
O R I G I N A L  R E S E A R C H

Downregulation of ST6GAL1 Promotes Liver 
Inflammation and Predicts Adverse Prognosis 
in Hepatocellular Carcinoma
Ruijia Liu1,2,*, Xu Cao1,2,*, Yijun Liang1,2, Xiaobin Li1, Qian Jin1, Ying Li3, Hongbo Du1,2, 
Xiaobin Zao1,4, Yong’an Ye1,2

1Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China; 2Institute of Liver Diseases, Dongzhimen Hospital, 
Beijing University of Chinese Medicine, Beijing, People’s Republic of China; 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 
People’s Republic of China; 4Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing 
University of Chinese Medicine, Beijing, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Yong’an Ye; Xiaobin Zao, Email yeyongan@vip.163.com; A3417@bucm.edu.cn 

Background: Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide. The ST6 β-galactoside α-2, 6- 
sialyltransferase 1 (ST6GAL1) has been found aberrantly expressed in a variety of cancers including HCC, but its function and 
mechanism in regulating liver inflammation remain to be investigated. This study aimed to explore the role of ST6GAL1 in HCC. The 
data of ST6GAL1 expression, prognosis, and clinical parameters were collected and further analyzed from the public databases 
including The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), and Gene Expression Omnibus (GEO). The HCC rat 
model was constructed by intraperitoneal injection of diethylnitrosamine. The mRNA and protein expression levels of ST6GAL1 in rat 
liver tissues were detected by real-time quantitative polymerase chain reaction, capillary electrophoresis, and Western blot.
Results: The ST6GAL1 mRNA and protein expression levels were both lower in HCC tissues compared with normal liver tissues in 
the public databases and HCC rat model. The survival analysis showed that upregulation of ST6GAL1 was an independent prognostic 
factor for good prognosis in HCC patients. The ST6GAL1 mRNA expression showed a negative correlation with ST6GAL1 
methylation levels. Enrichment analysis showed that ST6GAL1 expression was most associated with metabolic, cancer, estrogen, 
axon guidance, cAMP, and PI3K-AKT signaling pathways. The ST6GAL1 mRNA expression negatively correlated with liver 
inflammation status and proportion of NK CD56bright, NK CD56dim, pDC, and CD8+ T cells in liver.
Conclusion: Compared with normal tissues, ST6GAL1 was lower expressed in HCC tumor tissues, and the downregulation of 
ST6GAL1 was associated with a poor prognosis in HCC patients. ST6GAL1 could further affect the infiltration of immune cells to 
exert anti-inflammation function in liver. Our study indicated that ST6GAL1 could be a potential biomarker and therapeutic target to 
assess the prognosis and regulate the immune cells infiltration level of HCC.
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Background
Hepatocellular carcinoma (HCC) is one of the most malignant tumors in clinical practice, leading to at least 600,000 
deaths each year.1 However, the pathological characteristics of HCC are not easily detected, making late radical treatment 
extremely difficult.2 Therefore, there is an urgent need to find steady and reliable biomarkers to screen patients with poor 
prognoses and provide more aggressive treatment earlier.

HCC usually arises from chronic inflammation, and the immune response plays a crucial role in cancer occurrence 
and development.3 Chronic liver inflammation causes repeated damage and regeneration of hepatocytes, which in turn 
induces immune cell tolerance, resulting in a dysregulated immune response and eventual progression to HCC.4 The 
immune cells, a major component of the tumor microenvironment (TME), can migrate from hematopoietic organs and 
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peripheral blood to the liver, establishing an active immune ecological niche that interacts with parenchymal hepatic 
cells, and influences differentiation, tumorigenesis, and progression.5 A related study has shown that insufficient crosstalk 
between dendritic cells (DCs) and T cells was one of the main mechanisms of tumor tolerance in HCC.6 In addition, the 
immune cell infiltration level has a significant impact on the prognosis of HCC.7 Meanwhile, the immune therapeutics 
could achieve a good therapeutic effect by modulating the TME and maintaining the balance of immune homeostasis in 
solid tumors.8 Therefore, it is important to explore the molecular changes associated with oncogenic inflammation in 
tumor tissue or adjacent lymphocytes.

Beta-galactoside alpha-2, 6-sialyltransferase 1 (ST6GAL1) is a sialyltransferase that mediates the glycosylation of 
proteins and lipids by transferring alpha2-6-linked sialic acid to the glycosyl terminus of glycoproteins and glycolipids.9 

Altered expression of sialyltransferase usually causes abnormalities in salivary acidification and change in cellular 
glycosylation, which are closely associated with tumorigenesis.10–14 Furthermore, the ST6GAL1 has been found that 
exerted an important role in tissue inflammation damage. It has been shown that ST6GAL1 could prevent intestinal 
inflammation by regulating T cell immunity levels and play a protective effect on IgA nephropathy by inhibiting the 
production of proinflammatory cytokines in patients.15,16 While the deficiency of ST6GAL1 could cause exaggerated 
acute neutrophilic inflammation, increase radiation-induced gastrointestinal damage, and promote the transformation of 
synovial fibroblasts into a pro-inflammatory phenotype in mice.17–19 For HCC, it has been reported that serum ST6GAL1 
levels were positively correlated with tumor FGF19 expression in patients with surgically resected HCC, and could be a 
novel serum biomarker for lenvatinib-susceptible FGF19-driven HCC.20 However, the comprehensive mechanism of 
how ST6GAL1 regulates immune response and liver inflammation in HCC remains to be elucidated.

In this study, we first analyzed the ST6GAL1 expression and the relationships between ST6GAL1 expression and 
clinicopathological indicators in HCC through public databases. In addition, we validated the mRNA and protein 
expression of ST6GAL1 in rats’ normal and HCC liver tissues. Finally, we performed immune infiltration and functional 
enrichment analysis to further explore the potential mechanisms of ST6GAL1 in the development and progression 
of HCC.

Methods
Databases
The RNA-seq and clinicopathologic data of HCC were downloaded from The Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression (GTEx) module of the Xena Public Data Hubs in the UCSC Xena platform (http://xena. 
ucsc.edu/)38 for further analysis. The ST6GAL1 immunohistochemical staining data of liver tissues were obtained from 
the Human Protein Atlas (HPA) database (http://www.proteinatlas.org/). The gene expression profile data of GSE83148, 
GSE54238, GSE84044, GSE54236, and GSE22508 datasets were downloaded from the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). These databases were further used for ST6GAL1 expression and clinico-
pathologic data analyses.

Survival Analysis
The Kaplan-Meier mapper platform39 was used as a meta-analysis tool to analyze the survival profile of HCC patients. 
The Kaplan-Meier mapper platform splits patients into high- and low-risk groups by automatically selecting the best cut- 
off value. All possible cutoff values between the lower and upper quartiles were computed, and the best performing 
threshold was used as a cutoff. Common clinical risk factors were used as a basis for patient stratification. A nomogram 
was constructed to predict the correlation between clinical factors associated with patients with hepatocellular carcinoma 
and disease prognosis.

ST6GAL1 Gene Copy Number Variation and Methylation Analysis
The copy number variation (CNV) and methylation level data of the ST6GAL1 gene were downloaded through the 
MEXPRESS platform.40 We selected the probe cg16751732, the most predominant ST6GAL1 CpG location, from the 
probes of interest for further analysis. The prognostic value of ST6GAL1 methylation levels in HCC was appraised using 
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the MethSurv platform.41 The patients were stratified into high- and low-risk groups based on the q25 value of their risk 
scores.

Gene Enrichment Analysis
The DESeq2 R package (version 1.26.0) was used to calculate the correlation of ST6GAL1 expression with all human genes and 
to compare the expression profiles between high- and low-ST6GAL1 mRNA expression groups.42 |log2Fold Change| = 2 and 
adjusted P = 0.05 were considered as cut-off criteria for differential expression genes (DEGs), log2Fold Change > 2 and adjusted 
P < 0.05 were defined as up-regulated genes, and log2Fold Change < −2 and adjusted P < 0.05 were defined as down-regulated 
genes. The DEGs encoding proteins were used for gene enrichment analysis of gene annotation and Kyoto encyclopedia of genes 
and genomes (KEGG) by the Sangerbox platform (http://sangerbox.com/).43–45 Adjusted P < 0.1 and q value < 0.2 are used as 
thresholds for gene enrichment analysis. Sorting was also performed based on the magnitude of Count Values. The ggplot2 R 
package (version 3.3.3) was applied for DEGs correlation analysis and sorted in descending order using the absolute R value as 
the criterion.

Immune Infiltration Analysis
The GSVA R package (version 1.34.0) was utilized to appraise the relationship between 24 tumor-infiltrating immune 
cell markers and different ST6GAL1 mRNA expression groups in HCC samples.46 Spearman correlation between HCC 
immune cells infiltration and ST6GAL1 expression levels was calculated using the ssGSEA algorithm on 424 samples 
from TCGA. A P value < 0.05 was used as a criterion for screening immune cells that might be affected by ST6GAL1 
expression. The TISIDB platform was used to explore the correlations between ST6GAL1 expression and immunoinhi-
bitor or immunostimulator from the “Immunomodulator” module in HCC.47

Animals
Twelve 6-week-old male Wistar rats, weighing 200g ± 20g, were purchased from Beijing Vital River Laboratory Animal 
Technology Co. Ltd (license: SCXK (Beijing) 2016–0006). All animals were raised in the Barrier Environmental Animal 
Laboratory of Dongzhimen Hospital of Beijing University of Chinese Medicine (license: SYXK (Beijing) 2015–0001) 
and maintained under the National Standards for Laboratory Animals of China (GB14925-2010). Our study was carried 
out in compliance with the ARRIVE guidelines. This study was approved by the Ethics Committee of Laboratory 
Animals of Dongzhimen Hospital of Beijing University of Chinese Medicine (No.21–10). Animals were kept separately 
in an SPF laboratory, with the breeding environment: temperature 25 ± 1°C, humidity 50 ± 10%, free of food and 
drinking water, 12-hour day and night alternation, as well as adaptable feeding for 5 days. Rats were anesthetized by 
intraperitoneal injection using a 3% sodium pentobarbital solution. After anesthesia, blood was taken from the rats as 
well as the material, and if necessary, euthanasia by cervical dislocation was performed.

HCC Rat Model
The HCC rat model was constructed by intraperitoneal injection of diethylnitrosamine (Psaitong, N60001, 50 mg/kg/ 
week, CN). After sixteen weeks, the rats were sacrificed and livers were obtained for the next experiments.

Real-Time Quantitative Polymerase Chain Reaction Analysis
The total RNA was extracted from the biopsy tissue of rat liver using the RaPure Total RNA Mini Kit (Magen, R4011, 
CN) according to the manufacturer’s instructions. Total RNA reverse transcription to cDNA was performed with the All- 
in-One First-Strand Synthesis MasterMix (with dsDNase) (BioMed, BM60501S, CN). Real-time quantitative polymerase 
chain reaction (RT-qPCR) was performed using the Real-time PCR Detection System (Agilent Technologies, US) with 
the Taq SYBR® Green qPCR Premix (BioMed, BM60304S, CN). The primers were provided as follows:

ST6GAL1-F: AAGGACAGTTTGTACACCGA;
ST6GAL1-R: CTGATACCACTTTGGGATATCTG;
GAPDH-F: AGACAGCCGCATCTTCTTGT;
GAPDH-R: CTTGCCGTGGGTAGAGTCAT.
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Capillary Electrophoresis and Western Blot
The total protein was extracted from the biopsy tissue of the rat liver using the RIPA Lysis Buffer (Beyotime, P0013B, 
CN) according to the manufacturer’s instructions. The capillary electrophoresis was performed on the Wes instrument 
according to the manufacturer’s instructions (ProteinSimple, San Jose, CA; SM-W004). For Western blot, the protein 
lysates were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Epizyme 
Biomedical Technology, PG112, CN) and then electrophoretically transferred onto the polyvinylidene fluoride mem-
branes (Epizyme Biomedical Technology, WJ001, CN). The primary antibodies we used were rabbit anti-ST6GAL1 
(Proteintech, 14355-1-AP, 1:1000, US); mouse anti-GAPDH (MBL, M171-3, 1:5000, JPN). The Image J software was 
used to analyze the integrated density of the protein bands.

Statistics
Statistical analysis of all data was performed using R (version 3.6.3) and GraphPad Prism (version 9.1.0). The Wilcoxon 
rank sum test was used to analyze the expression of ST6GAL1 in unpaired samples. The Kruskal–Wallis test and Dunn’s 
test were utilized to evaluate the relationship between ST6GAL1 expression and clinicopathological characteristics. 
Kaplan-Meier method was applied for survival curve plotting. Differences between groups were determined by an 
unpaired t-test. P value < 0.05 was considered statistically significant in this study. Spearman and statistical significance 
were used to analyze the gene expression correlations. |R| > 0.1 were considered as correlations and P value < 0.05 were 
considered statistically significant.

Results
ST6GAL1 Expression Was Downregulated in HCC
To clear ST6GAL1 expression and its correlations with clinicopathological parameters in HCC, we first analyzed data 
from the TCGA and GTEx databases. The results showed that ST6GAL1 mRNA expression was significantly lower in 
HCC compared with non-tumor liver tissues (Figure 1A). Meanwhile, ST6GAL1 mRNA expression was also lower in 
HCC tissues compared with adjacent non-tumor tissues in TCGA database (Figure 1B). We also analyzed ST6GAL1 
mRNA expression in paired non-tumor and HCC tissues. The results showed that, compared with paired adjacent non- 
tumor liver tissues, ST6GAL1 expression was significantly downregulated in HCC tissues of TCGA database, GSE54236 
dataset, and GSE22508 dataset (Figure S1). In addition, according to different clinicopathological parameters, we found 
that compared to the normal, ST6GAL1 mRNA expression was significantly decreased at different T stages (Figure 1C) 
and histological grades (Figure 1D). Next, we analyzed the ST6GAL1 protein expression in liver tissues in the HPA 
database, and the results showed that ST6GAL1 was also lower expressed in HCC liver tissues compared to the normal 
(Figure 1E). Through the RT-PCR and capillary electrophoresis approaches, we further detected the ST6GAL1 expres-
sion in liver tissues of the DEN-induced rat HCC model. The RT-PCR result showed that the ST6GAL1 mRNA 
expression in HCC-rat liver tissues was significantly lower than that in normal tissues (Figure 1F). The capillary 
electrophoresis experiment (CEE) demonstrated that ST6GAL1 protein level in HCC-rat liver tissues was also signifi-
cantly lower than those in normal tissues (Figure 1G and H). And we also performed SDS-PAGE to detect ST6GAL1 
protein expression, and the result was coincident with the CEE (Figure S2A and B). These results indicated that 
ST6GAL1 was downregulated in HCC on both mRNA and protein levels.

Lower ST6GAL1 mRNA Expression is Associated with Poor Prognosis in HCC
We next analyzed the correlation between ST6GAL1 mRNA expression and HCC patients’ survival. The Kaplan-Meier 
survival analysis showed that patients with low ST6GAL1 expression had a worse overall survival (OS) and 
recurrence-free survival (RFS) than those in the high expression group (Figure 2A and B). Next, we investigated 
the correlations between ST6GAL1 mRNA expression and prognosis in different clinical subgroups of HCC. As we 
could see from the results, the upregulation of ST6GAL1, decreasing T stage, and negative M stage were independent 
prognostic factors for a good prognosis (Figure 2C). Moreover, we evaluated the nomogram performance according to 
ST6GAL1 expression, and the C-index of OS was 0.642, which also presented the good prognostic predictive efficacy 
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Figure 1 ST6GAL1 expression in normal and HCC liver tissues. (A) The ST6GAL1 mRNA expression of HCC (n = 371) and normal tissues (n = 160) in the TCGA and 
GTEx databases; (B) The ST6GAL1 mRNA expression of HCC (n = 371) and adjacent non-tumor tissues (n = 50) in the TCGA database; (C and D) The ST6GAL1 mRNA 
expression of different T stages (C) or histologic grades (D) in the TCGA database; (E) The ST6GAL1 protein expression in the HPA database; (F) The ST6GAL1 mRNA 
expression levels in liver tissues of normal (n = 6) and HCC (n = 6) rats, detected by qRT-PCR and GAPDH as the internal reference; (G) The ST6GAL1 protein expression 
levels in liver tissues of normal (n = 6) and HCC (n = 6) rats, detected by capillary electrophoresis analysis and GAPDH as the internal reference; (H) The integrated density 
analysis of the protein bands. *p < 0.05, **p < 0.01, ***p < 0.001.
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of ST6GAL1 expression (Figure 2D). Meanwhile, because viral hepatitis is one of the most important pathogenic 
factors of HCC, we further analyzed the prognostic relationship between viral hepatitis (VH), alcohol hepatitis (AH), 
and ST6GAL1 expression in HCC. The results showed that in VH-related HCC, patients with higher ST6GAL1 
expression had better OS than those in the low expression group (Figure 2E), while there was no significant difference 
in patients without VH (Figure 2F). For AH or not, patients with higher ST6GAL1 expression had better OS than 
those in the lower expression group (Figure 2G and H), while the difference was more significant in the no AH-related 
HCC group. These results indicated the potential of ST6GAL1 expression to predict the prognosis of HCC, especially 
in the viral hepatitis-related patient population.

ST6GAL1 mRNA Expression Was Correlated with DNA Methylation
To further explore the expression of ST6GAL1, we analyzed the association of ST6GAL1 mRNA expression with its 
copy number variation (CNV) and methylation level in the TCGA database. As Figure 3A showed, patients with 
ST6GAL1 gene amplification or deletion were found to have a similar proportion and there was no significant difference 
between these two groups. Subsequently, we analyzed and found there existed a significant difference between ST6GAL1 
mRNA expression and ST6GAL1 gene methylation level, and they showed a negative correlation (Figure 3B). In 
addition, methylation of ST6GAL1 promoter was higher in tumor tissues than in normal tissues (Figure 3C). We further 
performed the prognostic analysis of ST6GAL1 methylation in HCC, and the result showed that patients with high 
ST6GAL1 methylation had poor OS than those with low ST6GAL1 methylation (Figure 3D). These results suggested 
that ST6GAL1 expression was mainly regulated by gene methylation in HCC.

Functional Enrichment Analysis of ST6GAL1 Related Genes
To further explore the functions of ST6GAL1 in HCC, we analyzed differential expression genes (DEGs) according to 
ST6GAL1 expression level in the TCGA-HCC database. Compared to the ST6GAL1-low expression group, we obtained 

Figure 2 The correlation between ST6GAL1 mRNA expression and HCC patients’ prognosis in TCGA database. (A and B) The overall survival (n = 364, (A)) and relapse- 
free survival (n = 316, (B)) analysis between ST6GAL1 expression and HCC; (C) A nomogram that combines ST6GAL1 and other prognostic factors in HCC; (D) The 
calibration curve of the nomogram; (E–H) The overall survival analysis of ST6GAL1 expression in HCC patients with viral hepatitis (n = 150, (E)), no-viral hepatitis (n = 167, 
(F)), alcohol consumption (n = 115, (G)), and no-alcohol consumption (n = 202, (H)).
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289 DEGs, of which 30 genes were upregulated and 259 genes were downregulated (Figure 4A). Among the DEGs, 209 
encoding protein genes were analyzed using gene ontology (GO) and KEGG functional enrichment analysis. The 
enrichment results showed that the most relevant cellular components (CC) of ST6GAL1-related DEGs were the plasma 
membrane region, an intrinsic component of the plasma membrane, and secretory vesicle (Figure 4B); the most relevant 
molecular function (MF) of ST6GAL1-related DEGs were signaling receptor binding, transcription regulator activity, and 
sequence-specific DNA binding (Figure 4C); the most relevant biological process (BP) of ST6GAL1-related DEGs were 
locomotion, cell population proliferation, cell migration, and cell-cell signaling (Figure 4D). The most relevant pathways 
of ST6GAL1-related DEGs were neuroactive ligand-receptor interaction, metabolic pathways, pancreatic secretion, 
protein digestion and absorption, pathways in cancer, estrogen signaling pathway, axon guidance, cAMP signaling 
pathway, and PI3K-Akt signaling pathway (Figure 4E). From the details, the top 5 up-regulated DEGs and top 5 down- 

Figure 3 The associations of ST6GAL1 mRNA expression with gene copy number variation and methylation in HCC. (A) The ST6GAL1 mRNA expression in tumor tissues 
of gene copy neutral (n = 262), deletion (n = 44), and duplication (n = 55) groups in the TCGA-HCC database; (B) The correlation between ST6GAL1 mRNA expression 
and gene methylation level of liver tissues in the TCGA-HCC database; (C) The ST6GAL1 methylation levels in HCC (n = 377) and normal liver tissues (n = 50) in the 
TCGA-HCC database; (D) The overall survival analysis between ST6GAL1 methylation level and HCC in the TCGA-HCC database. **p < 0.01.
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regulated DEGs of ST6GAL1 were ARSF, PCDHAC2, APOL5, FGF19, INS-IGF2, MT3, SULT2B1, VGF, PPP1R14C, 
and FAM166C (Figure 4F). These ST6GAL1-related genes and pathways might play an important role during 
hepatocarcinogenesis.

ST6GAL1 Expression Correlates with Liver Inflammation
Considering the inflammatory regulation function of ST6GAL1,21 we analyzed the effects of VH, AH, and steatohepatitis 
(SH) on ST6GAL1 expression in the TCGA-HCC database. The results showed that ST6GAL1 was downregulated in 
VH-related HCC compared to the no-VH HCC group (Figure 5A). And lower expressed in the AH-related HCC group 
compared to the no-AH-related HCC group (Figure 5B). While, no difference was found between SH-related HCC and 
no-SH-related HCC (Figure 5C). Next, in the GSE83148 dataset which contained sequencing data of 122 chronic 
hepatitis B (CHB) liver samples22 and in the GSE84044 dataset which contained sequencing data of 124 CHB patients,23 

we analyzed the correlation between the ST6GAL1 mRNA expression and levels of serum liver inflammation-related 
indicators including alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The elevated ALT and AST 
levels are the earliest indications of liver inflammation and tissue damage.24 The results showed that in GSE83148 
dataset, compared with the ALT- and AST-low level group, ST6GAL1 was lower expressed in the ALT- and AST-high 
level group (Figure 5D and E). The GSE84044 dataset also confirmed the above results (Figure 5F and G). Moreover, in 
GSE84044, according to Scheuer grades, we further analyzed the ST6GAL1 expression in different subgroups. The 
results showed that with the level of inflammatory activity increased, the ST6GAL1 expression downregulated 
(Figure 5H). Given that HCC is a progressive process, we further analyzed the differences in ST6GAL1 expression in 

Figure 4 The ST6GAL1-related differential expression genes (DEGs) and functional enrichment analysis in HCC. (A) Volcano plot of ST6GAL1 related DEGs; (B–E) The 
GO-CC (B), GO-MF (C), GO-BP (D), and KEGG (E) enrichment analysis of ST6GAL1 related DEGs; (F) The expression heatmap of the ST6GAL1-related DEGs.
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Figure 5 The association between ST6GAL1 mRNA expression and liver inflammation status. (A–C) ST6GAL1 expression of HCC tissues in no-viral hepatitis (VH) and VH 
groups (A), no-alcoholic liver disease (ALD) and ALD groups (B), and no-non-alcoholic fatty liver disease (NAFLD) and NAFLD groups (C) in the TCGA-HCC database; (D 
and E) Correlation between ST6GAL1 mRNA expression and alanine aminotransferase (ALT, (D)), and aspartate aminotransferase (AST, (E)) levels in the GSE83148 dataset; 
(F and G) Correlation between ST6GAL1 mRNA expression and ALT (F) and AST (G) levels in the GSE84044 dataset; (H) Expression of ST6GAL1 among hepatitis patients 
with Scheuer grades of G0, G1-G4 in the GSE84044 dataset; (I) ST6GAL1 expression of normal liver, chronic inflammatory liver, cirrhotic livers, early HCC, and advanced 
HCC in GSE54238 dataset. *p < 0.05, **p < 0.01, ***p < 0.001.
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different stages of liver disease in the GSE54238 dataset, which contained 10 normal livers (NL), 10 chronic inflam-
matory livers (IL), 10 cirrhotic livers (CL), 13 early HCC (eHCC) and 13 advanced HCC (aHCC) samples.25 The results 
showed that there was no difference in ST6GAL1 expression between NL and IL groups. While compared to NL or IL 
groups, ST6GAL1 expression was significantly downregulated in CL and aHCC groups (Figure 5I). These results 
indicated that ST6GAL1 expression was correlated with liver inflammation status, and ST6GAL1 had an anti-inflamma-
tion function during hepatocarcinogenesis.

ST6GAL1 Expression Correlates with Immune Cell Infiltration in Liver Tissues
The above results suggested that ST6GAL1 might be involved in liver immune response, so we then analyzed the 
relationship between ST6GAL1 expression and the level of immune cell infiltration (ICI) in the TCGA database. The 
results showed that in the ST6GAL1-high expression group, the enrichment scores of dendritic cells (DC), T helper cells 
(Th), central memory T cells (Tcm), and Th17 cells were significantly higher, while the enrichment scores of CD8+ T 
cells, NK CD56bright cells, NK CD56dim cells and plasmacytoid dendritic cell (pDC) were decreased (Figure 6A). And 
the correlation analysis between the ICI and ST6GAL1 expression showed that there were significant negative 

Figure 6 The association of ST6GAL1 mRNA expression and immune cell infiltration. (A) Immune cell infiltration levels of high- and low-ST6GAL1 expression groups in 
HCC; (B) Correlation between ST6GAL1 mRNA expression and immune cell infiltration in HCC; (C) Correlation between ST6GAL1 mRNA expression and immunoinhi-
bitors or immunostimulators in HCC; (D) Correlation between ST6GAL1 mRNA expression and TGFB1, KDR, IL6R, and TNFRSF9 in HCC. *p < 0.05, **p < 0.01, ***p < 
0.001.
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correlations between ST6GAL1 expression and NK CD56bright cells, NK CD56dim cells, CD8+ T cells, pDC, and T 
follicular helper (TFH) cells, and significant positive correlations between ST6GAL1 expression and Th, Tcm, DC and 
Th17 cells (Figure 6B). Furthermore, we analyzed the correlations between ST6GAL1 expression and immunomodula-
tors. The results showed that ST6GAL1 expression correlated to kinds of immunomodulators including immunoinhibi-
tors and immunostimulators (Figure 6C). And among the immunoinhibitors, the ST6GAL1 had the highest negative 
correlation with TGFB1, and had the highest positive correlation with KDR; while among the immunostimulators, the 
ST6GAL1 had the highest positive correlation with IL6R, had the highest negative correlation with TNFRSF9 
(Figure 6D). These results demonstrated that ST6GAL1 might exert an anti-inflammation function via regulating the 
infiltration of immune cells in the liver.

Discussion
HCC is one of the globally recognized malignancies with suboptimal OS rates, and the mechanisms of its pathogenesis 
and progression remain unclear.26,27 Therefore, exploring the pathogenesis behind HCC and evaluating its prognosis has 
become a priority. In this study, we found that ST6GAL1 was lower expressed in HCC tissues. And the lower ST6GAL1 
expression, the worse of HCC prognosis. Furthermore, we found that the downregulation of ST6GAL1 was associated 
with aberration of immune cells infiltration in HCC liver tissues.

ST6GAL1 is a sialyltransferase that mediates the glycosylation of proteins and lipids to form functionally important 
glycoproteins and glycolipids in the Golgi apparatus, which plays an important role in cell proliferation and metastasis.28 

The aberrant expression of ST6GAL1 has been reported in many human malignancies,14,29 indicating its different effects 
on different cancer types. As to HCC, there have been different views about ST6GAL1 as a prognostic indicator. Chen 
et al reported that ST6GAL1 expression was upregulated in HCC tissues and was associated with adverse prognosis,12 

while Souady et al reported no difference in ST6GAL1 expression in cancerous and adjacent noncancerous tissues.30 

However, these two studies were based on a small number of clinical HCC patients, only 78 and 35 cases respectively, 
resulting in some limitations and uncertainties. In our study, by analyzing the data in the public databases, we found that 
both ST6GAL1 mRNA and protein expressions were significantly lower in HCC compared with normal liver tissues. 
Subsequently, the same results were also seen in vivo experiments of the DEN-induced HCC rat model. And patients 
with lower ST6GAL1 mRNA expression had significantly poorer OS than those with high expression in the TCGA-HCC 
dataset. These results were consistent with previous reports of Poon et al and Cao et al.31,32 In addition, ST6GAL1 
expression was also associated with clinical T stages and histological grades, as the HCC progresses, the expression of 
ST6GAL1 decreases. The CNV and methylation level of genes are two important factors affecting genes’ expression. 
And the ST6GAL1 expression has been reported to be regulated by DNA methylation in human gliomas and bladder 
cancer.33,34 Our results showed that decreased ST6GAL1 mRNA expression was associated with ST6GAL1 gene 
hypermethylation, but not with ST6GAL1 CNV status.

ST6GAL1 has been reported to participate in multiple signaling pathways during tumorigenesis including PI3K-AKT, 
TGF, EGFR, and HIF/VEGF signaling pathways.13 We here analyzed ST6GAL1 and its related DEGs in HCC. And the 
KEGG enrichment analysis showed that ST6GAL1 and its related DEGs may participate in the metabolic pathway, 
estrogen signaling pathway, axon guidance, and cAMP signaling pathway in HCC. In addition, among the top ten 
ST6GAL1-related DEGs we screened out, FGF19 has been proven to have an upregulating effect on ST6GAL1 
expression.20 While relationships between ST6GAL1 and other genes needed further research.

More than that, ST6GAL1 is thought to play key roles in homeostasis and communication of immune cells. A 
previous study has found that knocking out the ST6GAL1 gene of hepatocytes could promote immune response and 
inflammation in liver.35 Our analysis also found that ST6GAL1 was lower expressed in VH-related HCC and AH-related 
HCC. And downregulation of ST6GAL1 was associated with liver inflammation levels, which indicated its anti- 
inflammation function in liver. Meanwhile, through the immune cells infiltration analysis, we found that ST6GAL1 
could inhibit NK, pDC, and CD8+ T cells infiltrating in liver tissues. According to the previous reports, Danilo et al 
found that CD8+ T cells were heterogeneous. And although they were key mediators of antitumor immunity, they became 
dysfunctional after effector differentiation, thereby suppressing the anti-tumor immune response.36 And increasing 
evidences indicated that the tumor microenvironment (TME)-mediated suppression and modulation of tumor-infiltrated 
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DCs impaired their function in initiating potent anti-tumor immunity and even promoted tumor progression.8 More 
evidence showed that NK cells were modulated and impaired in HCC to activate the elimination of tumor cells, which 
further involved in the pathogenesis of liver injury and inflammation.37 These studies suggested that high infiltration 
levels of NK CD56bright, NK CD56dim, pDC, and CD8+ T cells in liver could exacerbate HCC progression, which was 
consistent with the results of the present study. And the way that ST6GAL1 released liver inflammation might relied on 
regulating immune cell infiltration, which might be a therapeutic target in the clinic. However, more studies are needed to 
explore the mechanism of ST6GAL1 in regulating the TME and inflammation in HCC.

Conclusions
The results of this study showed that the decreased expression of ST6GAL1 in tumor tissues was associated with a poor 
prognosis for HCC patients. Its downregulation in liver tissues could promote intrahepatic inflammation. Our study 
suggested that ST6GAL1 could be a potential biological marker and therapy target for HCC. And provided some ideas to 
reveal the mechanism of ST6GAL1 on the occurrence and development of HCC by regulating the ICI and inhibiting liver 
inflammation.
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