limitations. In the last few years,
novel tools and analytical methodologies have been developed
for this longitudinal data (Table 2), but, in most of the cases, their
application needs further exploitation.

Metabolic curves behave likewise growth curves and, in princi-
ple, similar analytical approaches can be applied. Several sigmoidal
functions may describe the bacterial growth, mainly logistic, Gom-
pertz and Richards models. The adaptation of these functions
results in the estimation of three main biologically meaningful
parameters; lag time (k), growth rate (m) and maximum absor-
bance (A). These models feature the cell density trend or likely
our case the metabolism and assume that the substrate is not a
limiting factor for growth/metabolism, as explicated by Monod-
derived equations [59]. The R package grofit [27] implements the
fitting of four different models (logistic, Gompertz, Richards and
a modification of Gompertz equation), using nonlinear least
squares to derive growth parameters and confidence intervals
(CIs), and provide the numerical integration of the area under the
curve (AUC). The relative quality of fitted models is assessed
through Akaike information criterion (AIC) and the best model is
chosen accordingly. Model-free spline fitting is also applied since
parametric models do not always describe properly the biological
phenomena leading to systematic errors. Additionally, the estima-
tion of CIs for model-free splines is determined via bootstrapping.
Indeed, grofit offers suitable methodology for phenotype kinetic
data analysis in a flexible and reproducible way thanks to R pro-
gramming environment [43]. When applied to PM data, the
smoothing-spline method predicts more accurately parameter
estimates compared to parametric model fitting. CI and means
for single curves may be plotted and directly inspected for effect
identification [55]. Opm package [54] is the first and the only R
package developed ad hoc for PM data. It is the most used open
source tool for this purpose. Opm provides useful functions to man-
age data and computes parameter estimates using grofit (Table 2).
Therefore, opm is substantially a grofit wrapper and does not
implement any novel analytical methodology for PM data. How-
ever, low-end R users may find easier opm package rather than
estimating parameters directly with grofit.

There are further considerations regarding the analysis of PM
data, which have arisen during the last years. Many PM plates con-
tain a control well without any substrate, which is usually placed
into A01 position. Theoretically, no reaction should occur but, in
practice, this well usually shows a background signal. The litera-
ture reports contrasting positions on whether subtracting the neg-
ative control measurements. Some authors are against since
growth curves are not often strictly additives and biases might
be introduced [55]. Others suggest that the background correction
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allows arrays to be better comparable [56]. Based on our experi-
ence, colour development in the well A01 may be abiotic (linear
trend) or biotic (sigmoidal shape). In the first case, we suggest
the subtraction of the control well because different arrays may
show different background noises. Sometimes bacterial growth
occurs in control wells because of the presence of internal or exter-
nal substrate reservoirs. Reservoir depletion might be preferred or
not depending on the substrate present in the well. Consequently,
it has different impacts on signal curve shapes. In this case, we do
not recommend a straightforward control subtraction.

Another major discussion in PM data analysis concerns the
identification and categorization of the metabolic curves into
active or inactive. Some researchers [6,30] set a threshold based
on the maximal curve height computed by Omnilog native soft-
ware to establish whether the metabolism for a given substrate
is active. Nevertheless, this threshold is set arbitrarily and based
on single summary statistics, misleading to a biased categorization.
Others [21] define a profile to be metabolically active if the maxi-
mum absorbance does not fall in the 95% quantile of the same
parameter for the control well. A novel procedure groups active
and non-active metabolic profiles [56]. The authors assume that
active and non-active metabolic profiles may be fit to a logistic
or linear model, respectively, and then profiles are categorized
accordingly using a custom Expectation-Maximization (EM) algo-
rithm. Users may also set a threshold to guide initial grouping. In
our view, this last approach is the most complete one.

Omnilog experiments include technical and biological repli-
cates. Frequently, replicates are not comparable because plate
measurements are systematically biased towards increased or
decreased metabolic signals due to various causes (e.g., plate batch
inter-variability). Contrasting views arise about whether PM data
should be normalized analogously to DNA microarrays. Some
researches [42] normalize their signals using AWCD, but this
may introduce biases, especially when the arrays are dominated
by non-active profiles. A novel approach introduced by Vehkala
et al. [56] proposed the normalization of previously grouped active
and non-active profiles separately based on reference active/non-
active curves. Due to normalization, grouping may be subject to
reassessment when discrepancies exist between two replicates
for the same substrate.

During the last years, research on PM data analysis has focused
on alternatives to estimate kinetic parameters. For instance, three
different parametric models [18] determined metabolic kinetic
parameters fitting PM data. Signal smoothing may occurred
repeated times, which forced the fitting but, at the same time,
leaded to losses of inherent information from the original curve
shape. The authors also proposed activity index (AV) as a new sum-
mary value for kinetic parameters. Furthermore, the implementa-
tion of the Baranyi model and a custom diauxic growth model
are available [21]. Kinetic parameters were inferred using an Adap-
tative Metropolis algorithm and fitness quality was evaluated
through deviance information criterion (DIC). In the latest
approach, Shubin et al. [46] introduced a novel method based on
the statistical decomposition of the time-series measurements into
a subset of growth components. Decomposition similarity matrix
was computed based on custom summary statistics retrieved from
signal components. This distance matrix demonstrated to be more
robust than Euclidean distance when comparing metabolic profiles
of different strains. Indeed, signal decomposition identifies differ-
ent patterns of colour rate accumulation in PM signals, which
may reflect the succession of different metabolic cycles related to
metabolic pathways or bacterial group switches during substrate
depletion. Therefore, we believe that this approach has an enor-
mous potential to analyze PM data, especially for meta-phenomic
approaches.
Using phenotype switching approach, the main interest con-
cerns the assessment of how the metabolism behave when strains
grow under different conditions. This is determined by plotting
medians and CIs of computed parameters or through hypothesis
testing. However, effects of culture media or strain genotype may
take place in a short period during PM experiment, which might
be blurred if a single summary statistic is used. A novel Bayesian
approach estimates the effects on the metabolism of different envi-
ronmental factors and their interactions over time as well as their
respective CIs [56]. Plotting effect estimates against time evidences
their evolution during PM experiments. Based on our experience,
this approach is extremely useful for an in-depth analysis on
how bacterial metabolism is affected by short-term environmental
factors, namely phenotype switching.

Phenomics have the potential to revolution functional genomics
[7,19]. In this scenario, the integration of genomic and phenomic
data is another challenge of Omnilog data analysis. DuctApe was
developed to integrate genomic sequences and PM data [18]. Duc-
tApe allows to map PM data, finding differences among experi-
ments and correlating them to KEGG pathways [28]. This tool
divides into three modules. Dphenome analyzes PM data, as previ-
ously described, and maps compound IDs into KEGG compound
database. Dgenome reconstructs metabolic networks interfacing
with KEGG API, according to the protein sequences retrieved from
genome analysis. The computation of pangenome and accessory
genome is possible if genomic data for more than one organism
is available. The third module Dape combines the generated analy-
sis by the other two modules and correlates the observed pheno-
typic variability to its genetic determinants. We found this tool
to be an excellent reference for the integration of Omnilog phe-
nomic and genomic data. We believe that the further integration
with transcriptomic data would provide enormous insights into
LAB physiology and phylogeny.

Based on all available procedures to analyze Omnilog data, we
suggest computing metabolic parameters through free spline
method by grofit package for a preliminary routine analysis of
PM data [27,55]. Depending on the experimental approach, other
methodologies may significantly complement the analysis. Meta-
bolic parameters determination for classical phenotype profiling
may be complemented integrating genomic data available for a
given strain using DuctApe software [18,38]. We suggest comple-
menting phenotype switching approach using the Bayesian proce-
dure proposed by Vehkala et al. [56] to estimate the effects of
variable environmental conditions. Lastly, metaphenomic kinetic
data can be further analyzed using signal decomposition
approaches proposed by Shubin et al. [46] to unravel a putative
succession of bacterial groups during substrate depletion.

We noticed that grofit kinetic parameter estimation might be
significantly enhanced coupling grofit with the procedures
described by Vehkala et al. [56]. Here, we introduce ourMicro4Food
PM pipeline for routine analysis of PM data (Fig. 2). This pipeline
comes in an R script plug-and-play fashion. Briefly, phenotype data
are loaded and parsed through read_opm() [54], then the blank
may be subtracted using PM.BgCorrectionMRT(). This function,
which is a modification of the original PM.BgCorrection() [56],
assesses the particular case of PM04, where blanks are allocated
in A01 and F01 positions for phosphor and sulfur sources, respec-
tively. Metabolic profiles are grouped as active and non-active pro-
files using the EM algorithm followed by normalization and
stabilization [56]. Normalized data are automatically formatted
for grofit input. Kinetic parameters are computed using free-
spline methods and CIs are determined through bootstrapping
[27]. Substrate names, substrate family and KEGG compound IDs
are assigned automatically. The final output is the standard grofit
result table complemented with categorization into active and



Fig. 2. Schematic representation of PM data analysis workflow using Micro4Food PM pipeline complemented with signal decomposition and Bayesian effect estimation over
time.
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non-active profiles and KEGG compound IDs. These IDs can be
directly used to map the metabolic profiles into KEGGmaps though
KEGGREST R package, which provides a R client interface to the
KEGG REST server [52]. Computed parameters are useful for statis-
tical purposes, clustering or other analysis to assess similarities or
dissimilarities among profiles. Additionally, the pipeline runs in
two modes: profiling and switching. During switching mode, com-
mon non active profiles are removed from the analysis, which
may help to unravel active profiles suffering a metabolic fluctua-
tion due to different environmental factors. The pipeline is avail-
able at https://github.com/Neuls/Omnilog under GNU General
Public License (v3.0).

6. Implementation of the PM Omnilog platform for targeting
lactic acid bacteria

Even though a general workflow is available, setting up a PM
experiment with Omnilog platform implies several aspects that
consider the metabolism and nutritional requirements of each
microorganism. The manufacturer developed a devoted protocol
for Lactobacillus spp. [15], and a protocol to get chemically sensi-
tive profiles for Streptococcus thermophilus was conceived by Deco-
rosi et al. [64]. Conversely, devoted procedures are yet not
available for Weissella or Leuconostoc spp. As key points for a cus-
tomized protocol, the minimal chemical defined media (MCDM)
and the tetrazolium dye must be set up according to the studied
genus [65]. MCDM composition depends on individual nutritional
requirements. Strains are grouped as follows: (i) strains with min-
imum requirements of nutrients (SMRN); (ii) strains with complex
but known requirements of nutrients (SCKRN); and (iii) strains
with complex and unknown requirement of nutrients (SCURN).
SMRN do not need any MCDM supplementation, only a carbon
source when testing other nutrient sources. LAB fall into SCKRN
group and, therefore, PM panels contain MCDM depleted of the
source for the assay. Tetrazolium dye reduction kinetic depends
on pH variations. In the case of fermentative bacteria (e.g., LAB),
the medium is supplemented with tricarballylic acid or other
buffering compounds to sustain the pH and avoid that a drift
may alter the tetrazolium dye kinetics, thus losing the linear range.
PM protocols for Bacillus subtilis and other Gram positives (GP) bac-
teria, Lactobacillus plantarum and other Lactobacillus species are a
good starting point to develop other protocols for other LAB gen-
era. In this case, to verify peculiar requirements of nutrients by
auxotrophies, PM5 plate (Nutritional supplements) may be useful
since the bacterial inoculum requires only tricarballylic acid (to
get the optimal pH of growth), magnesium and calcium chloride
(recommended for GP by Biolog) and a carbon source. For instance,
the addition of methionine to MCDM is almost mandatory since
LAB do not have cysteine and methionine pools directly connected
into their metabolism [36]. Regarding to dye reduction kinetics,
Biolog used a series of redox dyes in PM protocols with different
redox thresholds. Therefore, the choice of the most appropriate
redox dye requires considering whether the strain is a fast-
growing GP. The last general consideration refers to the cell density
of the inoculum. Cell morphologies having a high area-surface ratio
(e.g., bacilli) require inoculums at lower transmittance than cocci.
Biolog PM protocols recommended the preliminary cultivation of
LAB on BUG + B or MRS agar plates. Viti et al. explicitly warn about
the great influence of culture media and temperature on the assay
[65]. Nevertheless, the effect of culture media is efficiently investi-
gated through PM to answer different research questions about
how LAB shape their metabolism under short-term environmental

https://github.com/Neuls/Omnilog


Fig. 3. Principal component analysis (PCA) of PM1 and PM2 data from two Lactobacillus plantarum strains cultured in MRS media and in a plant-based model media
(unpublished data) (A) and from two Lactobacillus plantarum strains cultured in MRS and in two model media (B). PCA was annotated by culture media. Data input was the
Area Under the Curve (AUC) computed with Micro4Food PM pipeline in switching mode. PM inoculum was prepared using pelleted cells (A) or colonies grown on agar media
(B).

Fig. 4. Custom chemical assay plate. One Lactobacillus plantarum strain was
inoculated into PM 9–20 fluid. Wells contained gallic acid and vanillin at a final
concentration of 1 mM. Control wells contained no inhibitory substances. Assays
were carried out in triplicate. Compared to control, kinetic plot shows a metabolism
inhibition due to the presence of these phenolic compounds.
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exposure. When the inoculum comes from pelleted cells, the phe-
notype shows the prevalent pressure of the environmental condi-
tions, overshadowing the genotype effect. Under these
conditions, the clustering was almost exclusively depended on
the culture environment (Fig. 3A) [15,60]. Conversely, a prevalence
of genotype effect over environmental pressure emerged inoculat-
ing L. plantarum cells cultured in various agar media (Fig. 3B) (Di
Cagno, unpublished data). Therefore, when performing
phenotype-switching experiments, the main recommendation is
to use inoculum preparation from pelleted cells grown until late
or mid exponential phase. This captures the short-term environ-
mental pressure effect. Using an inoculum directly from colonies
grown in agar misses the opportunity to capture the growth phase.
The standard inoculation procedure with agar plates is useful when
performing a phenotype profiling approach since the risk of carry-
ing over media during PM inoculum preparation decreases.

PM arrays offer a wide selection of substrates and chemical sen-
sitivity assays. Nevertheless, not all substrates or chemical tests are
available in the PM arrays. There is growing interest on phenolic
metabolism of LAB, which has not yet been completely elucidated
[12]. Some phenolic compounds may act as a carbon source as well
as resistance to high concentrations of phenolic compounds is a
desirable metabolic trait during plant-based food fermentation
[13,17]. Using the inoculum for PM1-2 panels, phenolic com-
pounds might be added to empty arrays to assess their impact
on LAB carbon metabolism. To investigate the antimicrobial effect
of phenolics, an option might be a custom PM panel containing a
wide range of phenolic compounds at different concentrations by
using the same inoculation fluid as for chemical sensitivity PM9-
20 panels (Fig. 4). This may allow to describe toxicological values,
like half-maximum effective concentration (EC50), which would
provide useful information to select starters for plant-based food
fermentations
7. Summary and outlook

We are currently witnessing a paradigm shift in which the
understanding and manipulation of the food microbial consortia
assembly and their functionality is holding a commitment for
steering successful fermentations compared to the traditional use
of starters. Although the functionality of microbial consortia has
been extensively studied through comparative genomics, metage-
nomics, meta- and transcriptomics to elucidate mechanisms
underlying niche adaptation, metabolic traits of a microbial con-
sortium rely on the phenotype. Omnilog high throughput technol-
ogy allows the screening of thousands of phenotypes
simultaneously, introducing phenotype profiling as new omic
technique: phenomics. Implementation of this emerging omic is
still in infant stages in terms of experimental procedures and data
analysis either at single strain or at microbial community level
(meta-phenomics). Although there are limited applications using
Omnilog system, meta-phenomic may represent a trade union of
several multi-omics considering a single step of information flow
inside the central dogma of molecular biology. In our view, the
meta-community phenotype is the end output of such information
flow given under certain environmental pressure. Even though a
general workflow is available, setting up a phenotype microarray
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experiment with Omnilog platform still implies the deepening of
several aspects regarding the metabolism and nutritional require-
ments of each microorganism including the development of ad hoc
protocols and data analysis. We believe that the approaches based
on phenotype switching and metaphenomics (kinetic Omnilog
data) represent the future for studying meta-communities by
requiring a good level in R programming.

Finally, concerns on PM data analysis raised during the last
years, which require the identification of a single path to exploit
the phenotypic output. We strongly believe that PM can improve
our knowledge of microbial complex systems but it is necessary
to abandon the concept that only the more traditional omics have
the potential to reveal the complex mechanisms underlying the
assembly of microbial communities rather introducing the phe-
nome as resulting driver.
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[22] Gryta A, Frąc M, Oszust K. The Application of the Biolog EcoPlate approach in
ecotoxicological evaluation of dairy sewage sludge. Appl Biochem Biotechnol
2014;174(4):1434–43. https://doi.org/10.1007/s12010-014-1131-8.

[23] Hernandez-Sanabria E, Slomka V, Herrero ER, Kerckhof FM, Zaidel L, Teughels
W, et al. In vitro increased respiratory activity of selected oral bacteria may
explain competitive and collaborative interactions in the oral microbiome.
Front Cell Infect Microbiol 2017;7(June):1–12. https://doi.org/10.3389/
fcimb.2017.00235.

[24] Hill D, Sugrue I, Arendt E, Hill C, Stanton C, Ross RP. Recent advances in
microbial fermentation for dairy and health. F1000Research 2017;6(May):751.
https://doi.org/10.12688/f1000research.10896.1.

[25] Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev
Genet 2010;11(12):855–66. https://doi.org/10.1038/nrg2897.

[26] Jansson JK, Hofmockel KS. The soil microbiome — from metagenomics to
metaphenomics. Curr Opin Microbiol 2018;43(June):162–8. https://doi.org/
10.1016/j.mib.2018.01.013.

[27] Kahm M, Hasenbrink G, Ludwig J. grofit: fitting Biological Growth Curves with
R. J Stat Softw 2010;33(7):1. https://doi.org/10.18637/jss.v033.i07.

[28] Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG : new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res
2017;45(November 2016):353–61. https://doi.org/10.1093/nar/gkw1092.

[29] Karshafian R, Samac S, Bevan P, Burns P. Microbubble mediated sonoporation
of cells in suspension: clonogenic viability and influence of molecular size on
uptake. Ultrasonics 2010;50(7):691–700. https://doi.org/10.1016/j.
ultras.2010.01.009.

[30] Kaur J, Duan SY, Vaas LAI, Penesyan A, Meyer W, Paulsen IT, et al. Phenotypic
profiling of Scedosporium aurantiacum, an opportunistic pathogen colonizing
human lungs. PLoS ONE 2015;10(3):1–14. https://doi.org/10.1371/journal.
pone.0122354.

[31] Kenarova A, Radeva G, Traykov I, Boteva S. Community level physiological
profiles of bacterial communities inhabiting uranium mining impacted sites.
Ecotoxicol Environ Saf 2014;100(1):226–32. https://doi.org/10.1016/j.
ecoenv.2013.11.012.

[32] Kjos M, Nes IF, Diep DB. Mechanisms of resistance to bacteriocins targeting the
mannose phosphotransferase system. Appl Environ Microbiol 2011;77
(10):3335–42. https://doi.org/10.1128/AEM.02602-10.

[33] LeBlanc N, Essarioui A, Kinkel L, Kistler HC. Phylogeny, plant species, and plant
diversity influence carbon use phenotypes among Fusarium populations in the
rhizosphere microbiome. Phytobiomes J 2017;1(3):150–7. https://doi.org/
10.1094/PBIOMES-06-17-0028-R.

[34] Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CTW. Understanding
ultrasound induced sonoporation: definitions and underlying mechanisms.
Adv Drug Deliv Rev 2014;72:49–64. https://doi.org/10.1016/j.
addr.2013.11.008.

[35] Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al.
Effects of diurnal variation of gut microbes and high-fat feeding on host
circadian clock function and metabolism. Cell Host Microbe 2015;17
(5):681–9. https://doi.org/10.1016/j.chom.2015.03.006.

[36] Martínez-Cuesta MDC, Peláez C, Requena T. Methionine metabolism: major
pathways and enzymes involved and strategies for control and diversification
of volatile sulfur compounds in cheese. Crit Rev Food Sci Nutr 2013;53
(4):366–85. https://doi.org/10.1080/10408398.2010.536918.

[37] Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, et al.
Nomadic lifestyle of Lactobacillus plantarum revealed by comparative
genomics of 54 strains isolated from different habitats. Environ Microbiol
2016;18(12):4974–89. https://doi.org/10.1111/1462-2920.13455.

[38] Mengoni A, Fondi M, Galardini M. From pangenome to panphenome and back.
In: Methods in molecular biology (Clifton N.J.). p. 5–6. https://doi.org/10.1007/
978-1-4939-1720-4.

[39] Menon R, Munjal N, Sturino JM. Characterization of amygdalin-degrading
Lactobacillus species. J Appl Microbiol 2015;118(2):443–53. https://doi.org/
10.1111/jam.12704.

https://doi.org/10.1111/j.1574-6976.2008.00149.x
https://doi.org/10.1128/AEM.00851-15
https://doi.org/10.1016/j.apsoil.2017.08.017
https://doi.org/10.1016/j.apsoil.2017.08.017
https://doi.org/10.1186/1471-2105-12-109
https://doi.org/10.1186/1471-2105-12-109
https://doi.org/10.1186/s13568-017-0437-7
https://doi.org/10.1186/s13568-017-0437-7
https://doi.org/10.1016/j.ijfoodmicro.2017.11.008
https://doi.org/10.1016/j.ijfoodmicro.2017.11.008
http://refhub.elsevier.com/S2001-0370(20)30363-9/h0040
http://refhub.elsevier.com/S2001-0370(20)30363-9/h0040
https://doi.org/10.1525/bio.2010.60.2.5
https://doi.org/10.1525/bio.2010.60.2.5
https://doi.org/10.3389/fmicb.2017.00244
https://doi.org/10.1016/j.scitotenv.2017.03.266
https://doi.org/10.1111/1462-2920.14372
https://doi.org/10.1111/1462-2920.14372
https://doi.org/10.1016/j.fm.2014.08.018
https://doi.org/10.1016/j.fm.2014.08.018
https://doi.org/10.1128/AEM.02194-16.Editor
https://doi.org/10.1128/AEM.02194-16.Editor
https://doi.org/10.1038/srep27392
https://doi.org/10.1016/j.copbio.2017.07.016
https://doi.org/10.1016/j.ygeno.2013.11.005
https://doi.org/10.1016/j.ygeno.2013.11.005
https://doi.org/10.1080/10408398.2015.1136805
https://doi.org/10.1080/10408398.2015.1136805
https://doi.org/10.3389/fmicb.2018.01375
https://doi.org/10.1142/S0219720016500074
https://doi.org/10.1007/s12010-014-1131-8
https://doi.org/10.3389/fcimb.2017.00235
https://doi.org/10.3389/fcimb.2017.00235
https://doi.org/10.12688/f1000research.10896.1
https://doi.org/10.1038/nrg2897
https://doi.org/10.1016/j.mib.2018.01.013
https://doi.org/10.1016/j.mib.2018.01.013
https://doi.org/10.18637/jss.v033.i07
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1016/j.ultras.2010.01.009
https://doi.org/10.1016/j.ultras.2010.01.009
https://doi.org/10.1371/journal.pone.0122354
https://doi.org/10.1371/journal.pone.0122354
https://doi.org/10.1016/j.ecoenv.2013.11.012
https://doi.org/10.1016/j.ecoenv.2013.11.012
https://doi.org/10.1128/AEM.02602-10
https://doi.org/10.1094/PBIOMES-06-17-0028-R
https://doi.org/10.1094/PBIOMES-06-17-0028-R
https://doi.org/10.1016/j.addr.2013.11.008
https://doi.org/10.1016/j.addr.2013.11.008
https://doi.org/10.1016/j.chom.2015.03.006
https://doi.org/10.1080/10408398.2010.536918
https://doi.org/10.1111/1462-2920.13455
https://doi.org/10.1007/978-1-4939-1720-4
https://doi.org/10.1007/978-1-4939-1720-4
https://doi.org/10.1111/jam.12704
https://doi.org/10.1111/jam.12704


M. Acin-Albiac et al. / Computational and Structural Biotechnology Journal 18 (2020) 2290–2299 2299
[40] Ojha KS, Burgess CM, Duffy G, Kerry JP, Tiwari BK. Integrated phenotypic-
genotypic approach to understand the influence of ultrasound on metabolic
response of Lactobacillus sakei e0191053-e0191053. PloS One 2018;13(1).
https://doi.org/10.1371/journal.pone.0191053.

[41] Passerini D, Coddeville M, Le Bourgeois P, Loubière P, Ritzenthaler P, Fontagné-
Faucher C, et al. The carbohydrate metabolism signature of lactococcus lactis
strain A12 reveals its sourdough ecosystem origin. Appl Environ Microbiol
2013;79(19):5844–52. https://doi.org/10.1128/AEM.01560-13.

[42] Pinzari F, Ceci A, Abu-Samra N, Canfora L, Maggi O, Persiani A. Phenotype
MicroArrayTM system in the study of fungal functional diversity and catabolic
versatility. Res Microbiol 2016;167(9–10):710–22. https://doi.org/10.1016/j.
resmic.2016.05.008.

[43] R Core Team. R: A language and environment for statistical computing; 2020.
[44] Reverón I, Plaza-Vinuesa L, Franch M, de las Rivas B, Muñoz R, de Felipe FL.

Transcriptomic-based analysis in Lactobacillus plantarum WCFS1 reveals new
insights into resveratrol effects at system-level. Mol Nutr Food Res 2018;62
(9):1700992. https://doi.org/10.1002/mnfr.201700992.

[45] Robichon D, Gouin E, Débarbouillé M, Cossart P, Cenatiempo Y, Héchard Y. The
rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to
mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides.
J Bacteriol 1997;179(23):7591–4. https://doi.org/10.1128/jb.179.23.7591-
7594.1997.

[46] Shubin M, Schaufler K, Tedin K, Vehkala M, Corander J. Identifying multiple
potential metabolic cycles in time-series from biolog experiments. PLoS ONE
2016;11(9):1–14. https://doi.org/10.1371/journal.pone.0162276.

[47] Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HTK, Rademaker JLW, et al.
Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated
from various environmental niches. Environ Microbiol 2010;12(3):758–73.
https://doi.org/10.1111/j.1462-2920.2009.02119.x.

[48] Siezen RJ, van Hylckama Vlieg JET. Genomic diversity and versatility of
Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact
2011;10(suppl. 1):S3. https://doi.org/10.1186/1475-2859-10-S1-S3.

[49] Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M.
Taxonomic structure and monitoring of the dominant population of lactic acid
bacteria during wheat flour sourdough type I propagation using Lactobacillus
sanfranciscensis starters. Appl Environ Microbiol 2009;75(4):1099–109.
https://doi.org/10.1128/AEM.01524-08.

[50] Skinner-nemec SLKA, Leathers TD. Lactobacillus buchneri strain NRRL B-30929
converts a concentrated mixture of xylose and glucose into ethanol and other
products. J Ind Microbiol Biotechnol 2008:75–81. https://doi.org/10.1007/
s10295-007-0267-8.

[51] Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and
metabolomics of dairy lactobacilli: a review. Food Microbiol 2017;61
(February):33–49. https://doi.org/10.1016/j.fm.2016.08.009.

[52] Tenenbaum D. KEGGREST: Client-side REST access to KEGG (p. 1); 2019. p. 1.
[53] Uzelac G, Kojic M, Lozo J, Aleksandrzak-Piekarczyk T, Gabrielsen C, Kristensen
T, et al. A Zn-Dependent metallopeptidase is responsible for sensitivity to LsbB,
a class ii leaderless bacteriocin of lactococcus lactis subsp. lactis BGMN1-5. J
Bacteriol 2013;195(24):5614–21. https://doi.org/10.1128/JB.00859-13.

[54] Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, et al. Opm: an R
package for analysing OmniLog� phenotype microarray data. Bioinformatics
2013;29(14):1823–4. https://doi.org/10.1093/bioinformatics/btt291.

[55] Vaas LAI, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-
parameter estimation strategies for efficient exploration of phenotype
microarray kinetics. PLoS ONE 2012;7(4). https://doi.org/10.1371/journal.
pone.0034846.

[56] Vehkala M, Shubin M, Connor TR, Thomson NR. Novel R pipeline for analyzing
biolog phenotypic microarray data. PLoS ONE 2015;10(3):1–14. https://doi.
org/10.5061/dryad.r98g7.Funding.

[57] Viti C, Tatti E, Giovannetti L. Phenotype MicroArray analysis of cells: fulfilling
the promise. Res Microbiol 2016;167(9–10):707–9. https://doi.org/10.1016/j.
resmic.2016.08.003.

[58] Weckx S, Van Kerrebroeck S, De Vuyst L. Omics approaches to understand
sourdough fermentation processes. Int J Food Microbiol 2019;302
(January):90–102. https://doi.org/10.1016/j.ijfoodmicro.2018.05.029.

[59] Zwietering MH, Jongeberger I, Roumbouts FM, Riet K. Modelling of bacterial
growth curve. Appl Environ Microbiol 1990;56(June):1875–81.

[60] Siragusa Sonya, De Angelis Maria, Calasso Maria, Campanella Daniella,
Minervini Fabio, Di Cagno Raffaella, et al. Fermentation and proteome
profiles of Lactobacillus plantarum strains during growth under food-like
conditions. J Proteomics 2014;96:366–80. https://doi.org/10.1016/j.
jprot.2013.11.003.

[61] Filannino Pasquale, Di Cagno Raffaella, Ali Zein Alabiden Tlais, Vincenzo
Cantatore, Gobbetti Marco. Fructose-rich niches traced the evolution of lactic
acid bacteria toward fructophilic species. Crit Rev Microbiol 2019;45
(1):61–81. https://doi.org/10.1080/1040841X.2018.1543649.

[62] France Michael, Mendes-soares Helena, Forney Larry. Genomic Comparisons of
Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological
Drivers of Community Composition in the Vagina. Appl Environ Microbiol
2016;82(24):7063–73.

[63] De Pasquale Ilaria, Di Cagno Raffaella, Buchin Solange, De Angelis Maria,
Gobbetti Marco. Microbial ecology dynamics reveal a succession in the core
microbiota involved in the ripening of pasta filata Caciocavallo Pugliese
cheese. Appl Environ Microbiol 2014;80(19):6243–55.

[64] Decorosi Francesca, Santopolo Luisa, Mora Diego, Viti Carlo, Giovannetti
Luciana. The improvement of a phenotype microarray protocol for the
chemical sensitivity analysis of Streptococcus thermophilus. Journal of
Microbiological Methods 2011;86(2).

[65] Viti Carlo, Decorosi Francesca, Marchi Emmanuella, Galardini Marco,
Giovannetti Luciana. High-Throughput Phenomics. Methods Mol. Miol. 2015.

https://doi.org/10.1371/journal.pone.0191053
https://doi.org/10.1128/AEM.01560-13
https://doi.org/10.1016/j.resmic.2016.05.008
https://doi.org/10.1016/j.resmic.2016.05.008
https://doi.org/10.1002/mnfr.201700992
https://doi.org/10.1128/jb.179.23.7591-7594.1997
https://doi.org/10.1128/jb.179.23.7591-7594.1997
https://doi.org/10.1371/journal.pone.0162276
https://doi.org/10.1111/j.1462-2920.2009.02119.x
https://doi.org/10.1186/1475-2859-10-S1-S3
https://doi.org/10.1128/AEM.01524-08
https://doi.org/10.1007/s10295-007-0267-8
https://doi.org/10.1007/s10295-007-0267-8
https://doi.org/10.1016/j.fm.2016.08.009
https://doi.org/10.1128/JB.00859-13
https://doi.org/10.1093/bioinformatics/btt291
https://doi.org/10.1371/journal.pone.0034846
https://doi.org/10.1371/journal.pone.0034846
https://doi.org/10.5061/dryad.r98g7.Funding
https://doi.org/10.5061/dryad.r98g7.Funding
https://doi.org/10.1016/j.resmic.2016.08.003
https://doi.org/10.1016/j.resmic.2016.08.003
https://doi.org/10.1016/j.ijfoodmicro.2018.05.029
http://refhub.elsevier.com/S2001-0370(20)30363-9/h0295
http://refhub.elsevier.com/S2001-0370(20)30363-9/h0295
https://doi.org/10.1016/j.jprot.2013.11.003
https://doi.org/10.1016/j.jprot.2013.11.003
https://doi.org/10.1080/1040841X.2018.1543649
http://refhub.elsevier.com/S2001-0370(20)30363-9/optXemJ1AUwxy
http://refhub.elsevier.com/S2001-0370(20)30363-9/optXemJ1AUwxy
http://refhub.elsevier.com/S2001-0370(20)30363-9/optXemJ1AUwxy
http://refhub.elsevier.com/S2001-0370(20)30363-9/optXemJ1AUwxy
http://refhub.elsevier.com/S2001-0370(20)30363-9/optAdSmkQ7PbK
http://refhub.elsevier.com/S2001-0370(20)30363-9/optAdSmkQ7PbK
http://refhub.elsevier.com/S2001-0370(20)30363-9/optAdSmkQ7PbK
http://refhub.elsevier.com/S2001-0370(20)30363-9/optAdSmkQ7PbK
http://refhub.elsevier.com/S2001-0370(20)30363-9/optIOrl1zN05g
http://refhub.elsevier.com/S2001-0370(20)30363-9/optIOrl1zN05g
http://refhub.elsevier.com/S2001-0370(20)30363-9/optIOrl1zN05g
http://refhub.elsevier.com/S2001-0370(20)30363-9/optIOrl1zN05g
http://refhub.elsevier.com/S2001-0370(20)30363-9/optnp9ygD77gh
http://refhub.elsevier.com/S2001-0370(20)30363-9/optnp9ygD77gh

	Microbial high throughput phenomics: The potential of an irreplaceable omics
	1 Introduction
	2 Traditional phenotyping
	3 Phenotype microarrays
	4 Meta-phenomics
	5 Data analysis
	5.1 Single end-point estimation
	5.2 Kinetic phenotyping

	6 Implementation of the PM Omnilog platform for targeting lactic acid bacteria
	7 Summary and outlook
	CRediT authorship contribution statement
	References


