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Fluorescence-Guided Surgery
Tadanobu Nagaya, Yu A. Nakamura, Peter L. Choyke and Hisataka Kobayashi*

Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health,  
Bethesda, MD, United States

Surgical resection of cancer remains an important treatment modality. Despite advances 
in preoperative imaging, surgery itself is primarily guided by the surgeon’s ability to locate 
pathology with conventional white light imaging. Fluorescence-guided surgery (FGS) can 
be used to define tumor location and margins during the procedure. Intraoperative visu-
alization of tumors may not only allow more complete resections but also improve safety 
by avoiding unnecessary damage to normal tissue which can also reduce operative 
time and decrease the need for second-look surgeries. A number of new FGS imaging 
probes have recently been developed, complementing a small but useful number of 
existing probes. In this review, we describe current and new fluorescent probes that may 
assist FGS.

Keywords: fluorescence-guided surgery, activatable probe, monoclonal antibodies, molecular imaging,  
always-on probe

iNTRODUCTiON

Surgery is a primary mode of treatment for many malignancies. For example, 63–98% of patients 
with lung, breast, bladder, and colorectal cancer will undergo surgery (1). The goal of surgery is 
to safely remove as much cancer as possible. The degree to which cancer is removed relates closely 
to prognosis. However, the ability to resect tumor currently relies on the visual localization of the 
tumor and/or the ability to palpate it. The former is limited by the low contrast between tumors 
and background tissue and many small tumors may be missed. Moreover, the determination of 
tumor margins must often be done blindly followed by frozen section pathologic analysis.

The presence of residual tumor cells after resection is considered a strong predictor of tumor 
recurrence and, therefore, survival. Many studies show that positive margins, defined as the iden-
tification of tumor cells at the cut edge of a surgical specimen, are associated with increased local 
recurrence and indicate a poor prognosis in most cancer types including head and neck cancers (2), 
breast cancer (3, 4), non-small-cell lung cancer (5), colorectal cancer (6), bladder cancer (7), and 
prostate cancer (8). Despite advances in preoperative imaging such as computerized tomography 
(CT), magnetic resonance imaging (MRI), and positron emission tomography, surgical margin 
positivity rate has not changed significantly over the past several decades (9), with margin positivity 
rates of 15–60% across all cancers (10–16). Currently, the standard of care for achieving negative 
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Table 1 | Current clinical and preclinical fluorescence-guided surgery 
techniques.

application Types Contrast agent Status

Sentinel lymph 
node mapping

Breast cancer Indocyanine green (ICG) 
(34–37)

Clinical 

Methylene blue (MB) (38, 39) Clinical
Melanoma ICG (40, 41) Clinical
Head and neck 
cancer

ICG (42) Clinical

Lung cancer ICG (43) Clinical
Esophagus cancer ICG (44, 45) Clinical
Gastric cancer ICG (46, 47) Clinical
Colorectal cancer ICG (48) Clinical
Anal cancer ICG (49) Clinical
Prostate cancer ICG (50–52) Clinical
Penile cancer ICG (51, 52) Clinical

Lymphography Lymph flow ICG (53–55) Clinical
Angiography Cerebral aneurysm Fluorescein sodium (56–58) Clinical

Coronary artery 
bypass grafting

ICG (59, 60) Clinical

Abdominal aortic 
aneurysm

ICG (61) Clinical

Abdominal surgery ICG (62, 63) Clinical
Reconstructive 
surgery

ICG (64–70) Clinical

Anatomic 
imaging

Cholangiography ICG (71, 72) Clinical

Pancreas MB (73) Preclinical 
T700-F (74) Preclinical

Ureters MB (75) Preclinical
Nerves Various fluorescently labeled 

peptide (NP) (76, 77)
Preclinical

Parathyroid and 
thyroid grands

T700 and T800 fluorophores 
(78)

Preclinical

Endocrine grands Various near-infrared 
fluorophores (79–81)

Preclinical

Tumor imaging Malignant glioma 5-ALA (82–86) Clinical
Fluorescein sodium (87–89) Clinical
BLZ-100 (90) Clinical
GB119 (91) Preclinical

Brain metastases Fluorescein sodium (92, 93) Clinical
Head and neck 
cancer

IRDye800CW conjugate 
(94, 95)

Clinical

IRDye700DX conjugate (96) Clinical
Hepatocellular 
carcinoma

ICG (97–100) Clinical

Liver metastases ICG (99) Clinical
Breast cancer MB (101) Clinical

EC17 (102) Clinical
IRDye800CW conjugate 
(102)

Clinical

LUM015 (103) Clinical
AVB-620 (104) Clinical

(Continued )
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margins rests on visual inspection, palpation, and intraoperative 
histopathological analysis of frozen tumor margins all of which 
have severe limitations. The naked eye is limited in its ability 
to detect small tumors. Palpation is limited in sensitivity and is 
increasingly not used due to the increased utilization of robotic 
laparoscopic surgery. Intraoperative frozen section analysis is 
limited to certain tissue types, is time-consuming, and is prone 
to sampling error. Frozen section analysis is discrepant with 
permanent pathology in 5–15% of cases (17).

A number of non-optical imaging methods have been pro-
posed during surgery. Typically, these methods are not targeted 
to the tumor per se but rely on anatomic abnormalities to define 
the tumor. For instance, intraoperative CT and MRI have played 
a significant role in the field of neurosurgical image guidance 
(18–20). However, intraoperative systems are costly, complex and 
require space. Moreover, their use interrupts the normal work-
flow of the surgical procedure lengthening operative/anesthesia 
times. These methods are, mainly used for neurosurgery at major 
medical centers.

Therefore, practical methods for augmenting the surgeon’s 
ability to resect tumors are needed. One such method is 
fluorescence-guided surgery (FGS). The first use of fluorescence 
imaging in surgery dates back to 1948 when surgeons used 
intravenous fluorescein to enhance intracranial neoplasms dur-
ing neurosurgery (21). Since then, additional fluorescent agents 
have been used for a variety of surgical applications (22–24). 
Intraoperative fluorescence imaging offers the benefits of high 
contrast and sensitivity, low cost, absence of ionizing radiation, 
ease of use, safety, and high specificity (25, 26). Compared with 
standard unaided vision using white light imaging, real-time flu-
orescence imaging is helpful in identifying cancerous tissue and 
delineating tumor margins. Moreover, improved visualization of 
the cancer can reduce damage to important normal structures 
such as nerves, blood vessels, ureters, and bile ducts.

In this review article, we focus on the currently used Food 
and Drug Administration (FDA)-approved fluorescent probes 
and new types of fluorescence imaging probes for FGS that are 
under development.

CURReNT FGS

The exponential growth in the field of FGS is demonstrated by 
the number of published articles in the field, which has grown 
from under 50/year in 1995, to nearly 500/year in 2015 (27). 
Furthermore, FGS has enjoyed a number of preliminary successes 
(23, 28) and some FGS techniques have already achieved clini-
cal success (29). FGS may improve tumor resection rates while 
minimizing normal tissue resection (9, 30, 31). This can translate 
into improved clinical outcomes.

Compared to expensive traditional imaging methods, optical 
methods are less costly and require less space. One cost estimate 
of the fluorescence-assisted resection and exploration (FLARE) 
system is 120,000  USD and 40,000  USD for the mini-FLARE  
(32, 33). Of course, this does not include the cost of the opti-
cal probe itself but the overall costs are much lower than with 
conventional imaging. Moreover, because it is portable a single 
instrument could be shared among multiple operating rooms.

Fluorescence-guided surgery has been currently used for 
multiple surgical situations, including sentinel lymph node (SLN) 
mapping, identification of solid tumors, lymphography, angiog-
raphy, and anatomical imaging during surgery. Importantly, FGS 
can be used seamlessly during the procedure without interrupt-
ing the surgeon’s workflow. This integrates FGS into the surgery 
creating numerous opportunities for its use. We summarize 
current clinical and preclinical FGS techniques in Table 1.
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application Types Contrast agent Status

Lung and chest 
masses

ICG (105) Clinical
Folate-fluorescein 
isothiocyanate (FITC) (106)

Clinical

EC17 (107) Clinical
OTL38 (108) Clinical

Ovarian cancer ICG (109) Clinical
Folate-FITC (28) Clinical
EC17 (110) Clinical
OTL38 (111) Clinical
gGlu-HMRG (112) Preclinical

Pancreatic cancer Green fluorophore conjugate 
(113, 114)

Preclinical

IRDye800CW conjugate 
(102)

Preclinical

Insulinoma MB (73) Preclinical
Solitary fibrous 
tumor (pancreas)

MB (115) Preclinical

Renal cell 
carcinoma

EC17 (116) Clinical

OTL38 (102) Clinical
Bladder cancer 5-ALA/HAL (117–120) Clinical
Prostate cancer ICG conjugate (121) Preclinical

5-ALA (122) Clinical
Gastric cancer ICG (123–125) Clinical
Colorectal cancer Green fluorophore conjugate 

(113)
Preclinical

IRDye800CW conjugate 
(126)

Clinical

gGlu-HMRG (127) Preclinical
Basal cell 
carcinoma

5-ALA (128) Clinical

GB119 (129) Preclinical
Sarcoma LUM015 (103) Clinical
Parathyroid 
adenoma

MB (130) Clinical

Laparoscopic- 
and robotic-
assisted 
surgeries

Nephrectomy ICG (131) Clinical

Cholecystectomy ICG (72, 132) Clinical
Esophagectomy ICG (133) Clinical
Gastrectomy ICG (134) Clinical
Adrenalectomy ICG (135, 136) Clinical

Fluorescence 
endoscopy

Brain aneurysm ICG (137–139) Clinical

Endonasal surgery ICG (140–142) Clinical
Angiography ICG (142, 143) Clinical
Brain tumor ICG (140, 144, 145) Clinical
Head and Neck 
tumor

ICG (146) Clinical

Gastric cancer ICG (123–125) Clinical
Marking tumor Colonic tattooing ICG (147–149) Clinical

Table 1 | Continued

Table 2 | Clinically available Food and Drug Administration-approved fluorescence imaging systems.

imaging system Company excitation  
wavelength(s) (nm)

light  
source

working  
distance (cm)

Field of  
view (cm)

Real-time  
overlay

SPY Novadaq Technologies 805 Laser ~30 19 × 14 No
PDE Hamamatsu Photonics 760 LED ~20 5 × 5 to 10 × 6.7 No
Fluobeam 700 (800) Fluoptics Minatec 680 (750) Laser 15 ~ 25 2.2 × 1.5 to 20 × 14 No
Quest Spectrum Quest Medical Imaging 400–1,000 Laser 5~ 2.25 × 2.25 (5 cm distance) Yes
VS3 Iridium system VisionSense 805 Laser ~30 19 × 14 Yes
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CliNiCallY available FlUOReSCeNCe 
iMaGiNG

There has been an explosion of interest in FGS, which has led 
to a steady demand for new fluorescence imaging devices and 
probes. Currently, most FGS imaging has been performed with 
the Novadaq SPY system which was the first to be approved by 
FDA in 2005; however, several new fluorescence imaging sys-
tems have subsequently been approved by the FDA as shown in 
Table 2. These systems are approved for a variety of procedures 
including imaging blood flow, tissue perfusion, and circulation 
in free flaps, plastic surgery, and reconstructive surgery. These 
systems are portable making their positioning within a room 
completely customizeable to the situation. Hand-held cameras 
of PDE and Fluobeam, for instance, possess the advantage of 
being compact and convenient for real-time fluorescence imag-
ing. Other cameras such as Quest Spectrum and VS3 Iridium 
simultaneously show the white light image and the fluorescent 
probe image overlay which reduces distractions for the surgeon 
(150, 151). In the field of breast oncology, the SPY system 
has been applied to monitor skin perfusion in nipple-sparing 
mastectomies using ICG as the imaging probe. This method 
can guide the location of mastectomy incisions and minimize 
ischemic complications (152).

A successful device should be able to display RGB white light 
imaging, fluorescence imaging, and overlay imaging. The device 
should be capable of quantitating the light intensity to the extent 
possible. Quantitation permits FGS to be used in multicenter 
trials and allows comparison at different time points in the same 
patient. Further investigations are needed to establish reliable 
quantitative analyses of fluorescent imaging.

CURReNT CliNiCal USe OF 
FlUOReSCeNCe iMaGiNG PRObeS

Biomedical fluorescence imaging operates in wavelengths in 
the visible spectrum (400–700  nm), extending into the near 
infrared (NIR) spectrum (700–900  nm). A large number of 
commercially available fluorophores are available; however, few 
are clinically approved. While the majority of fluorescent probes 
emit light in the visible range, this is probably the least desirable 
part of the spectrum due to overlap with tissue autofluorescence 
and high absorbance of light in tissue in the visible spectrum. 
NIR fluorophores are better suited for in vivo imaging. While, 
wavelengths below 700  nm are strongly absorbed in tissue by 
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Table 3 | Currently used Food and Drug Administration-approved fluorescence 
probes.

Fluorescence probe excitation emission Fluorescence type

Indocyanine green 780 nm 820 nm Indocyanin green
Methylene blue (MB) 670 nm 690 nm MB
5-Aminolevulinic acid 
(5-ALA)

380–440 nm 620 nm 
(alkaline pH) 
634 nm (acid 
pH)

Porphyrin

Fluorescein sodium 494 nm 512 nm Fluorescein
Folate 495 nm 

(folate-FITC)
520 nm 
(folate-FITC)

Fluorescein 
isothiocyanate 
(FITC)

IRDye800CW conjugate 775 nm 796 nm IRDye800
IRDye700DX conjugate 680 nm 687 nm IRDye700
Activatable probes Various Various Various
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endogenous molecules, such as hemoglobin and myoglobin, 
wavelengths above 900 nm are limited by water and lipid absorp-
tion wavelengths (153–155). Fluorophores emitting light <700 or 
>900 nm are, therefore, limited in their ability to penetrate tissue 
(156). The “NIR window” from 700 to 900 nm arises from less 
absorbance in tissues, allowing for deeper imaging and detection 
(153, 154). Thus, fluorophores in the NIR range have excellent 
potential for FGS. Fluorescence imaging using NIR fluorophores 
enhances cancer surgery navigation and offers higher sensitiv-
ity when compared to preoperative imaging, visual inspection, 
and palpation during surgery (157). Next, we will focus on the 
currently used fluorescence imaging probes in surgical oncology 
(Table 3).

indocyanine Green (iCG)
Currently, ICG is one of the most frequently employed NIR 
fluorophores used for FGS. ICG is a water-soluble, anionic, 
amphiphilic tricarbocyanine probe with a molecular weight of 
776  Da (158, 159), which rapidly binds to plasma proteins in 
the body. The excitation peak is 780 nm and the emission peak 
is at 820  nm, which places outside the range of most tissue 
autofluorescence. ICG was first produced in 1955 by the Kodak 
Research Laboratories, and in 1959 it was approved by the FDA 
for retinal angiography. Historically, it has been clinically used to 
measure cardiac output (160), hepatic function (161), and retinal 
angiography (162).

Throughout its history, ICG has maintained a high safety 
index (25, 163, 164), as the number of allergic reactions is very 
low (1:10,000, as reported by manufacturer) (165). ICG also 
allows multiple repeated uses due to its short half-life of 150 to 
180 s and is cleared exclusively by the liver (166).

Near infrared ICG-guided SNL mapping has been performed 
in various cancers as shown in Table 1. ICG has also been used 
for lymphography (167), angiography (61, 168), reconstructive 
surgery (65, 67), cholangiography (71) and tumor imaging (99), 
and so on. The use of ICG for delineating tumors has been a 
success. For instance, ICG fluorescence imaging identified 100% 
of primary hepatocellular carcinomas (HCCs) and in 40% of the 
cases also identified additional, small (3–6 mm) HCCs that would 
otherwise have gone undetected (98).

Methylene blue (Mb)
Methylene blue is a heterocyclic aromatic compound with a 
molecular weight of 320 Da (51). It is a FDA-approved visible 
(dark blue) contrast agent. When sufficiently diluted, MB acts as 
a near-infrared fluorescent dye that operates within the NIR opti-
cal window with an absorption peak at 670 nm and an emission 
peak at 690 nm and is naturally excreted through the urine (51). 
MB was the first entirely synthetic drug used in medicine and was 
used in the treatment of malaria as early as 1891 by Guttmann 
and Ehrlich (169). MB continues to be applied and investigated 
as treatment for a variety of medical applications in the clinical 
setting, including methemoglobinemias and ifosfamide-induced 
encephalopathy (170, 171). MB has also been used to identify 
breast cancer (101) and neuroendocrine tumors (73), and is com-
monly used for SLN mapping (38, 39), as well as the identifica-
tion of urologic tumors (51, 52) and tumors in the parathyroid 
glands (130).

Methylene blue is known to be relatively safe; however, the 
use of MB can potentially lead to cardiac arrhythmias, coronary 
vasoconstriction, decreased cardiac output, decreased renal blood 
flow and mesenteric blood flow, and increased pulmonary vascu-
lar pressure (172). Although MB accumulates in most tumors, 
the amount of accumulation varies with tumor type. Therefore, 
dye concentration appropriately matched to each tumor type is 
required (38).

5-aminolevulinic acid (5-ala)
5-ALA is the major substrate for protoporphyrin synthesis, and 
has been used clinically for tumor detection and tumor treatment 
(photodynamic therapy; PDT), as a FDA-approved substance. 
5-ALA, typically administered in a topical or oral form, induces 
synthesis and accumulation of the fluorescent molecule protopor-
phyrin IX (PpIX) in epithelia and neoplastic tissues (83, 85, 86).  
5-ALA-induced PpIX exhibits multiple physiochemical states 
depending on the microenvironment. One of the most impor-
tant parameters affecting the state of PpIX is pH. In the pH 
range 3 to 11.5, there are two distinct states: emission peaks at 
620 nm in alkaline environments and emission peaks at 634 nm 
in acidic environments after excitation with visible blue light of 
380–440 nm (173, 174).

Cancer specific FGS with 5-ALA has been successfully imple-
mented for resection of malignant gliomas in Europe after studies 
clearly demonstrated clinical benefits with regards to completeness 
of tumor removal (65% complete resection with 5-ALA compared 
to 36% in the white light group) and progression-free survi val 
with its use (83). 5-ALA and derivatives have also been descri bed 
in bladder cancer (117, 118, 120) and prostate cancer (122).

The use of 5-ALA has been limited by its relatively high costs, 
and an inconvenient method of administration (it is administered 
orally some hours before it is to be used). The high risk of skin 
sensitization within 24 h after the operation (the patient should 
not be exposed to sunlight or strong artificial light) also presents 
a challenge to its use (175).

Fluorescein Sodium
Fluorescein sodium is a fluorescent drug that can be used intra-
venously to improve visualization of brain tumor tissue based 
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primarily on non-specific vascular leakage. It is also used for 
retinal angiography (56–58). Fluorescein sodium is a sodium salt 
and an organic fluorescent dye with peak excitation at 494 nm and 
peak emission at 512 nm. It has been safely used in humans for 
many years, predominantly in ophthalmology for retinal angiog-
raphy, and the cost of fluorescein sodium is relatively low when 
compared with the cost of 5-ALA (176). Fluorescein sodium 
is usually visible to the naked eye at high dosages (20  mg/kg  
body weight), and is observable through the yellow 560 nm filter 
at lower doses, allowing better tissue discrimination with more 
natural colors (177, 178).

The use of fluorescein sodium for the identification of intrac-
ranial tumors has been known since 1947 (179). As an FGS 
agent, fluorescein sodium has been commonly used for iden-
tifying glioblastoma (88) and metastatic brain tumors (92, 93).  
It has also been used for intracranial angiography (56–58).

New FlUOReSCeNCe iMaGiNG PRObeS

The ideal fluorescence imaging probe must provide excellent 
contrast between the tumor or affected lymph node and healthy 
tissue (180). Therefore, a current challenge is to design fluores-
cent imaging probes with high selectivity for tumors, high tumor 
to background ratios, and minimal toxicity (155).

Current clinical studies are based on contrast agents that 
have already been approved. The most often used fluorophores 
are blood pool agents (including ICG) that have no inherent 
specificity for tumor or normal tissues, and thus are not ideal 
fluorophores for FGS. A number of new agents are currently 
being investigated, including several dyes from the cyanine 
family, such as Cy5.5, Cy7, Cy7.5, IR-dyes, nanoparticle formula-
tions, and visible spectrum dyes (181). Most research focuses on 
increasing the availability of novel, fluorescently labeled agents to 
identify crucial landmarks, such as tumor margins, lymph nodes, 
and vital structures of interest to surgeons. A new generation of 
agents that target-specific antigens have been based on antibodies 
(113, 182, 183), nanobodies (184), aptamers, and peptides (77). 
Other approaches make use of enzymes for fluorescence activa-
tion (185–189).

In the following sections, we summarize progress made in 
several specific targeted optical imaging agents for FGS.

Folate-Targeted FGS
The Folate receptor is commonly upregulated on tumor cells and, 
therefore, is a good candidate for a general-purpose fluorescently 
labeled, targeted agent. An example is folate fluorescein iso-
thiocyanate (folate-FITC) that excites at a wavelength of 495 nm 
and emits at 520 nm (190). Folate and these folate analogs are 
internalized in the cell via receptor-mediated endocytosis within 
2  h (191). Once inside the endosome, the conjugate remains 
intact and can, therefore, remain fluorescent after internaliza-
tion (191, 192). This stability led to the development of a broad 
variety of folate-targeted conjugates. van Dam et al. used a folate 
fluorescein isothiocyanate to identify tumor implants in ovarian 
cancer patients who were undergoing abdominal surgery (28). 
Lung adenocarcinoma is also known to express high levels of 
folate receptor α (193, 194). This was exploited by Okusanya et al. 

who demonstrated that lung adenocarcinomas demonstrated 
fluorescence in 92% (46/50) of patients with folate-FITC (106). 
Another folate analog, EC17, was also used for imaging renal 
cell carcinoma, although only two of four cancers were detected 
(116). In another study using EC17 for intraoperative detection of 
ovarian cancer, Tummers et al. showed that the addition of FGS 
resulted in a16% increase in the resection of malignant tumors 
when compared to visual inspection and palpation (110). Of 
course, the clinical significance of this increase is still uncertain. 
Another folate analog, OTL38, has been used to delineate renal 
cell carcinoma margins during partial nephrectomy (102), and 
to identify ovarian cancer (111). Hoogstins et al. also reported 
that OTL38 accumulated in folate receptor α-positive tumors and 
metastases in 12 patients with ovarian cancer, enabling the sur-
geon to resect an additional 29% of malignant lesions that were 
not identified by inspection and/or palpation (111). Recently, 
both EC17 and OTL38 were also used for intraoperative lung 
tumor imaging (107, 108). Like all targeted agents, folate-FITC 
is restricted to use only in tumors over expressing folate receptor 
and, by virtue of the visible light emitted by FITC, the agent has a 
limited depth penetration.

Monoclonal antibody-based Fluorescent 
Probes
Perhaps the most generalizable FGS probes are based on mono-
clonal antibodies (mAb) conjugated to a fluorescent dye. There 
are at least two scenarios in which mAb-based fluorescent 
probes could become clinically useful. One is in fluorescence-
guided navigation to aid surgeons in detecting tiny lesions and 
determining the margin between cancer and normal tissue. 
Another is in selecting patients whose cancer cells express a suf-
ficient amount of target to enable molecularly targeted therapies 
such as antibody–drug conjugates or antibody-photo-absorber 
conjugates.

Promising preclinical examples of targeted fluorescently labe-
led probes include anti carcinoembryonic antigen in pancreatic 
cancer and colorectal cancer conjugated to a green fluorophore 
(113), anti carbohydrate antigen 19-9 in pancreatic cancer conju-
gated to a green fluorophore (114), epidermal growth factor recep-
tor (EGFR) and EGFR type2 (HER2) in breast cancer (195–197)  
and prostate-specific membrane antigen (PSMA) in prostate 
cancer conjugated to ICG (121). Most mAb-based fluorescent 
probes are designed for systemic administration. Compared to 
other routes of administration, such as oral or intra-tumoral 
injection, systemic administration allows for more homogeneous 
microdistribution. Moreover, systemic administration allows for 
sufficient washout time to elapse, to allow for the elimination of 
non-specific fluorescence from the blood and the urinary tract 
(22). In contrast to intra-tumoral injection, systemic administra-
tion also allows the detection of previously unrecognized tumor 
foci or metastases.

Few of these mAb-based fluorescent probes have progressed 
into clinical testing. One that did, a first-in-human clinical trial of 
fluorescence-guided navigation to aid surgery in head and neck 
cancers is currently underway. This trial utilizes the anti-EGFR 
antibody conjugate, cetuximab-IRDye800CW for use in head and 
neck cancers (94, 95). In this trial, Rosenthal et al. demonstrated 
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FiGURe 1 | Comparison of molecularly targeted fluorescent probes using 
always-on and activatable fluorescence strategies. Radiolabeled trastuzumab 
targeting HER2 with always-on fluorophores depicts both bound and 
unbound agents (left and right tumors) resulting in poor target-to-background 
ratio (TBR). In contrast, the activatable fluorescent probe, indocyanine green 
(ICG)-labeled trastuzumab, depicts only HER2-expressing tumors (right 
tumor) without incurring background signal resulting in superior TBR. 
Reprinted from publication (210) with permission from Elsevier.
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that the EGFR mAb-fluorophore conjugate was both safe and 
effective. The target-to-background ratio (TBR) achieved in this 
study (mean TBR of 5.2 in the highest dose range) improved the 
accuracy of surgical decision-making (95). Recently, cetuximab-
IRDye800CW or bevacizumab-IRDye800CW (targeting vascular 
endothelial growth factor)-have also been in clinical trials target-
ing pancreatic adenocarcinoma, colon cancer, and breast cancer 
(102, 126). It was noted that the conjugation of the IRDye800CW 
significantly shortened the circulating half-life of cetuximab 
despite a low antibody-to-dye conjugation ratio (approximately 
1) (95). Rapid clearance of mAb–dye conjugates can help lower 
the background signal; however, it can simultaneously compro-
mise tumor accumulation. Taken together, these alterations could 
lower the overall performance of the agent.

Another exciting advancement with potential implications for 
FGS is a technique called “near infrared photoimmunotherapy” 
(NIR-PIT) (96). NIR-PIT is based on an antibody that targets a 
cell-surface antigen but is conjugated to a photoabsorbing dye 
(IRDye700DX) that has both fluorescent characteristics and the 
ability to damage cells to which it has conjugated. Thus, NIR-PIT 
has the dual ability to localize tumors and as well as selectively 
eliminate cancer cells. The cytotoxic effects of NIR-PIT are 
observed only when the mAb-IR700 conjugate is bound to recep-
tors on the cell membrane; no phototoxicity is observed when the 
conjugate is present but not yet bound (96). Therefore, NIR-PIT 
achieves highly selected targeted cancer cell killing. NIR-PIT has 
been shown to be effective in a variety of different cancer cell 
types exhibiting a range of surface antigens such as EGFR, CD20, 
mesothelin, and PSMA (198–202). Furthermore, a first-in-
human phase 2 trial of NIR-PIT in patients with inoperable head 
and neck cancer was recently completed and the agent is being 
commercialized. NIR-PIT has great potential as a new cancer 
treatment for many tumor types when combined with FGS.

These fluorescence imaging probes, including IRDye700DX 
and IRDye800CW, typically result in an “always-on” type of 
fluorescence signal. Therefore, fluorescence in the cancer tissues 
is roughly related to the amount of conjugated mAb bound to the 
tumor. By showing sufficient expression of target molecules, acti-
vatable fluorescent probes would be useful for selecting eligible 
patients who could be efficiently treated with FGS.

activatable Fluorescent Probes
Based on pharmacokinetics, the “perfect” in vivo targeting agent 
has not yet been developed. The fundamental disadvantage of 
“always-on” probes is that they emit signal regardless of their 
proximity or interaction with the target tissues. As a result, there 
is considerable background signal to contend with. In order to 
design superior molecular imaging probes, one seeks to either 
(1) maximize signal from the target, (2) minimize signal from the 
background, or (3) do both. All lead to improved TBR, which, in 
turn, improves the sensitivity and specificity for detecting tumors 
with imaging (203).

Activatable fluorescent probes (“smart probes”) target tumor 
cells by taking advantage of the physiologic differences between 
cancerous and normal cells, thus enhancing tumor margin 
detection (204). Because activatable probes do not emit signals 
before engaging the target, unbound probes do not yield a signal. 

Therefore, there is less background signal to compromise the 
sensitivity and specificity, yielding an absolute increase in TBR 
(205). Consequently, compared with “always-on” fluorescent 
probes, activatable fluorescent probes have a higher TBR (203). 
Preclinical studies have shown the merits of this approach  
(206–208). For example, when employing the antibody as a 
platform for activatable imaging probes, IgG-based activat-
able probes typically yield both the highest signal (due to high 
binding) as well as highest TBR (due to absent background 
signal) compared with “always-on” probes (203, 209, 210) 
(Figure 1).

There are two basic types of activatable fluorescent probes 
(Figure 2) (203, 207, 211). One type is enzyme reactive activatable 
fluorescent probe, which exist in the quenched state until they 
are activated by enzymatic cleavage mostly outside of the cells  
(212, 213) (Figure 2). Well known targeted enzymes are cathesp-
sin, matrix metalloproteinases (MMP), γ-glutamyltransferase 
(GGT), and beta-galactosidases. Some of enzyme reactive 
activatable fluorescent probes can be topically or locally applied.

Another type of activatable fluorescent probe is molecular-
binding activatable fluorescent probes, which are quenched 
until activated in targeted cells by endolysosomal processing 
(Figure  2). Within the lysosome, catabolism can occur under 
conditions such as low pH, protease activity, or oxidation, which 
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FiGURe 2 | A schematic explanation of the two types of activatable 
fluorescence probes. The fluorescence activation of molecularly targeted 
activatable probes occurs intracellularly (left), whereas enzyme reactive 
activation typically occurs in the extracellular environment (right). Reprinted 
with permission from Ref. (203). Copyright 2011 American Chemical Society.
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can release the fluorophore from its quenched state. For example, 
a pH-activatable fluorescent probe produces light only in tumors 
due to their acidic microenvironment, resulting in high TBR 
whereas control “always-on” probes produce lower TBR due to 
higher background signal (Figure  3) (155, 214). This type of 
activatable fluorescent probe is administered systematically via 
intravenous injection.

There are advantages and disadvantages to both methods. In 
enzymatic activation, a single target enzyme can activate many 
different fluorescent molecules, thus amplifying the signal from 
the target tissue. However, a disadvantage of enzymatic activation 
is that the activation occurs in the extracellular space and the 
enzyme may diffuse away from the target contributing to back-
ground signal. Furthermore, this type of probe lacks specificity 
because none of the currently utilized enzymes for fluorescence 
activation are specific for carcinogenesis. In contrast, probes that 
are activated by endolysosomal processing, are highly specific for 
cancer and generally remain localized to the target as activation 
relies upon the probe binding specific cell-surface receptors 
and being internalized. However, molecular-binding of specific 
activatable fluorescent probes requires a biological and catabolic 
process to gain sufficient TBR. Targeted activatable fluorescent 
probes need to first leak from the vasculature, bind target cells, 
and then internalize within the target cell to activate the probe. 
The activation process often requires days, which decreases 
their practicality for routine clinical use (214). Novel activatable 
fluorescent probes targeting additional physiologic character-
istics of cancer cells, such as degradation of the micelle, thiol 
concentration, surface lectins, and antibody binding, are also 
currently in development (159, 207, 211, 215–218). Translating 

these activatable fluorescent probes into clinical studies could 
significantly increase the number and quality of intraoperative 
imaging tools available during cancer excision.

Activatable fluorescent probes vary greatly by the mecha-
nism by which fluorescence is quenched. The best known 
quenching mechanism is Föster (fluorescence) resonance 
energy transfer (FRET), wherein energy from one fluorophore 
is transferred to another molecule when the two molecules are 
in close (<10 nm) proximity. The FRET pair can consist of two 
fluorophores (self-quenching) or a fluorophore and a quencher 
molecule (203, 219). Homo-dimer (H or J-dimer) formation 
is other method of quenching. For instance, xanthene deriva-
tives are known to form H-dimers at higher concentrations  
(~mM) which induces shifts of absorbance spectra, completely 
quenching fluorescence (195, 203). Fundamental to both FRET 
and H-dimer formation is the inter-fluorophore processing 
that occurs when the two molecules are in proximity to each 
other.

Another quenching mechanism, photon induced electron 
transfer (PeT) occurs when an electron is transfered from the PeT 
donor to the excited fluorophore diminishing the fluorescence 
signal. When the PeT donor is cleaved from the fluorophore 
or inactivated, activation occurs. Unlike FRET and H-dimer 
formation, PeT occurs within a single fluorophore molecule and 
does not require the presence of a second fluorophore (203, 220). 
The PeT mechanism has a particularly high dequench:quench 
light ratio.

Yet another mechanism of dequenching is to hold two fluoro-
phores in close proximity to each other using a peptide backbone. 
In the presence of an enzyme the peptide backbone is cleaved 
releasing and activating the fluorophores.

The first activatable fluorescent probe to be tested in clinical 
trials was LUM015. The activation of LUM015 relied on cleavage 
by a cathepsin protease, an enzyme commonly overexpressed 
by tumors (221). LUM015 is optically inactive under normal 
conditions, but upon proteolytic cleavage, a covalently attached 
quencher molecule is released and fluorescence signal greatly 
intensifies (103). It was first evaluated by Whitley et  al. in a 
cohort of 15 patients with breast cancer or soft-tissue sarcoma 
(103). Intravenous injection of this protease-activated fluo-
rescent imaging probe before surgery was well tolerated, and 
imaging of resected human tissues showed that fluorescence 
from the tumor was significantly higher than fluorescence from 
normal tissues (103).

Recently, several other mechanisms have been tested.  
A quenched activatable cell-penetrating peptide, AVB-620 was 
tested in a first-in-human clinical trial in which 27 breast cancer 
patients received the infusion followed by surgical excision. 
Infusion of AVB-620 was safe and improved intraoperative cancer 
detection (104). Another new approach is to use peptide conju-
gated to ICG. In this case the agent, BLZ-100, uses chlorotoxin 
(36-amino acid peptide) as the targeting moiety and conjugates it 
to ICG. This agent has been used for glioma imaging (90).

Sprayable activatable Fluorescent Probes
In many cases, the dequenching process takes hours to days 
making it problematic for integration into surgical workflows. 

http://www.frontiersin.org/Oncology/
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FiGURe 3 | In vivo tumor detection with targeted activatable fluorescent probes in a HER2-positive lung metastasis model mice. The pH-activatable fluorescent 
probe produces light only in tumors in the lung. However, the control “always-on” probe produces fluorescent signal from both tumors and normal lung and heart 
reducing the tumor to background ratio. Reprinted with permission from Ref. (155). Copyright 2010 American Chemical Society.
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For instance, activatable probes using cathepsin D and MMP2/9 
(222, 223), should be systemically injected at least a day before 
the surgery to be delivered to cancer and fully activated because 
of multiple cleavage sites. However, the kinetics of some other 
enzyme reactive probes is much faster especially when activated 
by a single cleavage. Therefore, such enzymatically activatable 
fluorescent probes can be so fast as to be used as needed during 
a surgical procedure. For instance, Urano et  al. developed the 
activatable fluorescent probe, γ-glutamyl hydroxymethyl rho-
damine green (gGlu-HMRG). The gGlu-HMRG is completely 
quenched by spirocyclic caging, but is activated rapidly with a 
one-step enzymatic reaction in the presence of GGT which is 
often present on cell membranes of cervical and ovarian cancer 
cells. As a result, this probe activates within 10 min of it being 
sprayed on. In a mouse model of human ovarian cancer, Urano 
et al. sprayed the abdominal cavity with the gGlu-HMRG probe 
and demonstrated that small tumor nodules could be visualized 

within 10 min after administration and remained labeled for at 
least 1  h (Figure  4) (112). Mitsunaga et  al. used gGlu-HMRG 
during colonoscopy to differentiate long-term colitis from early 
colitis-associated cancer in a mouse colon cancer mouse model. 
They were able to visualize cancers and dysplasia 5–30 min after 
spraying gGlu-HMRG on the colon surface. Moreover, signal 
from cancer/dysplasia was 10 times higher than background 
fluorescence despite the presence of colitis (127). gGlu-HMRG 
probe has recently been tested in fresh human surgical specimens 
of colorectal tumor (224) and breast cancer (225) for detecting 
tumor borders and metastatic lymph nodes as a precursor to it 
being introduced in clinical trials. Similarly, these probes revealed 
that topical administration of the agent on aspirated specimens 
from patients with pancreatic tumors resulted in tumor-specific 
enhancement (226).

Other sprayable activatable probes are in development. These 
are activated by enzymes by a single cleavage such as cathepsin 
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FiGURe 4 | Spectral fluorescence images of four peritoneal ovarian cancers using gGlu-HMRG. In vivo fluorescence intensity of a sprayable probe. By 10 and 
60 min after intraperitoneal gGlu-HMRG administration each of four peritoneal ovarian tumor models: SHIN3, OVCAR4, OVCAR5, and OVCAR8 were evaluated. 
Yellow arrowheads indicate tumor location. Scale bar, 1 cm. Reprinted from publication (112) with permission from AAAS.
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(91, 129), beta-galactosidase (227), endo-aminopeptidases (228), 
and NADPH (229).

The various types of recently developed activatable fluorescent 
probes tend to be superior to always-on probes; however, their 
safety in patients is yet to be determined. Given the relatively 
small market, bringing such agents thru the approval process to a 
New Drug Application will be challenging.

SUMMaRY

The limits of white light imaging during surgical and endoscopic 
procedures are well known. It is acknowledged that current 
optical methods tend to have insufficient sensitivity for small 
tumors and do poorly at determining tumor margins. Targeted 
fluorescence imaging can provide additional information that 
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augments the ability of the operator to see and treat pathol-
ogy, thus lowering the rate of persistent or recurrent disease. 
FGS, because of its high sensitivity, low cost, portability and 
real-time capabilities, has great potential to improve surgical 
outcomes. Not only can this approach direct intraoperative 
image guidance for surgical margin assessments but can also 
help surgeons detect microscopic tumors or residual lesions 
that may have otherwise been missed. In addition, anatomical 
fluorescence imaging techniques can aid in avoiding complica-
tions in various surgical situations. Despite the availability of 
these technologies, most surgeons still rely largely on visual and 
tactile cues combined with presurgical radiologic imaging to 
guide tissue resection.

As techniques continue to improve, FGS will move toward 
the concept of “precision surgical therapy.” It is possible that FGS 
will be personally designed for each patient’s specific disease 

process. Although much more work is necessary to reach this 
goal, in the meantime there is a rapidly expanding number of 
targeted fluorescence imaging probes that offer great potential for 
the future. Hopefully, these advances will enable FGS to become 
more widely available for a broad range of cancer types.
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