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A panoramic continuous 
compressive beamformer with 
cuboid microphone arrays
Yang Yang1, Zhigang Chu2, Yong-Xin Yang2, Zhongming Xu2 & Yongxiang Zhang2

Compressive beamforming is a powerful approach for the direction-of-arrival (DOA) estimation 
and strength quantification of acoustic sources. The conventional grid-based discrete compressive 
beamformer suffers from the basis mismatch conundrum. Its result degrades under the situation 
that sources fall off the grid. The existing continuous compressive beamformer with linear or planar 
microphone arrays can circumvent the conundrum, but work well only for sources in a local region. Here 
we develop a panoramic continuous compressive beamformer with cuboid microphone arrays based 
on an atomic norm minimization (ANM) and a matrix pencil and paring method. To solve the positive 
semidefinite programming equivalent to the ANM efficiently, we formulate a solving algorithm based 
on the alternating direction method of multipliers. We also present an iterative reweighted ANM to 
enhance sparsity and resolution. The beamformer is capable of estimating the DOAs and quantifying 
the strengths of acoustic sources panoramically and accurately, whether a standard uniform or a sparse 
cuboid microphone array is utilized.

Compressive sensing1–3 based beamforming is an emerging and powerful approach for the direction-of-arrival 
(DOA) estimation and strength quantification of acoustic sources, which is also simply called compressive 
beamforming4,5. It measures signals with an array of microphones, and then processes the signals to retrieve the 
direction and strength information of sources by exploiting the source sparsity. Numerous applications can be 
encountered, for example, noise source identification in environmental protection, target detection in military 
surveillance, fault diagnosis in equipment maintenance, speaker tracking in video conference, etc.

In conventional compressive beamformer, the DOA domain is gridded/discretized into a finite set of look 
directions and all the sources are assumed to fall in these look directions. An underdetermined linear system of 
equations is established relating the signals measured by microphones to the unknown source distribution. It is 
solved by imposing a sparsity constraint. Under a single snapshot, that is minimizing the 1 norm of the vector 
composed by the source strengths in all the look directions. Under the multiple snapshots, the 1 norm of the 
vector becomes the 

2,1 norm of a matrix. Its results become inaccurate when the DOAs of sources do not con-
form with these look directions. The problem is termed as basis mismatch4,6 and can be often encountered in 
practical applications. Using finer grids mitigates the problem but increases the complexity of computation. More 
seriously, grid refinement makes the coherence of the measuring process increase, which can cause offset in the 
estimates4.

Inspired by the continuous methods in the field of frequency retrieval7–14, some scholars have recently devel-
oped the continuous compressive beamformer for the DOA estimation and strength quantification of acoustic 
sources. Based on the minimization of the atomic norm of source strength and the polynomial rooting method, 
Xenaki et al.15 developed a one-dimensional single-snapshot continuous compressive beamformer for the meas-
urement with linear microphone arrays. Park et al.16 extended Xenaki et al.’s beamformer to the multiple-snapshot 
case via the group atomic norm. The authors17–20 developed a two-dimensional single-snapshot continuous com-
pressive beamformer for the measurement with rectangular microphone arrays based on the minimization of the 
atomic norm of microphone signal induced by sources and the matrix enhancement and matrix pencil method21, 
and extended it to the multiple-snapshot case via the group atomic norm and the matrix pencil and pairing 
(MaPP) method13,14. Treating the DOAs of sources as a continuum, these beamformer can sidestep the basis mis-
match conundrum fundamentally. Moreover, the multiple-snapshot data help to obtain more accurate and robust 
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results compared with the single-snapshot ones16,20. In the linear array, there are only a line of microphones. 
In the rectangular array, there are only a plane of microphones. When two sources distribute symmetrically 
about the line or the plane, they induce the same signals at each microphone, and thus will not be distinguished. 
Consequently, the measurement with linear microphone arrays requires that the sources must be in front of the 
array and coplanar with the microphones. The measurement with rectangular microphone arrays requires that 
the sources must be in front of the array. That means the existing continuous compressive beamformer cannot 
yet panoramically estimate the DOAs and quantify the strengths of acoustic sources. This paper is dedicated to 
realizing this function with a cuboid microphone array. It is impossible for two sources to induce the same signals 
at each microphone in a cuboid microphone array. Therefore, the panoramic estimation will be allowed. The work 
is of great significance because the sources scatter throughout the whole three-dimensional space in a mass of 
practical situations.

The key contributions are as follows: (1) we develop a panoramic continuous compressive beamformer with 
cuboid microphone arrays under the multiple-snapshot data model. Four steps are involved. First, an atomic 
norm minimization (ANM) is defined to denoise the measured signal and get the microphone signal induced 
by sources. Then, a positive semidefinite programming equivalent to the ANM is formulated and solved. 
Subsequently, the MaPP method is utilized to process the result of the positive semidefinite programming and 
estimate DOAs. Finally, the source strengths are quantified based on the estimated DOAs and the obtained micro-
phone signal from sources. (2) Based on alternating direction method of multipliers (ADMM)22–24, we formulate 
a reasonably fast algorithm to solve the positive semidefinite programming. (3) We enhance sparsity and reso-
lution via an iterative reweighted ANM (IRANM). (4) We investigate the applicability of the beamformer to the 
sparse cuboid microphone arrays, which are constructed via randomly retaining microphones from the standard 
uniform cuboid microphone arrays.

This paper is directly inspired by refs13,14, where a multidimensional super-resolution frequency retrieval 
approach was proposed. The main connections and differences between them are as follows: (1) refs13,14 focus 
on the problem of frequency retrieval, whereas this paper solves the problem of DOA estimation and source 
strength quantification. (2) The ANM and IRANM in this paper are enlightened by the convex relaxation method 
and the reweighted trace minimization method in refs13,14. Differently, the methods in refs13,14 are based on the 
single-snapshot data model, whereas the methods in this paper are based on the multiple-snapshot one. As 
proved by the literatures in one- and two-dimensional fields5,10,12,16,20, the multiple-snapshot method performs 
better. (3) In this paper, we deduce and develop an algorithm based on ADMM to solve the positive semidefinite 
programming, and demonstrate its advantage over the IPM based SDPT3 solver. References13,14 did not do this 
work. (4) Reference14 only introduces the concept of permutation matrices abstractly when describing the MaPP 
method, whereas this paper presents the concrete expressions. (5) In this paper, we investigate the effect rule of 
the estimated value of noise level on the results and give out advices. References13,14 did not do this work.

Results
Accurate DOA estimation and strength quantification function of the panoramic continuous 
compressive beamformer.  Here, we show the function of the developed beamformer via a simulation 
example. Assume six sources. Their DOAs, expressed by (θ, φ) with θ ∈ [0°, 180°] being the elevation angle and 
φ ∈ [0°, 360°] being the azimuth angle, are (45°, 90°), (45°, 120°), (90°, 180°), (120°, 180°), (135°, 270°) and (155°, 
290°), in turn. Their root mean square strengths, expressed by =s Ls /rms 2  with ∈ ×s C L1  being the row vector 
composed by the source strength under each snapshot, C being the set of complex numbers, L being the total 
number of snapshots and ||·||2 being the 2 norm, are 100 dB, 98 dB, 96 dB, 94 dB, 92 dB and 90 dB (referring to 
2 × 10−5 Pa). The frequency of emitted signal is 4000 Hz. Figure 1 presents the utilized microphone arrays and the 
reconstructed source distributions. A standard uniform cuboid array with 343 microphones (Fig. 1a) is utilized 
to obtain Fig. 1c,e,g, while a sparse cuboid array with 170 microphones (Fig. 1b) is utilized to obtain Fig. 1d,f,h. 
Figure 1a,b also presents the panoramic scene of sources. Figure 1c,d corresponds to the conventional compres-
sive beamformer. The grid is [0°: 6°: 180°] × [0°: 6°: 360°]. Obviously, only the third and fourth sources that lie on 
the grid are accurately identified. For the other sources that lie off the grid, leakage occurs, which leads to inaccu-
rate DOA estimations and peaks seriously deviating from the true source strengths. In contrast, as shown in 
Fig. 1e–h, the developed beamformer estimates the DOA and quantifies the strength of each source accurately. To 
sum up, the developed panoramic continuous compressive beamformer can conquer the basis mismatch conun-
drum, allowing accurate DOA estimation and strength quantification, whether a standard uniform or a sparse 
cuboid microphone array is utilized. Besides, Fig. 2 presents the result reconstructed by the two-dimensional 
continuous compressive beamformer with a rectangular microphone array. Only sources whose elevation angels 
lie in [0°, 90°] are accurately identified. This demonstrates the necessity of developing the panoramic continuous 
compressive beamformer to realize the panoramic DOA estimation and strength quantification of acoustic 
sources. To obtain Figs 1 and 2, multiple snapshots are adopted. An example is also exhibited in Supplementary 
Note 1 to again demonstrate the advantages of the multiple-snapshot data model over the single-snapshot one, 
which has been demonstrated and explained in one- and two-dimensional fields5,10,12,16,20.

Efficiency advantage of our ADMM based algorithm.  To obtain Fig. 1e,f, we solve the positive sem-
idefinite programming equivalent to the ANM by the off-the-peg SDPT3 solver in CVX toolbox25, which uses the 
interior point method (IPM)26. To obtain Fig. 1g,h, we solve the positive semidefinite programming by our 
ADMM based algorithm. The accurate DOA estimation and strength quantification shown in Fig. 1e–h demon-
strates that both the solver and our algorithm are effective. Employ −P̂ P P/F F, θ φ φ− θˆ ˆ I[ , ] [ , ] /2F

 and 
−ŝ s s/rms rms rms2 2

 to measure the microphone signal reconstruction error, the DOA estimation error and the 
strength quantification error. Thereinto, ||·|||F is the Frobenius norm, ∈ ×P̂ CABC L and ∈ ×P CABC L are the matri-
ces of the reconstructed and the true microphone signals respectively, A, B and C are the row, column and layer 
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numbers of the cuboid microphone array, ABC is the total number of microphones, θ ∈ˆ RI and θ ∈ RI are the 
vectors of the estimated and the true elevation angles respectively, R is the set of real numbers, I is the total num-
ber of sources, φ ∈ˆ RI and φ ∈ RI are the vectors of the estimated and the true azimuth angles respectively, and 

Figure 1.  Microphone arrays and reconstructed source distributions. (a) The standard uniform cuboid 
microphone array for (c,e and g). (b) The sparse cuboid microphone array for (d,f and h). ● Represents the 
microphone and ○ represents the source. Source distributions reconstructed by (c,d) the conventional and 
(e–h) the developed panoramic continuous compressive beamformer. The positive semidefinite programming 
equivalent to the ANM is solved by (e,f) the SDPT3 solver in CVX toolbox and (g,h) our ADMM based 
algorithm. In (c–h), the reconstructed (*) and the true (○) outputs are scaled to dB via referring to their 
respective maximum, and at the same time, referring to 2 × 10−5 Pa, the reconstructed maximum is labeled on 
the top, so do in the subsequent maps.
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∈ŝ Rrms
I and srms ∈ RI are the vectors of the quantified and the true root mean square strengths respectively. 

Table 1 lists the values of these errors corresponding to Fig. 1e–h and the consuming time of the IPM based 
SDPT3 solver and our ADMM based algorithm. Apparently, in terms of microphone signal reconstruction and 
strength quantification, the panoramic continuous compressive beamformer with the ADMM based algorithm 
has slightly lower accuracy than the one with the IPM based SDPT3 solver, whereas in term of DOA estimation, 
they have almost the same accuracy. The consuming time of our ADMM based algorithm is only about 1/7 of the 
one of the IPM based SDPT3 solver at most. Besides, when the dimensionality of the problem increases, for exam-
ple, A = B = C = 8, the IPM based SDPT3 solver fails to obtain effective solutions, whereas our ADMM based 
algorithm still works well.

To test the convergence of our ADMM based algorithm, we plot the curves of the error −P̂ P P/F F vs. the 
number of iterations in Fig. 3. The parameter setup of sources keeps the same as in Fig. 1. Obviously, whether the 
standard uniform or the sparse cuboid microphone array is utilized, a plateau is reached after only a few dozens 
of iterations, which means our algorithm can converge fast. The errors after convergence are 3.38% and 6.38% 
respectively for the standard uniform cuboid microphone array and the sparse one, which are larger than the 
errors of the IPM based SDPT3 solver (2.45% and 3.32%). Changing the parameters, such as number and DOAs 
of sources, frequency, SNR and so on, to conduct simulations, similar phenomena can be obtained. See 
Supplementary Note 2. These phenomena demonstrate the inherent characteristic of ADMM that it converges 
fast to a moderate accuracy, but slowly even impossibly to an extremely accurate solution11,22. Fortunately, the 
moderate accuracy is typically sufficient in practical applications.

Sparsity and resolution enhancement via IRANM in the case of small source separation.  Define 
the minimum separation among sources as

Figure 2.  Source distribution reconstructed by two-dimensional continuous compressive beamformer.

Microphone array Approach to solve ANM
−P̂ P F
P F

θ φ θ φ−ˆ ˆ

I
F

2
[ , ] [ , ] −ˆrms rms

rms

s s 2
s 2

Consuming 
time/s

Standard uniform cuboid 
array with 343 microphones

IPM based SDPT3 solver (Fig. 1e) 2.45% 0.06% 1.95% 1864

ADMM based algorithm (Fig. 1g) 3.70% 0.06% 3.36% 169

Sparse cuboid array with 170 
microphones

IPM based SDPT3 solver (Fig. 1f) 3.32% 0.04% 2.76% 1863

ADMM based algorithm (Fig. 1h) 7.17% 0.05% 6.84% 270

Table 1.  Microphone signal reconstruction error, DOA estimation error and source strength quantification 
error corresponding to Fig. 1e–h, and consuming time of IPM based SDPT3 solver and ADMM based 
algorithm.

Figure 3.  Curves of −P̂ P P/F F vs. number of iterations in our ADMM based algorithm.
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Δ = − − −
′∈

≠ ′
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

t t t t t tmin max{ , , },
(1)

i i I
i i

i i i i i imin , {1,2, , } 1 1 2 2 3 3

where both i and i′ are the source indices, and t1i(t1i′), t2i(t2i′) and t3i(t3i′) are the projections of the DOA of the ith 
(i′th) source on the x, y and z dimensions of the microphone array respectively. Denote by θi and φi the elevation 
and the azimuth angle of the ith source, Δx, Δy and Δz the microphone spaces, and λ the wavelength, then 

θ φ λ≡ Δt xsin cos /i i i1 , θ φ λ≡ Δt ysin sin /i i i2  and θ λ≡ Δt zcos /i i3 . A smaller minimum separation among 
sources that can be accurately identified means a higher resolution. Change the DOAs of the second, fourth and 
sixth sources assumed in Fig. 1 as (45°, 100°), (100°, 180°) and (140°, 275°) in turn. Namely, let the first and sec-
ond sources, the third and fourth sources, and the fifth and sixth sources close to each other. Δmin decreases from 
0.13 to 0.03. Figure 4 presents the reconstructed source distributions. The standard uniform cuboid array with 
343 microphones (Fig. 1a) is utilized to obtain Fig. 4a,c, while the sparse cuboid array with 170 microphones 
(Fig. 1b) is utilized to obtain Fig. 4b,d. Figure 4a,b corresponds to the ANM based panoramic continuous com-
pressive beamformer. It fails to identify all the sources accurately. The estimated number of sources in Fig. 4a is 
also more than the true one. In contrast, as shown in Fig. 4c,d, the IRANM based panoramic continuous com-
pressive beamformer estimates the DOA and quantifies the strength of each source accurately. The phenomenon 
demonstrates that IRANM can enhance sparsity and resolution, whether a standard uniform or a sparse cuboid 
microphone array is utilized.

Figure 5 plots the curves of the above errors vs. Δmin of the ANM and the IRANM based panoramic continu-
ous compressive beamformer. For each Δmin, the errors are measured over 20 Monte Carlo runs. Two sources that 
are separated by Δmin are generated in each run. The standard uniform cuboid array with 343 microphones is 
utilized to obtain Fig. 5a–c, while a sparse cuboid array with only 170 randomly retained microphones is utilized 
to obtain Fig. 5d–f. In term of reconstruction of P, Fig. 5a,d shows that the error of ANM is distinctly higher 
under Δ < . ABC0 7/min

3  compared to Δ ≥ . ABC0 7/min
3 , whereas the error of IRANM varies only slightly 

across all Δmin and is distinctly lower than the one of ANM. In term of DOA estimation, Fig. 5b,e shows that on 
one hand, the IRANM based panoramic continuous compressive beamformer has very low errors across all Δmin; 
on the other hand, compared to the former, the ANM based panoramic continuous compressive beamformer has 
distinctly higher errors under Δ < . ABC0 5/min

3  and almost the same errors under Δ ≥ . ABC0 5/min
3 . In term 

of strength quantification, Fig. 5c,f shows that the error of the ANM based panoramic continuous compressive 
beamformer is always higher than the one of the IRANM based panoramic continuous compressive beamformer, 
and that is particularly apparent under small Δmin. These phenomena demonstrate that the IRANM based pano-
ramic continuous compressive beamformer has the stronger denoising capability and the enhanced resolution 
compared to the ANM based one, allowing to reconstruct the microphone signal induced by sources as well as 
estimate the DOAs and quantify the strengths of small-separation sources more accurately, whether a standard 
uniform or a sparse cuboid microphone array is utilized.

Figure 4.  Reconstructed source distributions. (a,b) The ANM and (c,d) the IRANM based panoramic 
continuous compressive beamformer are utilized. (a,c) The standard uniform and (b,d) the sparse cuboid 
microphone array are utilized.
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Sparsity and resolution enhancement via IRANM in the case of underestimated noise level.  In 
above results, the noise level is estimated accurately. Namely, the estimated noise level ε is equal to the true one 
(the Frobenius norm of the true noise ∈ ×N CABC L). In practical applications, the noise is usually not explicitly 
known, and therefore, it is hard to let ε be equal to the true noise level. Figure 6a–d respectively presents the dis-
tributions reconstructed by the ANM based panoramic continuous compressive beamformer for the sources 
assumed in Fig. 1 when ε is . N0 25 F, . N0 5 F, N2 F and N4 F. In Fig. 6a, the estimated number of sources is 
more than the true one, and the DOA estimation as well as the strength quantification is wrong. In Fig. 6b, even 
though the estimated sources in the display dynamic range have the same number as the true ones, the DOA 
estimation as well as the strength quantification is still wrong. In Fig. 6c, the DOAs are accurately estimated. The 
source strengths are quantified as 98.98 dB, 96.71 dB, 94.22 dB, 91.71 dB, 89.11 dB and 86.17 dB in turn, which are 
1.02 dB, 1.29 dB, 1.78 dB, 2.29 dB, 2.89 dB and 3.83 dB lower than the true values. Distinctly, the weaker the source 
is, the more the quantified strength is lower than the true one. In Fig. 6d, the weakest source in (155°, 290°) has 
been lost. These phenomena demonstrate that for the ANM based panoramic continuous compressive beam-
former, an underestimated noise level will lead to a less sparse solution and thus a wrong identification and a 
reduced resolution, whereas an overestimated noise level will cause a too sparse solution by eliminating the weak 
sources. This is mainly because by underestimating noise level, partial noise is identified as sources, whereas by 
overestimating noise level, the weak sources are removed as noise. Figure 6e,f presents the source distributions 
reconstructed by the IRANM based panoramic continuous compressive beamformer when ε is . N0 25 F and 
. N0 5 F. Apparently, all the DOAs are estimated and all the strengths are quantified accurately, which means 

IRANM enhances the sparsity and resolution. The standard uniform cuboid array with 343 microphones is uti-
lized to obtain Fig. 6. Figure 7 presents the results when the sparse cuboid array with 170 microphones is utilized. 
It has the same rule as Fig. 6.

Discussion
In summary, we develop a panoramic continuous compressive beamformer with cuboid microphone arrays. It 
first denoises the measured signal and thus obtains the signal from sources by minimizing a sparse metric of 
source distribution in the continuous domain, for example, the atomic norm of the microphone signal induced 
by sources, then retrieves the DOA information via using the MaPP method to process the result of ANM, and 
finally quantifies the source strength according to the DOA information and the microphone signal from sources. 

Figure 5.  Error curves. (a,d) −P̂ P P/F F, (b,e) θ φ θ φ−ˆ ˆ I[ , ] [ , ] /2F
 and (c,f) −ŝ s s/rms rms rms2 2

 vs. 
Δmin. (a–c) The standard uniform and (d–f) the sparse cuboid microphone array are utilized.
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The beamformer can conquer the basis mismatch conundrum of the conventional grid-based discrete compres-
sive beamformer, allowing panoramic and accurate DOA estimation and strength quantification of acoustic 
sources, whether a standard uniform or a sparse cuboid microphone array is utilized.

To solve the ANM, we formulate a positive semidefinite programming. It is a convex optimization problem 
and can be solved by the off-the-peg IPM based SDPT3 solver in CVX toolbox. The solver trends to be slow 
and even ineffective for large-dimensionality problems. To overcome the limitation, we present a reasonably fast 
algorithm based on ADMM. By establishing another sparse metric, we also present the IRANM that can be sub-
stituted for ANM. Because the metric promotes the sparsity to a larger degree than the atomic norm, IRANM can 
enhance sparsity and resolution compared with ANM. For the sources with a small separation, the ANM based 
beamformer fails to estimate the DOAs and quantify the strengths accurately, whereas the IRANM based beam-
former succeeds. The beamformer takes the estimated noise level as an input. For the ANM based beamformer, 
overestimating the noise level may make the solution too sparse, for instance by eliminating sources of smaller 
strength. On the other hand, by underestimating the noise level, the solution may be less sparse than the actual 
solution, which will leads to inaccurate identifications and reduced resolution. In practical applications, when the 
noise is not explicitly known, in order to capture all the sources, we advise using a properly underestimated noise 
level and enhancing sparsity and resolution by IRANM.

The IRANM is solved only by the slow SDPT3 solver in this paper. We have not yet successfully developed a 
fast algorithm for it, even based on ADMM. The reason why IRANM cannot be solved accurately and robustly 
by ADMM can be explained as follows. IRANM is an iterative strategy. The weighting matrix utilized in cur-
rent iteration is calculated based on the results in the previous iteration. In each iteration, if the semidefinite 
positive programming is solved via ADMM, the inherent characteristic that ADMM cannot fast converge to an 
accurate solution11,22 will lead to a result with moderate accuracy. The error will affect the weighting matrix and 
thus burden the result with a larger error in next iteration. Consequently, as the iteration increases, the actually 
solved result deviates from the theoretical one more and more. In the future work, it is of significance to handle 
the problem. Besides, no experimental data are provided to support the claims in this paper. The accuracy of the 

Figure 6.  Reconstructed source distributions. (a–d) The ANM and (e,f) the IRANM based panoramic 
continuous compressive beamformer are utilized. ε is (a,e) . N0 25 F, (b,f) . N0 5 F, (c) N2 F and (d) N4 F. 
The standard uniform cuboid microphone array is utilized.
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method becomes lower as the SNR decreases. It is also of significance to conduct the experimental investigation 
and explore a new method that can still enjoy high accuracy even under very low, for example, negative, SNRs. 
Finally, it is also of interest to develop the panoramic continuous compressive beamformer with other micro-
phone arrays, for example, spherical ones, to realize the panoramic and accurate DOA estimation and source 
strength quantification.

Methods
Problem formulation.  Figure 8 depicts the measurement layout with a cuboid microphone array. (a, b, c) 
with a = 0, 1, …, A − 1, b = 0, 1, …, B − 1 and c = 0, 1, …, C − 1 indexes the microphone. (θi, φi) expresses the 
DOA of the ith source. Under the assumption of plane wave, the row vector ∈ ×p Ca b c

L
, ,

1  of the signal induced by 
sources at (a, b, c)th microphone under each snapshot can be modeled as

∑= π

=

+ +ep s ,
(2)a b c

i

I

i
j t a t b t c

, ,
1

2 ( )i i i1 2 3

where = −j 1 is the imaginary unit, = ∈ ×
s s ss [ , , , ] Ci i i i L

L
,1 ,2 ,

1 , si l,  expresses the strength of the ith source 
under the lth snapshot, which is the signal induced by the source at the (0, 0, 0)th microphone.

After forming the matrix =P p p[ ,0,0,0
T

0,0,1
T , …, 

−p p p, ,C0,0, 1
T

0,1,0
T

0,1,1
T , …, 

−p C0,1, 1
T , …, 

− −p p,B B0, 1,0
T

0, 1,1
T , …, 

− −p p p, ,B C0, 1, 1
T

1,0,0
T

1,0,1
T ,  … ,  

−p p p, ,C1,0, 1
T

1,1,0
T

1,1,1
T ,  … ,  

−p C1,1, 1
T ,  … ,  

− −p p,B B1, 1,0
T

1, 1,1
T ,  … ,  

− −p B C1, 1, 1
T ,  … , 

− −p p,A A1,0,0
T

1,0,1
T ,  … ,  

− − − −p p p, ,A C A A1,0, 1
T

1,1,0
T

1,1,1
T ,  … ,  

− −pA C1,1, 1
T ,  … ,  

− − − −p p,A B A B1, 1,0
T

1, 1,1
T ,  … , 

∈− − −
×p ] CA B C

ABC L
1, 1, 1

T T  and the column vector = π π −
t t t e ed( , , ) [1, , , ]i i i

j t j t A
1 2 3

2 2 ( 1) T
i i1 1  ⊗ [ π

e1, , ,j t2 i2

π −e j t B2 ( 1)i2 ]T ⊗ ∈π π −
e e[1, , , ] Cj t j t C ABC2 2 ( 1) T

i i3 3 , where (·)T and ⊗ denote the transpose and the Kronecker 
product operator respectively, we obtain

Figure 7.  Reconstructed source distributions. (a–d) The ANM and (e,f) the IRANM based panoramic 
continuous compressive beamformer are utilized. ε is (a,e) . N0 25 F, (b,f) . N0 5 F, (c) N2 F and (d) N4 F. 
The sparse cuboid microphone array is utilized.
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∑= .
=

t t tP d s( , , )
(3)i

I

i i i i
1

1 2 3

Denoting by ∈ ×N CABC L the additive noise, the measurement matrix ∈ ×⭑P CABC L is described by

= + .⭑P P N (4)

The primary focus of this paper is to retrieve the DOA and strength information of sources with P⭑ and the 
estimated noise level as inputs and without discretizing the target region into a grid. Equation (4) becomes 

= +Ω Ω Ω
⭑P P N  for sparse cuboid microphone arrays, where Ω denotes the set of the indices of the retained 

microphones, ∈Ω
|Ω|×⭑P C L denotes the matrix of the signals measured by the retained microphones, ∈Ω

Ω ×P C L 
denotes the matrix of the signals induced by sources at the retained microphones, ∈Ω

Ω ×N C L denotes the matrix 
of the noises born by the retained microphones, and |Ω| denotes the cardinality of Ω. This paper also focuses on 
the applicability of the developed beamformer to the sparse cuboid microphone arrays.

ANM.  Let = ∈ +s s Ri i 2
 and ψ = ∈ ×ss / Ci i i

L1 , where R+ is the set of positive real numbers and ψ = 1i 2
. 

We reformulate Eq. (3) as

∑ ψ= .
=

s t t tP d( , , )
(5)i

I

i i i i i
1

1 2 3

Under the continuous setting, θ φ λ≡ Δt xsin cos /1 , θ φ λ≡ Δt ysin sin /2 , θ λ≡ Δt zcos /3  and the elements 
in ψ all can be regarded as the continuous functions of θ and φ. In accordance to ref.27, ψt t td( , , )1 2 3  is the atom of 
the signal model in Eq. (5). The infinite atomic set is expressed as

θ φ λ θ φ λ θ λ

θ φ
ψ

ψ ψ
=








≡ Δ ≡ Δ ≡ Δ

∈ ° ° ∈ ° ° ∈ =








.×t t t
t x t y t z

dA ( , , )
sin cos / , sin sin / , cos / ,

[0 , 180 ], [0 , 360 ], C , 1 (6)
L1 2 3

1 2 3
1

2

The atomic 0 norm and the atomic norm of P are respectively defined as

∑ ψ=





=






.

ψ ∈

∈
=

+

s t t tP P dinf I ( , , )

(7)
t t t

s
i

i i i i idA,0 ( , , ) A

R
1

I

1 2 3
i i i i

i

1 2 3

and

∑ ∑ ψ=





=





ψ ∈

∈ +

s s t t tP P dinf ( , , ) ,

(8)
t t t

s
i

i
i

i i i i idA ( , , ) A

R

1 2 3
i i i i

i

1 2 3

where inf denotes the infimum. P A is a convex relaxation of P A,0
11,18,20.

Figure 8.  Measurement layout.
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Exploiting the source sparsity to solve Eq. (4) can denoise P⭑ and thus obtain P. P A,0 is the direct metric of 
source sparsity11,18,20. However, it is non-deterministic polynomial-time hard to solve Eq. (4) with the minimiza-
tion of P A,0 as a constraint. Replacing P A,0 with P A, we write the reconstruction problem of P as

ε= − ≤
∈ ×

ˆ ⭑P P P Parg min subject to ,
(9)P C

A FABC L

where ε is the estimated noise level. Theoretically, let ε = N F. Equation (9) is a convex optimization problem26. 
For sparse cuboid microphone arrays, −⭑P P in Eq. (9) becomes −Ω Ω

⭑P P . In this case, the signals induced by 
sources at full microphones, P, are reconstructed from the measurements of partial microphones, Ω

⭑P .

Positive semidefinite programming to solve ANM.  For a given column vector 
α α α= 

 ∈ 
 ∈α α αuu ( , , ) H CN

, , 1 2 3
u

1 2 3
 with = × × … −CH ({0} {0} {0, 1, , 1}) ∪  × − B((({0} {1, 2, , 1})  

∪  … −A({1, 2, , 1} ×  − − … −B B B{1 , 2 , , 1})) ×  − − … −C C C{1 , 2 , , 1}) being the halfspace28 of 
− − −A B C( 1, 1, 1) and = + − + − − −N C B A B C( 1 ( 1)(2 1))(2 1)u , we define a three-fold Toeplitz 

operator Tbb(·) to map u into a Hermitian A × A block Toeplitz matrix:

=

























−

−

− −

�

�
� � � �

�

T u

T T T

T T T

T T T

( ) ,

(10)

bb

A

A

A A

0 1
H

1
H

1 0 2
H

1 2 0

where (·)H denotes the Hermitian operator, each block α≤ ≤ −α AT (0 1)11
 is a B × B block Toeplitz matrix:

=

























α

α α α

α α α

α α α

− −

−

− −

�

�

� � � �
�

T

T T T
T T T

T T T

,

(11)

B

B

B B

,0 , 1 ,1

,1 ,0 ,2

, 1 , 2 ,0

1

1 1 1

1 1 1

1 1 1

and T0 is Hermitian, i.e., α= ≤ ≤ −α α− BT T (0 1)0, 0,
H

22 2
. Each block α− ≤ ≤ −α α B BT (1 1), 21 2

 in Eq. (11) 
is a C × C Toeplitz matrix:

=























α α

α α α α α α

α α α α α α

α α α α α α

− −

−

− −

�
�

� � � �
�

u u u
u u u

u u u

T ,

(12)

C

C

C C

,

, ,0 , , 1 , ,1

, ,1 , ,0 , ,2

, , 1 , , 2 , ,0

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

and T0,0 is Hermitian, i.e., α= ≤ ≤ −α α−
⁎u u C(0 1)0,0, 0,0, 33 3

.
We propose the following proposition.
Proposition: Denote

Ε Ε
Ε

= +










 ≥ .

Ε∈ ∈ ×
ˆ ˆ

ABC
T

T
u u

u P

P
{ , } arg min 1

2
(tr( ( )) tr( )) subject to

( )
0

(13)
bb

bb

u C , C
HNu L L

and

= +ˆ ˆ
ABC

TP u E1
2

(tr( ( )) tr( )),
(14)bbT

where tr(·) represents the trace and ≥0 means the matrix is positive semidefinite. If ˆT u( )bb  admits a Vandermonde 
decomposition13,14, i.e.,

Σ=ˆT u V V( ) , (15)bb
H

where = …t t t t t t t t tV d d d[ ( , , ), ( , , ), , ( , , )]r r r11 21 31 12 22 32 1 2 3 , σ σ σΣ = …diag([ , , , ])r1 2 , diag(·) forms a diagonal 
matrix with diagonal being the vector in the brackets, σ = … ∈ +i r( 1, 2, , ) Ri , and r is the rank of ˆT u( )bb , then 

=P PT A.
The proof about the proposition can be found in Supplementary Note 3. Based on the proposition, the follow-

ing positive semidefinite programming can be used to characterize the ANM in Eq. (9):

ε

= × +











 ≥ − ≤

∈ ∈ ∈× ×
ˆ ˆ ˆ

⭑

ABC
T

T

u P E u E

u P

P E
P P

{ , , } arg min 1
2

(tr( ( )) tr( ))

subject to
( )

0,
(16)

bb

bb

u P EC , C , C

H
F

Nu ABC L L L
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The Vandermonde decomposition of ˆT u( )bb  is the precondition to make Eqs (16) and (9) strictly equivalent. 
References13,14 has proved that ≤r A B Cmin{ , , } is the sufficient condition for ˆT u( )bb  to admit a Vandermonde 
decomposition. For sparse cuboid microphone arrays, −⭑P P in Eq. (16) becomes −Ω Ω

⭑P P .

ADMM to solve positive semidefinite programming.  Because −⭑P P is a special case of −Ω Ω
⭑P P  

with Ω including the indices of the full microphones, we conduct the derivation on −Ω Ω
⭑P P . We reformulate Eq. 

(16) as

τ
= − + +

=










 ≥

∈ ∈ ∈

∈

Ω Ω
× ×

+ × +

ˆ ˆ ˆ ˆ ⭑

ABC
T

T

u P E Z P P u E

Z
u P

P E
Z

{ , , , } arg min 1
2 2

(tr( ( )) tr( ))

subject to
( )

, 0
(17)

bb

bb

u P E
Z
C , C , C

C

F
2

H

Nu ABC L L L

ABC L ABC L( ) ( )

where τ is a regularization parameter and Z is an auxiliary matrix. The augmented Lagrangian function of Eq. 
(17) is

τ

ρ

Λ

Λ

= − + +

+ −










 + −













ρ Ω Ω
⭑

ABC
T

T T

E u P Z P P u E

Z
u P

P E
Z

u P

P E

L ( , , , , ) 1
2 2

(tr( ( )) tr( ))

,
( )

2
( )

,

(18)

bb

bb bb

F
2

H H
F

2

where the Hermitian matrix Λ ∈ + × +C ABC L ABC L( ) ( ) is the Lagrangian multiplier, ρ > 0 is the penalty parameter 
and 〈·,·〉 denotes the inner product. The ADMM solves Eq. (17) iteratively. Initializing Λ= =Z 00 0 , the updates 
in +q( 1)th iteration are as follows:

Λ= ρ
+ + +

∈ ∈ ∈× ×
E u P E u P Z{ , , } arg min L ( , , , , ),

(19)
q q q q q

E u P

1 1 1

C , C , CL L Nu ABC L

Λ= ρ
+

≥

+ + +Z E u P Zarg minL ( , , , , ),
(20)

q q q q q

Z

1

0

1 1 1

ρΛ Λ= +





−






















.+ +

+ +

+ +

T
Z

u P

P E

( )

( ) (21)

q q q bb
q q

q q
1 1

1 1

1 H 1

Introduce the partitions

Λ
Λ Λ

Λ Λ
=









∈ ∈

∈ ∈









=








∈ ∈

∈ ∈









× ×

× ×

× ×

× ×
Z

Z Z

Z Z

C C

C C
and

C C

C C (22)

q
q ABC ABC q ABC L

q L ABC q L L
q

q ABC ABC q ABC L

q L ABC q L L
0 1

1
H

2

0 1

1
H

2

Denote by Λ ∈Ω
Ω ×Cq L

1  and ∈Ω
Ω ×Z Cq L

1 , respectively, the matrices of the rows in Λq
1 and Zq

1 corresponding 
to the retained microphones, Ωc the set of the indices of the unretained microphones, Ωc  the cardinality of Ωc, 

∈Ω
Ω ×P C L

c
c

 the matrix of the signals induced by sources at the unretained microphones, Λ ∈Ω
Ω ×Cq L

1 c
c

 and 
∈Ω

Ω ×Z Cq L
1 c

c
, respectively, the matrices of the rows in Λq

1 and Zq
1 corresponding to the unretained microphones, 

and ∈ ×I RL L
1  and ∈ ×I RABC ABC

2 , both, the identity matrices. It can be derived that the variable updates in Eq. 
(19) have the following closed forms:

ρ
τΛ= +






−





+

ABC
E Z I1

2
,

(23)
q q q1

2 2 1

ρ
τΛ= +






−





+T
ABC

u Z I( ) 1
2

,
(24)bb

q q q1
0 0 2

ρ
ρΛ=

+
+ +Ω

+
Ω Ω Ω
⭑P P Z1

1 2
( 2 2 ),

(25)
q q q1

1 1

ρ
Λ= + .Ω

+
Ω ΩP Z 1

(26)
q q q1

1 1c c c

The derivation can be found in Supplementary Note 4. Let = − −ABC AB C AB A BM diag([ , ( 1), , , [ ( 1), 
− − − ⊗ −   A B A A A B B( 2), , , [ 1, 2, , 1] [1, 2, , , 1, , 1]] ⊗ − C C[1, 2, , , 1, , 1]]) ∈ ×RN Nu u 
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and ⁎Tbb(·) be the adjoint of Tbb(·). For a given matrix ∈ ×A CABC ABC , =⁎T A( )bb [ Θ ⊗ Θ ⊗ Θα α α( )( )Atr
1 2 3

α α α ∈( , , ) H1 2 3 ]∈CNu, where Θα is an elementary Toeplitz matrix with ones on the αth diagonal and zeros else-
where. Then,

= .+ − +⁎T Tu M u( ( ) ) (27)q
bb bb

q1 1 1

We rewritten the update of Z in Eq. (20) as

ρ
Λ

= −
















++

≥

+ +

+ +

T
Z Z

u P

P E
arg min

( )

( )
,

(28)

q bb
q q

q q

q

Z

1

0

1 1

1 H 1
F

2

which can be performed by conducting the eigenvalue decomposition of the Hermitian matrix 
















−
ρ

Λ
+ +

+ +

T u P

P E

( )

( )
bb

q q

q q

1 1

1 H 1

q  and setting all negative eigenvalues to zero.

A reasonable termination criterion of ADMM is that the primal and dual residuals or infeasibilities must be 
small22–24. For the semidefinite programming, the primal and dual infeasibilities are recommended for use23,24. 
According to refs23,24, the primal and dual infeasibilities after q iterations for the current problem can be respec-
tively defined as

=

−
















+ +




























.−

T

ABC L
T

Z
u P

P E

Z
u P

P E

pri inf

( )

( )

max ,
( )

( ) (29)

q

q bb
q q

q q

q bb
q q

q q

H
F

F H
F

and

ρ

ρ Λ Λ Λ Λ Λ Λ
=

− + − + −

+ + + − + − + −
.−

− − −

− − −

⁎

⁎

T

N ABCL L T

Z Z Z Z Z Z
dual inf

( )

( ) (30)
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q q q q q q
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2
2

1 1
1
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2

2 2
1

F
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2
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1
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2

2 2
1

F
2

The algorithm terminates when − −max{pri inf , dual inf }q q  is less than a pre-set tolerance level or the pre-set 
maximum number of iterations is reached. Another reasonable termination criterion is that the relative change of 
the result at two consecutive iterations is small enough, which means the result has converged.

DOA estimation via MaPP.  ˆT u( )bb  contains the DOA information of sources. That can be retrieved via the 
MaPP method14,20. The concrete steps are:

1) Conduct the eigendecomposition on ˆT u( )bb :

=ˆT u U C U( ) , (31)bb 1 1 1
H

where ∈ ×U CABC ABC
1  is the unitary matrix whose columns are the eigenvectors of ˆT u( )bb  and ∈ ×C RABC ABC

1  is 
the diagonal matrix whose diagonal elements are the corresponding eigenvalues. Estimate the total number of 
sources as the number of eigenvalues larger than a given threshold and denote it by Î . Denote by ∈ ×ˆ ˆ

C Re
I I

1  the 
diagonal matrix with diagonal elements being the square roots of the Î  larger eigenvalues and ∈ ×ˆ

U Ce
ABC I

1  the 
matrix with columns being the corresponding eigenvectors. Let = ∈ ×ˆ

Y U C Ce e
ABC I

1 1 1 .
2) Delete the last BC rows of Y1 to obtain ∈ − ×ˆ

Y Cu
A BC I

1
( 1)  and the first BC rows to obtain ∈ − ×ˆ

Y Cd
A BC I

1
( 1) . 

Compute the generalized eigenvalues of the matrix pencil Y Y( , )d u1 1  to obtain | =π


ˆe m I{ 1, 2, , }j t2 m1 .
3) Let αρ ∈( ) RABC  be the column vector with one on the αth position and zeros elsewhere, 

α α αρ ρ= + + +α α α C AC( 1), , 1 2 31 2 3
,  ρ ρ ρ= ∈α α α α α α α α −

×
P [ , , , ] RC

ABC C
, , ,0 , ,1 , , 11 2 1 2 1 2 1 2

, 
= 



 ∈α α α α −

×
P P P P, , , RB

ABC BC
,0 ,1 , 11 1 1 1

, and = ∈−
×

P P P P[ , , , ] RA
ABC ABC

0 1 1 . ˆTP u P( )bb
T permutes the ele-

ments of ˆT u( )bb  to obtain a new three-fold Toeplitz matrix. The first fold contains B × B big blocks. The second fold 
contains A × A small blocks. The third fold is the C × C matrix. Conduct the eigendecomposition on ˆTP u P( )bb

T:

=ˆTP u P U C U( ) , (32)bb
T

2 2 2
H

where ∈ ×U CABC ABC
2  is the unitary matrix whose columns are the eigenvectors of ˆTP u P( )bb

T and ∈ ×C RABC ABC
2  

is the diagonal matrix whose diagonal elements are the corresponding eigenvalues. Denote by ∈ ×ˆ ˆ
C Re

I I
2  the 

diagonal matrix with diagonal elements being the square roots of the Î  larger eigenvalues and ∈ ×ˆ
U Ce

ABC I
2  the 

matrix with columns being the corresponding eigenvectors. Let = ∈ ×ˆ
Y U C Ce e

ABC I
2 2 2 .

4) Delete the last AC rows of Y2 to obtain ∈ − ×ˆ
Y Cu

A B C I
2

( 1)  and the first AC rows to obtain ∈ − ×ˆ
Y Cd

A B C I
2

( 1) . 
Compute the generalized eigenvalues of the matrix pencil Y Y( , )d u2 2  to obtain =π



ˆe n I{ 1, 2, , }j t2 n2 .
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5 )  L e t  α α αρ ρ= + + +α α α A AB(1 ), , 1 2 31 2 3
,  ρ ρ ρ= 



 ∈α α α α α α α α −

×�� � ��P , , , RC
ABC C

, , ,0 , ,1 , , 11 2 1 2 1 2 1 2
, 

= 



 ∈α α α α −

×�� � � �P P P P, , , RB
ABC BC

,0 ,1 , 11 1 1 1
, and = ∈−

×�� � � �P P P P[ , , , ] RA
ABC ABC

0 1 1 .  ˆTP u P( )bb
T permutes the ele-

ments of ˆT u( )bb  to obtain another new three-fold Toeplitz matrix. The first fold contains C × C big blocks. The 
second fold contains B × B small blocks. The third fold is the A × A matrix. Conduct the eigendecomposition on 
 ˆTP u P( )bb

T:

= ˆTP u P U C U( ) , (33)bb
T

3 3 3
H

where ∈ ×U CABC ABC
3  is the unitary matrix whose columns are the eigenvectors of  ˆTP u P( )bb

T and ∈ ×C RABC ABC
3  

is the diagonal matrix whose diagonal elements are the corresponding eigenvalues. Denote by ∈ ×ˆ ˆ
C Re

I I
3  the 

diagonal matrix with diagonal elements being the square roots of the Î  larger eigenvalues and ∈ ×ˆ
U Ce

ABC I
3  the 

matrix with columns being the corresponding eigenvectors. Let = ∈ ×ˆ
Y U C Ce e

ABC I
3 3 3 .

6) Delete the last AB rows of Y3 to obtain ∈ − ×ˆ
Y Cu

AB C I
3

( 1)  and the first AB rows to obtain ∈ − ×ˆ
Y Cd

AB C I
3

( 1) . 
Compute the generalized eigenvalues of the matrix pencil Y Y( , )d u3 3  to obtain | =π



ˆe o I{ 1, 2, , }j t2 o3 .
7) Compute the function

=
∈ × 

ˆ ˆ
f m g m t t tU d( ( ), ( )) arg max ( , , )

(34)n o I I
e m n o

( , ) {1,2, , } {1,2, , }
1
H

1 2 3 2
2

to pair m, n and o, and then obtain the pairs | =π π π


ˆe e e m I{( , , ) 1, 2, , }j t j t j t2 2 2m f m g m1 2 ( ) 3 ( )  (denoted as 
| =π π π



ˆe e e i I{( , , ) 1, 2, , }j t j t j t2 2 2i i i1 2 3  for simplicity).
8) Compute | = 

ˆt t t i I{( , , ) 1, 2, , }i i i1 2 3  according to π= πt eIm(ln( ))/2i
j t

1
2 i1 , π= πt eIm(ln( ))/2i

j t
2

2 i2  and 
π= πt eIm(ln( ))/2i

j t
3

2 i3 , where Im(·) denotes the imaginary part. Compute θ φ | = 

ˆi I{( , ) 1, 2, , }i i  according to 
the relationship between t t t( , , )i i i1 2 3  and θ φ( , )i i , i.e., θ φ λ≡ Δt xsin cos /i i i1 , θ φ λ≡ Δt ysin sin /i i i2  and 

θ λ≡ Δt zcos /i i3 .

Source strength quantification.  After computing the sensing matrix =D̂ [ t t t t t td d( , , ), ( , , ),11 21 31 12 22 32

 ˆ ˆ ˆt t td, ( , , )I I I1 2 3 ]∈ ×ˆ
CABC I according to the estimated DOAs, we quantify the matrix = 





∈ ×


ˆ
ˆ

ˆ
S s s s, , , C

I
I L

1
T

2
T T

T
 

composed by the strength of each source under each snapshot as

=
+ˆ ˆ ˆS D P, (35)

where ·+ denotes the pseudo-inverse.

IRANM.  Establish the metric

κ= + +










 ≥κ

∈ ∈ × ABC
T

T
P u I E

u P

P E
M ( ) min 1

2
(ln ( ) tr( )) subject to

( )
0,

(36)
bb

bb

u EC , C
2 HNu L L

where |·| denotes the determinant of a matrix and κ > 0 is a regularization parameter. κ PM ( ) has the following 
properties under a certain condition11,14,18: (1) κ PM ( ) is on the order of κ− −ABC ABCP( /2 /2)lnA,0

1 as κ 
a p p r o a c h e s  0  i f  < ABCP A,0 ,  i . e . ,  

κ
κ

→
− =κ −ABC ABCP Plim

0
M ( )/(( /2 /2)ln ) 1A,0

1 ;  ( 2 ) 
κ−κ ABCPM ( ) ( /2)ln  i s  o n  t h e  o r d e r  o f  κ−P A

1/2  a s  κ  a p p r o a c h e s  + ∞ ,  i . e . , 

κ κ κ
→ + ∞

− =κ −‖ ‖ABCP Plim (M ( ) ( /2)ln )/( ) 1A
1/2 ; (3) Denote by κ→û 0 the optimal variable when κ 

approaches 0. The smallest −ABC P A,0 eigenvalues of κ→ˆT u( )bb 0  are either 0 or approach 0, i.e., only P A,0 
eigenvalues are large. According to the first property, minimizing κ PM ( ) is equivalent to minimizing P A,0 as κ 
approaches 0. According to the second property, minimizing κ PM ( ) is equivalent to minimizing P A as κ 
approaches +∞. This means κ PM ( ) serves as a bridge between P A,0 and P A, and can enhance sparsity com-
pared with P A. According to the third property, the sufficient condition for κ→ˆT u( )bb 0  to admit a Vandermonde 
decomposition can be guaranteed.

Replacing P A with κ PM ( ), we reformulate the reconstruction problem of P as

ε= − ≤ .κ

∈ ×

ˆ ⭑P P P Parg minM ( ) subject to
(37)P C

FABC L

Simultaneous Eqs (36) and (37) yield

κ

ε

= × + +











 ≥ − ≤

.
∈ ∈ ∈× ×

ˆ ˆ ˆ

⭑

ABC
T

T

u P E u I E

u P

P E
P P

{ , , } arg min 1
2

(ln ( ) tr( ))

subject to
( )

0,
(38)

bb

bb

u P EC , C , C
2

H F

Nu ABC L L L

In Eq. (38), κ+T u Iln ( )bb  is a concave function of u, while Etr( ) is a convex function of E. To minimize such 
a concave + convex function, an effective algorithm is the majorization-minimization29,30. The algorithm solves 
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the optimal variable and the optimal value of the objective function iteratively. Two steps are involved in each 
iteration. In the first majorization step, a surrogate function is constructed to locally approximate the objective 
function. The surrogate function should be no smaller than the objective function, and the equality holds at the 
current optimal variable. Then in the minimization step, the surrogate function is minimized to obtain a new 
opt imal  var iable .  Let  ûk  be  the  opt imal  var iable ,  κk  be  the  regular izat ion parameter, 

κ≡ + ∈− ×ˆTW u I( ( ) ) Ck
bb

k k ABC ABC
2

1  be the weighting matrix, determined by the kth iteration. The surrogate 
function in +k( 1)th iteration can be constructed as

κ+ + − + = + +ˆ ˆ
ABC

T T
ABC

T cu I W u u E W u E1
2

(ln ( ) tr( ( )) tr( )) 1
2

(tr( ( )) tr( )) ,
(39)bb

k k k
bb

k k
bb

k
2

where κ+ + −ˆ ˆT Tu I W u uln ( ) tr( ( ))bb
k k k

bb
k

2  is the tangent plane of κ+T u Iln ( )bb
k

2  at = ˆu uk, and ck is a 
constant independent of variables. Ignoring ck, we write the minimization problem in +k( 1)th iteration as

ε

= × +











 ≥ − ≤

+ + +

∈ ∈ ∈× ×
ˆ ˆ ˆ

⭑

ABC
T

T

u P E W u E

u P

P E
P P

{ , , } arg min 1
2

(tr( ( )) tr( ))

subject to
( )

0,
,

(40)

k k k k
bb

bb

u P E

1 1 1

C , C , C

H F

Nu ABC L L L

which is also a disciplined convex optimization problem. Initialize =û 00  and κ = 10 , then =W I0 . The first 
iteration in Eq. (40) agrees with the ANM in Eq. (16). For the purpose of enhancing sparsity, κ should decrease 
gradually. The specific strategy is18

κ
κ λ

κ
κ

=










=

≤ ≤
>

−

−

ˆT k

k
k

umin{ /2, ( ( ))/10}, 1

/2, 2 10
, 10

,

(41)

k

k
bb

k

k

1
max

1

10

where λ ˆT u( ( ))bb
k

max  is the largest eigenvalue of ˆT u( )bb
k .

We define the weighted atomic norm of P as

∑ ∑ ψ=





=





ψ ∈

∈ +

s
w t t t

s t t tP P dinf
( , , )

( , , ) ,

(42)
t t t

s
i

i

i i i i
i i i i idA ( , , ) A

R
1 2 3

1 2 3w

i i i i

i

1 2 3

where ≥w t t t( , , ) 0i i i1 2 3  is the weighting coefficient. When ≡w t t t( , , ) 1i i i1 2 3 , =P PA Aw . Denote by 
w t t t( , , )k

i i i1 2 3  and P
Awk the weighting coefficient and the weighted atomic norm corresponding to the results of 

the kth iteration. If

=w t t t ABC
t t t t t td W d

( , , )
( , , ) ( , , ) (43)

k
i i i

i i i
k

i i i
1 2 3

1 2 3
H

1 2 3

and +ˆT u( )bb
k 1  admits a Vandermonde decomposition, then

= +










 ≥ .

∈ ∈ × ABC
T

T
P W u E

u P

P E
min 1

2
(tr( ( )) tr( )) subject to

( )
0

(44)
k

bb
bb

u EA C , C Hwk
Nu L L

The proof can be found in Supplementary Note 5. Simultaneous Eqs (40) and (44) yield

ε

ε

=





× +










 ≥






− ≤

= − ≤

+

∈ ∈ ∈

∈

× ×

×

ˆ

⭑

⭑

(45)

ABC
T

T
P W u E

u P

P E

P P

P P P

arg min min 1
2

(tr( ( )) tr( )) subject to
( )

0

subject to

arg min subject to

k k
bb

bb

P u E

P

1

C C , C H

F

C
A F

ABC L Nu L L

ABC L
wk

Apparently, P is reconstructed via minimizing its weighted atomic norm iteratively, and the weighting coeffi-
cient is updated in each iteration. Hence, the method can be named as IRANM. For sparse cuboid microphone 
arrays, −⭑P P in Eqs (37), (38), (40) and (45) becomes −Ω Ω

⭑P P .

Implementation details.  The simulations are conducted in Matlab R2014a on a PC with a Windows 10 
system and a 2.2 GHz Intel(R) Core(TM) i5-5200U CPU. = = =A B C 7 and Δ = Δ = Δ = .x y z 0 035 m. The 
number of snapshots is taken as 10. The independent and identically distributed complex Gaussian noise is uti-
lized. The signal-to-noise ratio P N(20lg( / ))F F  is taken as 20 dB. In the ADMM based algorithm, τ  is deter-
mined according to ref.10, ρ is set to 1, and the iteration is terminated if the relative changes of u and P at two 
consecutive iterations, i.e., − − −u u u/q q q1

2
1

2
 and − − −P P P/q q q1

F
1

F, both are less than 10−3 or the max-
imum number of iterations, set to 1000, is reached. Simulations of the ADMM based algorithm with another 
termination criterion relating to the primal and dual infeasibilities shown in Eqs (29) and (30) are also presented 
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and discussed in Supplementary Note 6. In the MaPP method, the threshold is set as the maximal eigenvalue 
divided by 100, which means sources in 20 dB dynamic range are considered. When implementing IRANM, we 
terminate the iteration if the relative changes of the solution P̂ at two consecutive iterations, i.e., 

−
− −ˆ ˆ ˆ‖ ‖ ‖ ‖P P P/

k k k1
F

1
F, is less than 10−3 or the maximum number of iterations, set to 20, is reached.

Data Availability
Datasets generated and analyzed in the current study are available from the corresponding author on reasonable 
request.
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