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Abstract

In order to broaden the use of microrobots in practical fields, autonomous control algorithms

such as obstacle avoidance must be further developed. However, most previous studies of

microrobots used manual motion control to navigate past tight spaces and obstacles while

very few studies demonstrated the use of autonomous motion. In this paper, we demon-

strated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs)

using electric field in fluidic environments. A BPM consists of an artificial body, which is

made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using

externally applied electric fields due to the electrokinetic property of bacteria. For developing

dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent

collision and a finite element model was used to characteristic the deformation of an electric

field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previ-

ously static obstacle avoidance approach using a modified vector field histogram (VFH)

method. To validate the advanced algorithm in experiments, magnetically controlled moving

obstacles were used to intercept the BPMs as the BPMs move from the initial position to

final position. The algorithm was able to successfully guide the BPMs to reach their respec-

tive goal positions while avoiding the dynamic obstacles.

Introduction

It is well established that microscopic scale robotics has a high potential to be utilized in bio-

logical, medical, and industrial applications; despite facing many challenges. For biomedical

engineering, core tasks such as localized/targeted drug delivery, micro invasive surgery, cell

manipulation, biosensing, cell sorting, and cell fusion can be performed [1–6]. In the field of

industrial engineering, microrobots have shown their capabilities to complete microscale tasks

such as micro-assembly, transport, precision micro-machining, and micro-manipulation [7–

9]. In order to develop swimming microrobots for these applications, there have been various

challenges. The major challenge is to propel microrobots at a low Reynolds number fluidic
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environment where the conventional macro scale swimming methods do not work due to the

negligence of inertia force caused by relatively large viscous forces. Therefore, the generation

of a propulsive force to power microrobots has become a primary problem to be addressed.

The widely discussed solution for low Reynolds number propulsion is to generate nonrecipro-

cal motion which can be achieved using corkscrew motion or deformable bodies [10] that are

inspired by the movement of microorganisms and structures formed in nature [2, 11–14]. One

of the previously explored designs is the artificial helical shaped microrobot that is coated with

a metal and manipulated by magnetic fields [15, 16]. In addition, self-propelled micromotors

have been studied using spherical Janus particles within the last decade [17].

Another challenge is the autonomous control of microrobots and the interest of this chal-

lenge becomes significantly increasing. A navigation system will play an important role in

microrobotics to complete the aforementioned tasks due to reducing any damage to the micro-

robot and minimizing adverse effects. In addition, the autonomous control method can supply

highly efficient navigation when compared to manual motion control. Hence, the develop-

ment of advanced motion control techniques is necessary for microrobots to achieve their

tasks. For this purpose, motion modeling of a microrobot has been built for control and vali-

dated by manual control inputs in experiments [7, 18]. Furthermore, both biological and non-

biological microrobots have been navigated using autonomous path planning [19–21]. The

path planning method ensures that the microrobot arrives at the goal position. However, in a

real environment, there will be not only static but also dynamic obstacles; hence, dynamic

obstacles should be considered for autonomous motion control. Herein, we suggest a dynamic

obstacle avoidance algorithm for BPMs.

In this paper, an autonomous motion control algorithm was developed for avoiding

dynamic obstacle in real-time. We designed the experimental setup to test the algorithm using

magnetically controlled moving obstacles. Then, we demonstrate the feasibility of our ap-

proach experimentally by using the moving obstacles to intercept the paths of BPMs. We man-

ufactured microrobots which use biomolecular motors from bacteria. Using the galvanotaxis

of the bacteria, these microrobots can be driven by applied electric field. The autonomous nav-

igation algorithm for static obstacle avoidance was developed [22] after the controllability and

mobility of BPMs were demonstrated in previous works [2, 23]. For this work, a dynamic

obstacle avoidance algorithm is capable of computing the optimal control inputs to avoid

dynamic obstacles in real-time and allows the guidance of a BPM to reach the target position

without using path planning. This capability will allow BPMs to adapt to changeable environ-

ments and greatly increase their versatility for microscale applications.

To develop a dynamic obstacle avoidance algorithm, several factors need to be considered

due to the characteristics of the BPMs’ biological actuators and the design of the control sys-

tem. The first factor is an inherent motion caused by a densely packed mono layer of bacteria,

called bacterial carpet. This motion induces uncontrollable movements which lead to high

probability of collision. However, the studied kinematic model of BPMs can be used to predict

this motion and help to plan a safe motion. Another factor is a deformation of the electric field

around dynamic obstacles. The presence of dynamic obstacles leads to non-uniform electric

fields which can cause BPMs to move in undesired directions. In our proposed method, all

these constraints are taken into account and the potential risk caused by dynamic obstacles is

prevented in real-time. Our proposed algorithm was based on the simulation results in [24]

and we focused on proving the reliability of the algorithm using magnetically controlled mov-

ing obstacles. Furthermore, the performances of the experimental results are quantified by the

danger index representing the potential risk. The defined danger index was calculated using

the control input and the relative position between a BPM and surrounding obstacles.

Dynamic obstacle avoidance approach for BPMs
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Materials and methods

Bacteria-powered microrobots

Configuration of bacteria-powered microrobots. A BPM is an integrated robotic system

using the bacteria called Serratia marcescens and an inorganic material called SU-8. Using a

slimy material secreted from the bacterial bodies, these bacteria can be attached onto the sur-

faces of SU-8 microstructures [25, 26]. The SU-8 Structures, which serve as the bodies of the

BPMs, are fabricated using photolithography. Through blotting directly on a bacterial colony

on an agar plate, hundreds or thousands of bacteria can be harnessed onto the surface of the

microfabricated SU-8 structures [27]. The blotted structures are released in water based fluids

through the use of a water-soluble sacrificial layer [28]. These released microstructures, BPMs,

are free to move through the fluid, as shown in Fig 1A.

Propulsion of BPMs. To generate propulsive force at low Reynolds number, the BPMs

utilize hydrodynamics of flagella from the bacterial carpet attached to the bottom of the SU-8

microstructure. The hydrodynamics is the result of individual bacteria flagellar waving [29].

The flagella on the carpet undergo corkscrew motions which are nonreciprocal and the collec-

tive motion of the flagella helps the BPM to overcome friction on the bottom surface and the

viscosity present in a low Reynolds fluid. Moreover, the harnessed bacterial propulsion gener-

ates self-actuated motion without external stimulus. Fig 1A represents the self-actuation of a

BPM during 19.2s with a clockwise rotation. The self-actuation will be useful to adjust the ori-

entation of the BPM as examined in [23]. The negatively charged bacteria bodies will generate

electrophoretic motion in the presence of an electric field. By controlling the direction and the

magnitude of the electric field, we were able to generate translation motion of BPMs.

Stochastic model for BPMs. There are two velocity components for translational move-

ment which depends on x-axis and y-axis in the local coordinate frame with respect to the cen-

ter of mass [14]. For the rotational motion of the BPM, the angular velocity, _a, is related to the

Fig 1. Introduction of BPMs. (a)Self-actuation induced by bacterial carpet during 19.2s, (b)A Schematic of the BPM (ellipse: bacterium, Ni: i-th

bacterium).The scale bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0185744.g001
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position of the i-th bacterium and its orientation angle θi as shown in Fig 1B. As a result, the

equations of translational and rotational velocity of self-actuation can be expressed by
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where Nb and θi are the number of bacteria and the orientation of bacteria on the surface of

the microstructure, and kT and kR are the translational viscous drag coefficient and rotational

viscous drag coefficients, respectively. The inherent movement of BPMs is dependent upon

parameters β1,2,3 and �p. The values for β1,2,3are determined from the number of adhered bacte-

ria, the distribution of the attached bacteria, and their respective orientation θi [23, 30]. Fur-

thermore, the propulsive force from each bacterium affects the resultant motion. The average

of the propulsive force �p is 0.45 pN [31].

As a result of previous work [23], the BPM’s movement with a control input can be

described by combining the kinematic model with electrokinetic actuation on a global coordi-

nate system, as follows:
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where Rz(θ) is a rotation matrix about z-axis and Δd(Ux, Uy)/ts is the velocity by electokinetic

actuation. Herein, we define Ux and Uy are the input voltages for the coordinating mobility, ts
is the sampling time. β4 represents the electrophoretic property from the total charge of the

attached bacteria.

The motion of the BPM can be represented by parameters β1,2,3, and β4 when the control

inputs are presented. In addition, the expected locomotion of a BPM can be calculated with

the control input voltages which helps to evaluate the collision risk using this stochastic model.

Validation of a BPM model. The stochastic model, as indicated in (2), was validated by

simulating the motion after obtaining the necessary parameters β1,2,3 from the experimental

data. For this validation, a 40 × 43 μm2 rectangular structure was used in the real experiment

and the control input was 20 V/cm on right (+) direction on x-axis.

In order to conduct the simulation, the parameters were obtained by using two motion vid-

eos; one is self-actuation motion and the other is electrokinetic motion with 10 V/cm. The

position vectors that include Cartesian position and the BPM orientation were utilized after

image processing of experiment video. First, the parameter β3 was extracted by calculating

the orientation of the BPM without any input, and the value of β3 is 0.38 ± 0.07 rad/(s�pN).

Next, the β1 and β2 were calculated while excluding the control input matrix in (2) and were

2.68 ± 3.71 μm/(s�pN) and -3.57 ± 5.28 μm/(s�pN), respectively. Finally, we could get the β4 by

substituting the constant control input Ux (10V/cm) in (2), which was 0.17 ± 0.03 μm/(V/cm).

In Fig 2, the simulation result was conducted by the normal distribution of each parameter

and compared with the real experimental positions of the BPM with 20 V/cm. The simulated

BPM began with the same position as the experimental position. The simulated motion closely

corresponded to the experimental consecutive images as shown in Fig 2A with 8.59 ± 1.27 μm

errors for the position between simulation and real data (Fig 2B). The error fluctuations

Dynamic obstacle avoidance approach for BPMs
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between experimental and simulation results are due to the unpredictable behavior of bacteria.

In simulation, the kinematic parameters were constant and the accumulated mismatched posi-

tion between simulations and experiments led to a growth in the standard deviation of error.

This result is one of examples; other examples are indicated in previous work [14, 23, 24].

Hence, the kinematic model of the BPMs is validated for developing an obstacle avoidance

algorithm in terms of predicting the BPM’s locomotion and calculating the collision risk.

Dynamic obstacle avoidance strategy

In our previous work [22], the static obstacle avoidance approach based on the dynamic win-

dow approach (DWA) [32] was well demonstrated in various environments. In the case of

moving obstacles, however, the unpredicted motion of dynamic obstacles can increase the

probability of collision. To strengthen the obstacle avoidance algorithm under moving obsta-

cles, the vector field histogram (VFH) method [33] was added in our proposed method.

Considering elements for motion control of BPMs

The natural self-actuated motion of BPMs and the deformation of electric field around obsta-

cles are the two main factors to consider when developing the dynamic obstacle avoidance

algorithm. The primary concern is related to a bacterial carpet that exhibits self-actuation of a

BPM which is naturally induced by flagellar motors. If the control input is not determined by

considering the self-actuation of a BPM, there will be a high probability of collision with obsta-

cles. Moreover, the velocity of dynamic obstacles can move relatively fast comparing BPMs

and the sudden movement of dynamic obstacles will cause high risk situation. The other con-

sideration is the deformation of an electric field around the obstacle area creating non-unifor-

mities in the potential field. This deformation can be understood by the analog of a river flow

around rock where the water flow around the rock is nonlinear and non-uniform. Similarly,

the electric field will be distorted around a moving obstacle. This field deformation can lead to

undesired motion of the BMP which increases the probability of collision with the moving

obstacles. The phenomenon of non-uniform potential field was simulated using a finite

Fig 2. Comparison between the real motion of the BPM and the simulation result of the stochastic model. (a)Position of real experimental data and

modelling data, (b)Locomotion error between experimental result and simulation result. The scale bar represents 40 μm.

https://doi.org/10.1371/journal.pone.0185744.g002
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element program called COMSOL Multiphysics. In the simulation, the dynamic obstacle was

composed of nickel which allow for magnetic actuation and non-permeability as boundary

conditions.

The simulation results indicate the distorted range around the moving obstacle over time,

as shown in Fig 3. A 10 V/cm electric field was applied in the +x-direction. The triangle object

represents a dynamic obstacle with a velocity of 10 μm/s toward the left side from the initial

position at 0s (Fig 3). The arrows of electric field deform around the obstacle at 20s (Fig 3C).

The distorted electric field was quantified using the different angle between the desire direc-

tion and the direction of electric field. In Fig 4, the streamline indicate the quantity which is

normalized from 0 to 1. The larger the value is, the larger the deformation becomes. The non-

uniform electric potential region forms ripples which disperse from the dynamic obstacle.

Using this profile of the electric field, the formation of distorted area can be utilized in the

dynamic obstacle avoidance algorithm to ensure a BPM to avoid distorted regions.

Suggested approach for dynamic obstacle avoidance. Our proposed approach for the

development of dynamic obstacle avoidance of BPMs is based on the integration of modified

DWA and redefined VFH. We defined four different objective functions in a main function

(DWA) to select an optimal control input by considering the parameters listed above, as the

BPM approaches a goal position. However, in dynamic environments where moving obstacles

are presented, the objective function would not be enough to consider the motion of the

dynamic obstacles because the objective function only considers the surrounding environment

at a given specific moment. Instead of adding other functions to the objective function, the

role of the redefined VFH is to filter out the control inputs with high risk in advance by consid-

ering the distance between the BPM and the dynamic obstacles.

The search for control inputs is carried out directly in the space of voltages with–π to +π
range of the direction for electric field. In the suggested algorithm, the search space of control

inputs depends on the maximum input voltage in the system setup.

There are three steps in the suggested algorithm to determine the commands controlling

the BPM. In the first step of the algorithm, the modified VFH function is implemented to

restrict the candidate control inputs from the search space when obstacles are located within

the safe range as shown in Fig 5A. Even though the distance between the BPM and the obstacle

was far initially, if the dynamic obstacle moves close to the BPM at high speed, the BPM might

not be able to avoid collision in short time intervals. Therefore, we used the concept of VFH to

exclude the motion inputs that drive a BPM toward the valley, occupied by the dynamic obsta-

cles, in vector histogram. The inputs heading for obstacles will have 0 value from the defined

VFH function (ν(U, θ)) as follow:

θv ¼ fyig for BDðyiÞ � safe range; 1 � i � 360 ð3Þ

Ty ¼ minðjy � θvjÞ;

v U; yð Þ ¼

(
0 if Ty � εs

T2
y

T2
max

if εs < Ty � Tmax

1 if Tmax � Ty

)

ð4Þ

where θv is the group of valley angles in vector histogram, as shown in Fig 5B, Tθ is the mini-

mum gap between the direction of a control input and the angles θv, Function ν(U, θ) repre-

sents the distance of the BPM from the valley, and εs is the tolerance used to extend the valley

range due to self-actuation. For instance, the angle θ from 23˚ to 74˚ has a value of 0 (Fig 5C),

Dynamic obstacle avoidance approach for BPMs
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Fig 3. COMSOL Multiphysics simulation results of electric field flows. (a)Electric potential flow at 0s, (b)

10s, and (c)20s. The triangle represents a moving obstacle that has a nickel material.

https://doi.org/10.1371/journal.pone.0185744.g003
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Fig 4. COMSOL Multiphysics simulation results of distorted electric field area. (a)Non-uniformity of

potential field at 0s, (b)10s, and (c)20s. The triangle represents a moving obstacle and the contour values

indicate a quantity of distortion for electric field.

https://doi.org/10.1371/journal.pone.0185744.g004
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thus, these control inputs will be excluded when the VFH is combined with the main objective

function.

In the second step, the objective function will be applied to compute the main function

(DWA). In the main function (DWA), there are four objective functions: heading, movement,
clearance, and control which stand for the quantity value of individual performance (motion

direction toward a goal, long movement motion, collision risk, following controllability in

sequence). It is given by:

f ðU; yÞ ¼ g � headingðU; yÞ þ d �movementðU; yÞ þ o � clearanceðU; yÞ þ s

� controlðU; yÞ ð5Þ

where the U and θ are a magnitude of an admissible voltage and a desired direction of electric

field. The function of f is the weighted sum of four components with the weights of γ, δ, ω,

and σ.

The concerns mentioned in previous section are accounted for in the clearance and control
function. In clearance function, the collision risk from motion of a BPM can be calculated

using the kinematic model (2) with control inputs Ux, Uy, (Ux = U�cosθ,Uy = U�sinθ). The con-
trol function tends to pick up the control input that enables a BPM to be located at the control-

lable region (non-distorted regions) where the direction of the generated electric field matches

with the direction of the control input. The objective function can lead a BPM to a goal posi-

tion using the heading function since it enables a BPM to steer towards the goal. To make a

BPM move a longer distance, we include the movement function in the objective function.

The sum of each function in (5) will be computed with respect to the position of a BPM, the

goal position, and boundary distance information, as shown in Fig 5A. The heading function is

to find the most favorable input direction which has the smallest ϕi by calculating the angle at

pi in Fig 5A as follows,

heading Ui; yið Þ ¼ 1 �
�i
p

ð6Þ

A small ϕ means that a BPM is closely aligned to the direct course to the goal. The com-

puted cost is shown in Fig 6A. The θ angle inputs (ranged from 0˚ to 90˚) have the highest cost

Fig 5. Processing to extract risk control inputs using modified VFH. (a)BPM situated in environment with an obstacle, the pi is the position by input (Ui,

θi), (b)The vector histogram of boundary distance within safe range in (a), (c)Contour graph of the VFH function cost.

https://doi.org/10.1371/journal.pone.0185744.g005
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when the goal is located as shown in Fig 5A. The cost of movement function is given as,

movementðUi; yiÞ ¼ b4ts
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

x þ U2
y

q
=distmax ð7Þ

where distmax = β4Umax
ffiffiffi
2
p

is the maximum movement from a maximum input voltage Umax

on both axes for one interval. For the movement function, higher voltages have higher costs

regardless of θ, as indicated in Fig 6B, because the displacement of a BPM is proportional to

the magnitude of an input voltage.

Comparing with previous work [21, 22], the C-space is not suitable to check the collision in

clearance function due to mobility of obstacles and computation time for the dynamic obstacle

avoidance algorithm. Herein, the boundary distance (BD) from the center of a BPM is used to

evaluate the potential risk of collision with obstacles. The instant boundary distance makes it

possible to calculate the closest distance between the next expected position of a BPM under

the control input and obstacles. The cost of clearance is 1.0 in the collision free case and 0 for a

collision as explained in Fig 6C. For the rest of the cases, the cost of clearance is computed as

follows,

clearance Ui; yið Þ ¼ 1 �
BDðyiÞ � b4Uits

safe range
ð8Þ

Fig 6. Contour graph for calculation for final control input. (a)Result of heading function, (b)Result of movement function, (c)Result of clearance

function, (d)Result of control function, (e)Result of the objective function by the sum of all functions from (a-d) before combining VFH cost (Fig 5C), (I1:the

chosen control input), (f)Recalculated result after combining VFH cost to (e)(I2: the recalculated control input after combining VFH).

https://doi.org/10.1371/journal.pone.0185744.g006
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In case of the control function, it is effective to adapt the gradient profile characterized

around an obstacle obtained from the COMSOL Multiphysics simulation (Fig 4). Thus, the

control function computes the controllability of a BPM at the determined position by the con-

trol inputs (U, θ) as follows,

control Ui; yið Þ ¼ 1 �

P
degðpi; obstacleÞ

2p
ð9Þ

where the deg function computes how large area has non-uniform electric field gradient from

the predicted position of BPM by dynamic obstacles. If the estimated position by the control

inputs is near the outside of the distorted gradient boundary, the control function has higher

cost. The total resultant cost is depicted in Fig 6D.

After the objective function is computed as shown in Fig 6E, the last step is to find the opti-

mal control input using

InputðU; yÞ ¼ maxðff ðUi; yiÞ � vðUi; yiÞ : 1 � i � MgÞ ð10Þ

where M is the total number of candidate control inputs. By combining the main objective

function f(U, θ)with the function ν(U, θ), our approach can choose the control input which

enables a BPM to avoid the approaching obstacles in advance. For instance, the control input

I1 in Fig 6E is chosen as a result of using only the objective function. Under this input, the

BPM moves toward the obstacle because there is a distance between the BPM and the obstacle.

However, if the obstacle is moving fast towards the BMP, there will be a high probability for

the BPM to collide with the obstacle under the control input II. On the other hand, the pro-

posed method excludes the occupied input angles that has 0 value in ν(U, θ). As a result, the

control input I2 is selected by choosing the highest peak value in Fig 6C. The resultant perfor-

mance can be different depending on tuning the weighting parameters γ, δ, ω, and σ in (5). In

Fig 6A and 6C, the weight values are equal to 0.5.

As a summary, the integrated function will choose the safe control input among the avail-

able inputs using the BD data at the instant position of a BPM through implementation of the

algorithm in real- time and the BPM moves toward the goal position.

Danger index for evaluation of performance. In order to review the performance of the

proposed method in different conditions, the danger index was used as an appropriate crite-

rion to evaluate the potential collision risk by the chosen inputs. The danger index is one of

general quantitative methods in robotics for safety strategy. To quantify the danger index,

there are two elements to evaluate the potential collision risk with obstacles. The first factor is

the relative distance between a BPM and obstacles. The distance with obstacles is important to

prevent collision events. The BPM can avoid collision as long as the BPM maintains a suffi-

cient distance with obstacles. Thus, we can use the distance information from experiment

results to calculate the criteria

gD DBOð Þ ¼

0 if DBO � Dmax

k
1

DBO
�

1

Dmax

� �

if DBO < Dmax

8
><

>:

9
>=

>;
ð11Þ

where k ¼
Dmax

Dmin
; Dmin ¼ RBPM�kv þ dself ; kv ¼

�Vobs
�VBPM

where DBO is the distance between the BPM and the obstacle, Dmin is the minimum allowable

distance between the BPM and the obstacle. The Dmin was calculated using the radius of a
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BPM and the displacement of self-actuated BPM. The parameter kv represents the ratio of

average velocity of an obstacle to the average velocity of a BPM.

Although the given control input enables a BPM to keep away from obstacles, the moving

obstacle can intercept and move close to the BPM during experiments. In such a case, however,

if the motion control can steer the BPM to escape the area, the collision risk will decrease.

Therefore, we regarded the relative angle of the control input as the second factor. The poten-

tial risk of the second factor can be evaluated as followed

gA ACOð Þ ¼

0 if ACO � Ablock=2þ Da

ACO

AblockðDBOÞ=2þ Da
if ACO < Ablock=2þ Da

8
<

:

9
=

;
ð12Þ

where ACO is the gap of the angle between the control input direction and the heading angle

from the BPM to the center of an obstacle, Ablock is the blocking angle between an obstacle and

the center of the BPM. Therefore, if the control input steers a BPM away from the obstacle, the

collision risk will become small.

The product-based danger index is then computed as a product of these contributing fac-

tors that are scaled:

danger index ¼ gDðDBOÞ � gAðACOÞ ð13Þ

The danger index is indicated within the range 0 to 1. A high danger index occurs when

both of the distant factor and the relative angle factor have high potential risk. After the data

were obtained from experiment results, the danger index was computed with respect to time.

Experimental setup

The algorithm was demonstrated with artificial dynamic obstacles that were manually con-

trolled by a user in experiments. The dynamic obstacles were coated with nickel; thus, they

were controllable using magnetic fields. Our experimental system consists of a vision system

to track a target BPM and to recognize an environment in real-time.

Preparation of BPMs & dynamic obstacles. To create BPMs, S. marcescens were attached

on the surface of the microfabricated structures with the dimensions of 25 × 20 μm2 and 3 μm

thickness. The patterned microstructures were made of SU-8 and there was a dextran sacrifi-

cial layer under the structures to release BPMs in the fluids after blotting. More detailed infor-

mation is in [22] (see S5 File also).

For creating moving obstacles, there were two main steps to fabricate triangular dynamic

obstacles. The first step was to use the standard photolithography to make SU-8 bodies of

dynamic obstacles. We used chrome mask with equilateral triangle patterns with the length of

43 μm for each side. The triangular dynamic obstacles have a thickness of 3 μm and can be

released using a dextran layer, same as the BMPs. To enable magnetic control, Nickel pellets

(99.995%, Kurt J.Lesker, PA, USA) were deposited on the structures using chemical vapor

deposition at a chamber with a rate of 0.1–0.5 Å/s and pressure of 10−7 torr.

After depositing a 200 nm nickel film on the top of structures, they were magnetized by

placing the structures overnight underneath a permanent neodymium-iron-boron magnet

(K&J Magnetics, Pipesville, PA) which has surface field strength of 160.1mT. Before we used

the dynamic obstacles in experiment, the magnetized nickel coated obstacles were released in a

petri dish that was filled with motility buffer (0.01 M potassium phosphate, 0.067 M sodium

chloride, 10−4 M ethylendediaminetetraacetic acid (EDTA), 0.01 M glucose, pH 7.4). Then, the

undamaged magnetic dynamic obstacles were transferred, via micro pipetting, from the petri

dish to the experimental chamber where experiments were performed.
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System design for experiment. The experimental system setup is composed of a CMOS

camera installed on an inverted microscope (Olympus IX50), an electrokinetic chamber, an

electromagnetic coil stage, two power supplies (Ametek XTR 100–8.5) for a BPM, two power

supplies (GW INSTEK APS-1102) for dynamic obstacles, an extra power supply for z-coil on

stage, and DAQ board (NI DAQ SCB68). Fig 7 shows the experimental setup.

The electrokinetic chamber is the main workspace where a BPM and nickel coated obstacles

were placed. The chamber was located in the center of the electromagnetic coil stage. The elec-

tromagnetic coil stage consists of two pairs of electromagnetic coils and connected to two

power supplies to generate magnetic fields. To detach the non-movable dynamic obstacles

from the bottom surface due to the weight and friction between the glass substrate and SU-8

bodies, the z-coil was applied to generate lift force.

In the experimental chamber, direct current electric fields were generated via agar salt

bridges, Steinberg’s solution (60 mM NaCl, 0.7 mM KCl, 0.8 mM MgSO4�7H2O, 0.3 mM

Fig 7. Experimental equipment and control strategy.

https://doi.org/10.1371/journal.pone.0185744.g007
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CaNO3�4H2O) and platinum wires (Fig 7). The agar salt bridges were installed to prevent con-

tamination of possible electrode byproducts. Two pairs of platinum wires were fixed in parallel

in order to generate electric fields in multiple directions; this allows for the control of a BPM

by Ux, Uy on x-axis and y-axis. The control input voltages are determined autonomously by

our algorithm. We set the maximum magnitude of the resultant voltage to be 20 V/cm. The

chamber was filled with a motility buffer and 0.05% polyethyleneglycol (PEG).

Manual control of dynamic obstacles was implemented by applying magnetic fields. The

strength of the applied magnetic field at the center of the chamber ranges from 1–5 mT; the

strength of the field depends on the applied voltage. The velocity of the obstacle was varied

depending on the strength of magnetic fields. The input voltage for moving obstacle ranges

from 15–20 V. We tried to move obstacles to intercept a BPM by changing the direction of the

magnetic field and the magnitude of the input voltage while the BPM approached the goal

position in the experiment. The designed obstacles were not manipulated by dielectrophoretic

force and it was confirmed through a simple experimental test.

A target BPM was traced based on a region detection method using image processing. Once

the target BPM was distinguished on the image by tracking algorithm after setting an initial

reference position for the BPM, the rest of binary image were used to calculate BD. All image

processing and the computation of our algorithm were carried out with a sampling time of

0.16s. The stochastic model parameters β1, β2, β3, and β4 were chosen after observing the

motion of the BMP for 2–3 min and then used in the algorithm as constant values.

Results

In experiments, different propertied BPMs were used and the input voltage for dynamic obsta-

cles was changed during the experiments to generate different velocities.

Single dynamic obstacle avoidance

In the first experiment, we demonstrated our suggested obstacle avoidance approach in the

environment where there was one moving obstacle. The goal position was chosen manually

and located at the opposite side across from the dynamic obstacle in the experiment (see S1

File). The weighting parameters γ, δ, and σ were 0.5 and ω of the clearance function was 0.7 in

the objective function. In the case of the stochastic model, the parameters β1, β2, β3, and β4
were determined as -6.27, 1.83, 0.02 and 0.61, respectively using the trajectories of the BPM

before running the algorithm. The safe range for the redefined v(U, θ) is 80 μm.

After obtaining all necessary parameters, the BPM was controlled by the proposed approach

to reach the goal position without collision, as shown in Fig 8A. A single dynamic obstacle

(D1) moves toward the BPM from the initial position at to (red triangle in Fig 8A). At t = 8.96s,

the obstacle was moving closer to the BPM, as a result, the BPM was steered away from the

obstacle by the computed control inputs. When the BPM passed the obstacle, we changed the

moving direction of the obstacle at t4 = 11.20s and returned it to the initial position at t8 =

20.16s. Even though the obstacle was behind the BPM during t4—t8, the algorithm computed

the control inputs that allowed the BPM to maintain a sufficient distance from the obstacle.

To do so, the control inputs induced a wide curve trajectory to reduce the potential risk by

the following obstacle. The determined control input was explained in Fig 8B. The magnitude

of the resultant voltage was kept at the maximum value of 20 V/cm for the duration of the

experiments.

The velocities of BPM and the obstacle are described in Fig 9A and 9B. The average velocity

of the BMP and the obstacle were 21.3 μm/s and 20 μm/s respectively. We steer the obstacle

for interception when the BPM moved close to the obstacle.
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The corresponding control input is plotted based on its angle gap from the heading angle

towards D1 from the center of the BPM, and the distance between the BPM and D1 was indi-

cated in Fig 9C. According to Fig 9C, the wide steering control was chosen when the distance

between the BPM and D1 was within 190 μm. On the other hand, the control input had a

small angle gap with the obstacle when the obstacle was outside of 200 μm distance from the

BPM.

To analyze these characteristic of the control inputs with respect to the danger index,

gA(ACO) and gD(DBO) were computed as shown in Fig 9D. In the case of gD(DBO), there are sev-

eral peaks from 13s to 17s due to the high velocity of the obstacle. The value for gA(ACO), on

the other hand, was 0 for the entire duration of the experiment. As a result, the product-based

danger index (13) is also 0 for the entire experiment which means the corresponding control

inputs did not have any potential risks.

Avoidance motion under long term disturbance of obstacle

In this experiment, the proposed approach was implemented under longer following obstacle

(see S2 File). All required parameters are shown in S1 Table (Exp2). The weight parameter σ
had a relative high value compared with other weights. The weight parameters in the move-
ment function have the smallest values. The safe range was 100 μm. The initial positions of the

BPM and the dynamic obstacle (D1) were on the right side and the goal is at the left top.

At the beginning, the BPM headed toward the goal with slight upward direction and D1

slowly moved left parallel with the BPM (Fig 10A). The velocity of D1 was increased to 57 μm/

s at t3—t4. Then, we tried to make D1 intercept the BPM. The BPM maintained a distance with

D1. When D1 stopped at t6, the BPM moved upward to approach the goal. At 27s, D1 was

reactivated to intercept the BPM. Thus, the algorithm changes the control inputs to allow the

BPM to detour and avoid collision at t9 (Fig 10A). The wide detour trajectory might be caused

Fig 8. Experimental result of dynamic obstacle avoidance using a single obstacle. (a)Trajectories of the BPM and the dynamic obstacle (D1) (see

also S1 File), (b)Control inputs on x-axis and y-axis in experiment. Ux represents voltage input on x-axis, Uy represents input voltage on y-axis, and |U|

represents the magnitude of the resultant input voltage. The scale bar represents 20μm and ti, t*i share the same time.

https://doi.org/10.1371/journal.pone.0185744.g008
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by the control function and the redefined VFH because the control function has high weight

and tends to steer the BPM to empty space. In addition, the v(U,θ) function precludes the

BPM from heading to the valley occupied by the obstacle. At the end, the BPM successfully

reached the goal location without collision.

The BPM and the moving obstacle had the average velocities of 16 μm/s and 22 μm/s,

respectively. The average distance maintained between the BPM and D1 is 30 μm under the

applied control inputs, as shown in Fig 10B. In case of the danger index, the potential risk is

Fig 9. Analysis of experimental result data. (a)The velocity of the BPM, (b)The velocity of the dynamic obstacle (D1), (c)The control input depending on

distance between the BPM and D1, with the gap between control input direction and the location angle of D1 from the BPM, (d)Danger index from the gap

angle factor function gA(ACO) and the distance factor gD(DBO).

https://doi.org/10.1371/journal.pone.0185744.g009
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computed as shown in Fig 10C. The danger index was low except for the moment when D1

stopped suddenly after it moved close to the BPM. However, after that moment, we can con-

firm that the algorithm performed safe control motion with lower danger index for 22–37s in

Fig 10C. The average danger index is 0.15.

Fig 10. Experiment of avoiding obstacle following in parallel. (a)Trajectories of the BPM and dynamic obstacle (see also S2 File), (b)

Control input voltages on x-axis and y-axis in experiment, (c)Resulting danger index using gap angle factor and distance factor, the scale bar

represents 20 μm.

https://doi.org/10.1371/journal.pone.0185744.g010
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Compared with the previous experiment, the dynamic obstacle attempted to intercept the

BPM in a manner which presented higher risk for collision. Nonetheless, the algorithm com-

pensated for the higher risk and successfully guided the BMP to avoid the dynamic obstacle.

Avoidance motion using strong self-actuated BPMs. To demonstrate the controllability

of our algorithm, we conducted several experiments using BPMs with strong self-actuated

motion which increase uncertainties in motion control (see S3 File).

The column of ‘Exp3’ in S1 Table indicates all parameters for the algorithm with a safe

range of 100 μm. The BPM had a large β3 value which enables the BPM to have a fast angular

velocity. Also, the parameters relative to translational motion are large comparing with other

cases.

The trajectories of the BPM and the dynamic obstacle (D1) are present in Fig 11A. The

BPM started at the right bottom corner and the goal was at the left top corner. During 0–10s,

the BPM and the D1 were position far apart. After 10s, the potential risk increased due to clos-

ing distance between D1 and the BPM. As the distance becomes smaller at 15s, the strong self-

actuated motion began to lead to a higher potential risk compared with the previous experi-

ments, as shown in Fig 11A and 11E. However, the BPM avoided collision due to the control

inputs computed using low danger index. While D1 stayed in front of the BPM, the BPM was

able to continuously dodge the moving obstacle in real-time. Notably, the BPM was waiting at

the right side of the goal area while D1 was occupying the goal location. Once D1 left from the

goal location, the BPM went to the goal position from the place where it waited; much like a

midfielder passing the defenders to score a goal. All the control inputs are depicted in Fig 11B.

Regarding the distance between the BPM and D1 in Fig 11C, the chosen control inputs ranged

in the avoiding angle from 19˚ to 180˚ and populate around 100˚. Even though there was

enough distance such as 100–250 μm between the BPM and D1, the control input gave wide

spatial motion with the obstacle considering the strong self-actuation in terms of angle.

Fig 11. Experiment of using strong self-actuation BPM. (a)Trajectories of the BPM and dynamic obstacle (see also S3 File), (b)The control input

voltages in experiment, (c)The control input depending on distance between the BPM and D1, with the gap between control input direction and the location

angle of D1 from the BPM, (d)Velocities of the BPM and the dynamic obstacle, (e)Resulting danger index using gap angle factor and distance factor, the

scale bar is 20 μm.

https://doi.org/10.1371/journal.pone.0185744.g011
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The velocity of the BPM and the dynamic obstacle are shown in Fig 11D. Running the

obstacle avoidance algorithm, the BPM kept average distances of 62 μm from the obstacle. Due

to the time-varying velocity of the obstacle, the given control input induces low values of dan-

ger index as explained in Fig 11E. There is no potential risk most of times with an average dan-

ger index of 0.23.

Through this experiment, the capability of our suggested approach was examined and veri-

fied. This demonstrated safe motion planning of self-actuated BPM in the presence of an

aggressive dynamic obstacle.

Multiple dynamic obstacle avoidance

So far, our experiments demonstrated dynamic obstacle avoidance using single dynamic obsta-

cle. To ensure that our method is usable with multiple dynamic obstacles, we carried out two

experiments, each using two identical dynamic obstacles. Due to the use of a global magnetic

field and the motion of the two identical obstacles will be the same. The all parameters are indi-

cated on S1 Table.

The first experiment (Exp4) started with two obstacles positioned at the midpoint between

the BPM and the goal location (see S4 File). Fig 12 illustrates the resultant trajectories of the

BPM and the two obstacles (D1, D2). Up until 16s, the BPM was moving closer to D1 and D2

as described in Fig 12. When the BPM encountered the nearest obstacle D1, the derived con-

trol input avoided the valley placed between the D1 and D2 because the valley was regarded as

a dangerous area by clearance function and v(U,θ). Thus, the BPM headed to the upper path

and got out of the valley as depicted in Fig 12. We tried to move D1 and D2 backward in order

to intercept the BPM again. However, D1 and D2 bonded together due to magnetic force.

After their bonding, they moved together as one larger obstacle.

In the second case, two obstacles were initially located at separate places. D1 intercepted the

BPM’s motion from the bottom side at t1 and t3 as illustrated in Fig 13. After the BPM cleared

Fig 12. Experiment of using multiple obstacles. (see also S4 File). The scale bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0185744.g012
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D1 by moving downward, D2 came down from the top to attempt an interception. After 52s

(t8), D2 was within the range to present a potential risk. The BPM could not approach the goal

location because the D2 occupied the goal area. When D2 moved away from the goal, the BPM

was rotating around the region at t10—t12 and eventually reach the goal position.

The danger indexes for each obstacle were calculated (Fig 14). Fig 14A shows the danger index

of the first case. There was low a potential risk due to the wide detour path planning to avoid the

valley. Similarly, in the second case, the danger index was below 0.7 while the BPM avoided D1

and D2 (Fig 14B). Comparing to the first case, the second case has greater danger index.

In this experiment, we show that our autonomous motion strategy can guide a BPM to

avoid the interference from multiple dynamic obstacles and compute a safe trajectory to the

target position.

Conclusions

The dynamic obstacle avoidance approach was demonstrated by successfully guiding BPMs to

avoid multiple nickel coated dynamic obstacles. To successfully implement the algorithm in

experiments, we took into account the uncontrollable motion of BPMs and the distorted elec-

tric field near the obstacles. Our suggested objective function includes four functions for

extracting optimal control inputs. The sub functions of the objective function are heading,
movement, clearance, and control. The algorithm determines the safe motion control input that

maximizes four performance categories—goal arrival, no collision, speed, and controllability.

The exerted control inputs are selected from the admissible control input window during a

sampling time. Instead of adding other functions to the objective function, the redefined VFH

concept is utilized to eliminate control inputs which may lead to collision.

Fig 13. Experiment of using multiple obstacles. The scale bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0185744.g013
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Five experiments have been executed in different setup with various circumstances. More-

over, we used strong self-actuated BPMs in experiments in order to evaluate the robustness of

the control system. Our proposed approach allows the target BPMs to arrive at the goal posi-

tions without collision with single or multiple dynamic obstacles. To evaluate the performance

of each result motion, the danger index was applied to compare the potential risk caused by

the chosen control input. The danger index is computed using two factors that are how much

the control input can steer the BPM from the obstacle and what is the distance between the

BPM and obstacles. Through danger-evaluation method, we can quantify the performance of

the results in terms of safety. All experiments have low average danger index values.

We believe the successful implementation of the dynamics obstacle avoidance algorithm

demonstrated the viability for using autonomous systems to control microrobots for accurate

navigation. For future work, the dynamic obstacle algorithm will be implemented in an envi-

ronment with unpredictable moving obstacles.
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