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Abstract: Arterial hypotension is associated with incidence of postoperative complications, such as
myocardial infarction or acute kidney injury. Little research has been conducted for the real-time
prediction of hypotension, even though many studies have been performed to investigate the factors
which affect hypotension events. This forecasting problem is quite challenging compared to diagnosis
that detects high-risk patients at current. The forecasting problem that specifies when events occur is
more challenging than the forecasting problem that does not specify the event time. In this work, we
challenge the forecasting problem in 5 min advance. For that, we aim to build a systematic feature
engineering method that is applicable regardless of vital sign species, as well as a machine learning
model based on these features for real-time predictions 5 min before hypotension. The proposed
feature extraction model includes statistical analysis, peak analysis, change analysis, and frequency
analysis. After applying feature engineering on invasive blood pressure (IBP), we build a random
forest model to differentiate a hypotension event from other normal samples. Our model yields an
accuracy of 0.974, a precision of 0.904, and a recall of 0.511 for predicting hypotensive events.

Keywords: machine learning; vital sign; invasive blood pressure; feature engineering; hypotension;
arterial hypotension

1. Introduction

Arterial hypotension that occurs during anesthesia may increase the incidence of
postoperative complications, such as myocardial infarction or acute kidney injury [1]. Care-
ful monitoring of the patient’s hemodynamic changes is required during anesthesia, and
when hypotension is detected, immediate treatment is provided to maintain hemodynamic
stability. If the patient’s hemodynamic changes are predicted in advance, it will be possible
to provide safer anesthesia to the patient by maintaining hemodynamic stability. Most
patient monitor devices that monitor a patient’s vital signs store the data for a short time [2],
and the data are mostly deleted without being utilized for other purposes.

However, these vital sign data can be useful in developing a tool which can predict a
patient’s hemodynamic changes.

While research on hypotension in operation room mostly focuses on investigating the
factors affecting a hypotension event, not much research has been performed on real-time
prediction of hypotension. The advanced warning that hypotension is imminent at least
5 min ahead enables clinicians to take proper measures to reduce the impact of hypotension.
This forecasting problem is quite challenging compared to diagnosis that detects high-risk
patients at current. The forecasting problem that does not specify when the event occurs is
easier than the forecasting problem that specifies the event time. Furthermore, it is very
difficult to advance the predictable time compared to the event occurrence time. In this
work, we will challenge the forecasting problem in 5 min advance.
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Previous works on hypotension prediction have proposed various indices that orig-
inate from the waveform of vital signs. Recently, machine learning algorithms have re-
placed the scoring system, identified significant factors, and measured their effect on an
event automatically.

In this study, we propose a systematic feature engineering that is applicable to any
kind of vital signs and build a machine learning model that predicts hypotension in
advance. We aim to build a simple model that does not require many vital signs and only
requires invasive blood pressure (IBP). Instead of hand-crafted features on IBP, we propose
a common feature extraction model that can be applicable to various kinds of vital signs.
The feature extraction model includes the statistical analysis, peak analysis, change analysis,
and frequency analysis. We build an ensemble model using a random forest model to
handle numerous features in heterogenous samples.

2. Related Works

Many studies using vital signs have been performed in the intensive care unit (ICU);
however, there is little research for the operation room where vitality is relatively constant
compared to ICU [3–9].

Recently, studies that predict hypotension, depth of anesthesia, hypothermia, etc.,
have been conducted in the operating room. Topics of the studies using vital signals during
surgery encompass estimation of the depth of anesthesia, estimation of blood pressure,
event prediction regarding blood pressure, and heart failure. The former models were
designed to predict whether a patient would suffer an event or not at the initial stage of
operation [10–14]. These works can inform high-risk patients, but are limited in alerting
an alarm for real-time treatment for an event. The recent prediction models are developed
into real-time prediction models and the number of works is limited. We briefly reviewed
real-time models in terms of classification and regression.

2.1. Real-Time Event Detection

Yang et al. [15] reported a convolutional neural network (CNN)-based deep learning
model that predicts the stroke volume with a 20 s arterial blood pressure waveform. Lee
et al. [16] created a CNN-based deep learning model to predict hypotension before 5 min,
10 min, and 15 min, respectively, using IBP, electrocardiography (ECG), photoplethysmog-
raphy (PPG), and capnography (CO2). They demonstrated that the precision and recall
were higher than our research, but their experimental setting was different from ours. They
included only the period where non-hypotension lasted for 20 min only. Their environment
was less realistic because their model did not work on samples that included any data below
the criteria. In addition, it is not sure that they focused on predictions for the very first
time point of hypotension. As hypotension occurred, an alarm given in a timely manner
was required in the first place. Chen and Qi [17] proposed a feature-based model. They
predicted heart failure by statistical features; textualization; and imaging using HR, SBP,
DBP, SpO2, and pulse pressure difference (PP). Among the statistical feature models, the
gradient boosting tree model had the highest accuracy of 84%, while textualization and
imaging models had accuracies of 81% and 83% for the logistic regression and convolution
neural network models, respectively. Furthermore, in predicting heart failure, the statistical
feature-based model gave the best results. The statistical features used in this study in-
cluded the mean; variance; minimum; maximum; 25%, 50%, and 75% quantiles; skewness;
kurtosis; and first-order difference of each feature.

These real-time detection models suffer from the class imbalance problem and rarely
achieve good performance. Most works set up an artificial environment to make the
models work.

2.2. Real-Time Regression

The following works have been proposed to real-time regression for blood pressure or
depth of anesthesia. The real-time regression model showed better performance compared
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to the event detection model because regression models are free from the class imbalance
problem that the event detection model suffers from. This imbalance problem makes the
model difficult to generalize. The models adopted in previous works were developed from
machine learning models incorporated with feature engineering to the deep learning model.
RNN-based models suitable for time sequence were adopted, and CNN models suitable
for imaging were also adopted after the vital sign transformed into an image.

Regarding the model adopted machine learning with feature engineering, Jeong
et al. [18] developed a blood pressure prediction model by applying the deep learning
model to non-invasive blood pressure and other vital signs. This work proposed a concise
model using derived variables rather than the original waveform data.

Gopalswamy et al. [10] proposed a long short-term memory (LSTM) model to predict
intraoperative blood pressure and length of stay (LOS) using temperature, respiratory
rate (RR), heart rate (HR), diastolic blood pressure (DBP), systolic blood pressure (SBP),
fraction of inspired O2 (FiO2), and end-tidal CO2n (EtCO2). Sadrawin et al. [1] reported
artificial neural networks (ANNs) which can predict the depth of anesthesia using elec-
troencephalography (EEG), electromyography (EMG), HR, pulse, SBP, DBP, and signal
quality index (SQI). Regarding CNN models, Liu et al. [19] presented a CNN model that
can predict the depth of anesthesia by transforming the EEG signal into a spectral im-
age through modified short-time Fourier transform (STFT) transformation. Chowdhury
et al. [20] demonstrated that a deep learning model can predict the depth of anesthesia by
imaging the ECG and PPG signals as a heat map.

2.3. Research Gaps

From the literature review, we found several research gaps:

• Little research has been conducted using the vital signs collected in the operation
room, while plenty of research has been carried out in ICU.

• Previous works focusing on the vital signs in the operation room deal with the depth
of anesthesia. Rare events such as hypotension are important for patient health.

• Most studies focus on diagnoses that can identify high-risk patients who will suffer
an event rather than prognosis. To react to the event in a preventive way, a real-time
prediction model is required.

• Light-weight real-time prediction models are more effective for instant answering.
However, existing works used many kinds of vital sign [14,15,18,19,21].

3. Materials and Methods
3.1. Patient Population

The data used in this paper were collected in Soonchunhyang University Bucheon
Hospital through the Vital Recorder [21] program, which used the Bx50 monitor for patients
whose blood pressure was measured with intra-arterial catheters (ART) during operations.
These data were based on the continuous monitoring of blood pressure as IBP and were
collected from 30 December 2019 to 30 October 2020 using an IBP time series of 888 patients.
IBP data were recorded in units of 100 Hz.

3.2. Preprocessing

A moving average was widely used to smooth data and remove short-term fluctuations
to highlight the patterns embedded in time sequences. High-resolution data naturally
exhibit fluctuations, making patterns distorted and feature extraction difficult.

To derive samples from waveform IBP, we set the specific feature observation pe-
riod, delay period, and event observation period, accordingly. The feature observation
period refers to the period where features are extracted, the delay period refers to how
far into the future the forecasting targets, and the event observation period is when the
event is observed.

For our model, the observation period was set as 20 s, the delay period was set as
5 min to provide enough time for medical staff to react, and the event observation period
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was set as 1 min. To differentiate the samples related to hypotension from normal samples,
the observation period was kept as short as possible. However, the frequency-based
features required many time points. Thus, we compromised these two contradictions and
set up the observation period as 20 s. In other works, the observation period was set to 30 s.
We aimed to vary the observation period up to 30 s and check the performance. The class
information was retrieved over a 1 min observation period. A class observation period was
set up instead of picking a point, though this was not due to difficulties in characterizing a
certain point. The class observation period was long enough to generate more samples for
the hypotension event. In our future work, we aim to perform various experiments with
varying observation and class observation periods.

A hypotension sample is defined as a case where the maximum value of a 2 s moving
average of IBP during the class observation period falls short of 65 mmHg. A normal
sample is defined as a case where the minimum value of a 2 s moving average of IBP during
1 min exceeds 65 mmHg. Blood pressure data were used for feature extraction during the
observation period. We excluded samples associated with hypotensive events which occur
during the observation window or the delay period; otherwise, it would be unnecessary to
make the prediction.

Any sample that satisfied the hypotension event during the data observation and delay
periods were also excluded. In addition, if the hypotensive event occurred consecutively,
only the first event needed to be considered. This specifically relates to cases with a
maximum value of the 2 s moving average of the data combined with the observation
section, whereby the delay section is <65 was excluded. This aimed to make a prediction at
least 5 min in advance, except for cases where hypotension was predicted in a situation
with hypotension. The results of preprocessing are shown in Table 1.

Table 1. The number of normal samples and hypotension samples with different windowing interval.

Interval Normal Samples Hypotension Samples

30 s 240,314 11,956
10 s 721,020 35,887

For real-time forecasting, data samples were continuously generated through window-
ing, as shown in Figure 1. We attempted two choices for the length of windowing interval,
30 and 10 s, and compared their respective prediction results. As the windowing interval
decreased, more samples were generated, which helped to examine the data in a fine grain.
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Figure 1. Sample generation process with an observation, delay, and class observation period. The
observation period is how long feature generation can be observed, the delay is how far future events
can be predicted, and the class observation is how long the event can be recognized.
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Vital signs, as a form of time series through continuous monitoring, may display
artifacts and noises due to electronic device errors, intraoperative events, or external
pressure, as shown in Figure 2. To exclude artifacts and noise, we developed a criteria
and excluded the samples that can satisfy various conditions. For example, the feature
observation period and the class observation period, of which the maximum value exceeds
200 and the minimum value is under 20, were excluded. The case where the difference
between the maximum and minimum during the feature observation or class observation
is <30 conformed to an artifact. The difference between continuous values of 30 or less also
conformed to artifacts. These slight variations for IBP occurred when the external pressure
was applied to patients, usually to measure non-invasive blood pressure (NIBP) with cuffs.
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4. Methodology
4.1. Feature Engineering

We proposed a systematic feature engineering process using domain knowledge. The
proposed feature engineering process is not specific to only one vital sign, but can generally
be applied to any vital sign signal.

The feature can be extracted in terms of the time domain and the frequency domain.
The extensive feature engineering on the data observation period provides a hint for future
events. To extract abnormality in values and their distribution, descriptive statistical
analysis and peak analysis were both applied accordingly. The abrupt changes through
change analysis were also captured.

4.2. Descriptive Analysis

Through descriptive statistical analysis, the representative values were selected through
the mean, minimum, and maximum. The dispersion metrics describe the size of the distri-
bution of values. The dispersion metrics include the range, variance, standard deviation,
and inter-quartile range (IQR). To explain the shape and symmetry of data distribution,
skewness and kurtosis were used as representative metrics. Skewness is a statistic which
can indicate the degree of asymmetry of a distribution. If the distribution is symmetrical,
such as a normal distribution or a T distribution, the skewness is 0. The skewness of a
distribution with a long tail to the right and that to the left denote positivity and negativity,
respectively. The kurtosis describes the weight of the tails of data distribution compared
to standard normal distribution. The root sum square (RSS) was adopted by taking the
square root of the sum of the squares of all the data points. RMS takes the square root of the
arithmetic mean square of data points. These metrics represent the data as representative
values. RSS implies the signal strength, while the RMS indicates the average of RSS.

4.3. Peak Analysis

The peak analysis aims to find the location of the local maxima or the minimum of a
signal, and sorts the peaks by height, width, or prominence. Since our goal was to detect
hypotension event, we defined the peak as the downward-sloping portion below 65, as
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marked in red in Figure 3. The statistical features on the peak detection results can be
derived by the number of peaks, the mean, the standard deviation for the peak interval,
the mean, the maximum, the minimum, the standard deviation for the peak value, and the
crest factor. The crest factor shows the ratio of peak values to other values and represents
the degree to which the peak is abnormal.
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Figure 3 demonstrates that the peaks can characterize the cyclic patterns, even though
the patterns seem apparently similar to each other. The bounding box area shows different
patterns with a low peak and a downward peak as well. Two peak points in the downward
peak appear consecutively, as marked in red in Figure 3.

As demonstrated in Figure 3, peaks are useful to characterize cyclic patterns, even
when they appear similar to one another. The bounding box area in red in Figure 3 shows
different patterns from other time points. Two peak points in the downward peak appeared
consecutively compared to other peak points.

4.4. Change Analysis

In the change analysis, the changes in mean and variance were detected. The change
detection algorithm partitions a signal into adjacent segments where a statistic, such as the
mean and the variance, is constant within a segment. To be more specific, the algorithm
partitions the data into two parts and calculates the sum of the residual error of each
part from its local mean. After detecting change points, the statistics, such as the number
of changes in the mean, variance, and mean variance of blood pressure values, were
accordingly derived. The red line in Figure 4 depicts the time point at which the mean
changes (Figure 4a) and the time points at which the variance changes (Figure 4b).

4.5. Frequency Analysis

The waveform data recorded in the time domain can be transformed into the frequency
domain, as shown in Figure 5. The frequency analysis extracts major frequencies in forming
the time series. The frequency analysis was divided into Fourier transform and wavelet
transform. The spectrum through the Fourier transform, displaying the power, indicates
how much a given frequency contributes to the signal. We used the fundamental frequency
with the highest power and other frequencies which follow the fundamental frequency.
The frequencies with the top three powers were used as features.

In the wavelet transform, a wavelet, i.e., an oscillation form, was convolved with
time-series data by scaling the wavelet and shifting into timelines.

Wavelet families include various mother wavelets that can be applied differently
depending on domains. The Morlet parent function can identify oscillated patterns.
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Wavelet transform is a form of time–frequency representation. It gives the coefficients
of scaling and shifting coefficients. The baseline of the signal’s scalogram is extracted
through continuous wavelet transform. The scalogram value represents how much a
wavelet scaled by a scale contributes to a signal at a certain time. We derived 10 scale values
with the top scalogram values as features. The transformation of the time domain data
into the frequency domain is shown in Figure 5. At the right upper panel in Figure 5, the
periodogram from FFT shows the fundamental frequencies that lay at 0.02 and its multiples
in terms of the relative frequency.

The scalogram at the right bottom panel indicates the absolute value of the continuous
wavelet transform of an IBP time series, plotted as a function of scale and power. Wavelet
algorithm changes the wavelet scale and checks how much the scaled wavelet fits to the
signal. It gives the contribution of each scale to the total energy of the signal.

The 36 aforementioned features are listed in Table 2 below.
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Table 2. Details of the feature set.

Category Features Number of Features

Statistics

Mean of blood pressure

9

Max of blood pressure
Min of blood pressure
Sd of blood pressure

Skewness of blood pressure
Kurtosis of blood pressure

RMS of blood pressure
RSS of blood pressure
IQR of blood pressure

Peak

Number of peak

11

Mean of peak interval
Sd of peak interval
Mean of peak value
Max of peak value
Min of peak value
Sd of peak value

Crest factor
The number of changes in mean
The number of changes in var

The number of changes in mean-var

Fourier
Top 3 power

6Frequency of top 3 power

Wavelet Top 10 scales with high scalog values 10

Total 36

4.6. Model

We then applied machine learning to extract the features. We adopted the sophisticated
model on account of numerous features. Random forest is a machine learning technique
proposed by [22] and is one of the ensemble learning methods used for classification and
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regression analysis. In a random forest model, several decision trees are constructed, and
each tree individually learns the sampled data using bagging with different sets of features.
Bagging is a method used to sample datasets by allowing duplicates. Then, the results
of classification are voted on, and the result that receives the most is determined as the
final classification result. This is effective for large data processing and has the advantage
of improving model accuracy by avoiding the overfitting problem. A random forest was
constructed for each extracted feature combination. The number of decision trees of random
forest was designated as 100. Figure 6 presents the overall framework of our model.
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5. Experiment and Results
5.1. Data Collection

Our dataset collected vital signs, EMR, and anesthesia record from adult patients
(age ≥18 years) who underwent laparoscopic cholecystectomy under general anesthesia at
Soonchunhyang University Bucheon Hospital, Bucheon City, Republic of Korea between
30 December 2019 and 31 October 2000. The vital signs were collected using the vital
recorder [21]. Data collection was approved by the Soonchunhyang Bucheon hospital
review board (approval No. SCHDB_IRB_2011-11-015). Informed consent was obtained
from all subjects or their legal guardians. All methods were performed in accordance with
the relevant guidelines and regulations.

5.2. Experiment Results

The hypotension prediction model was built under a different feature set, as shown in
Figure 6. Our dataset had an imbalance problem with far less hypotensive samples than
normal samples. To resolve the class imbalance problem, the most widely used methods
are up-sampling and down-sampling. Up-sampling upsizes the small class at random,
while down-sampling downsizes the large class at random.

To overcome this imbalance, the data for the minor class were augmented by up-
sampling the training dataset. Up-sampling copies the data from the low-quantity class
as much as the data from the high-quantity class to make the distribution of the classes
the same. Up-sampling was performed by merely copying the hypotension samples for as
many normal samples, as shown in Figure 7. Up-sampling processing was only performed
in training data, but the validation dataset was kept as original.

Stratified k-fold cross validation was performed to evaluate the model. In k-fold
cross validation, the data were divided into k splits, k-1 splits were used as the train set,
and the remaining one split was used as the test set. k-fold is used when the data are
independent and have the same distribution. For the data in this study, stratified k-fold was
used instead of k-fold, because the distribution of each class was not the same. Stratified
k-fold cross validation performs k-fold while maintaining the distribution of classes, as
shown in Figure 8. In this study, we set k to 5.
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Accuracy for all classes and precision and recall for the hypotension class were used
as the model performance indicators. Each expression is as follows. The hypotension is the
same metric of sensitivity.

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision =
TP

TP + FP
(2)

Recall (Senstivity) =
TP

TP + FN
(3)

TP, TN, FP, and FN represent the true positives, true negatives, false positives, and
false negatives, respectively. As indicated by the performance, precision and recall of
hypotension class were primarily used. Due to the sample imbalance, the metric should
focus on the minor class. The precision and recall of hypotension class were presented first
and the accuracy was presented as an overall metric.

The performances according to the feature sets are listed in Table 3. The results in
Table 3 show that the fundamental frequencies and the Morlet wavelet, which captures
the oscillation patterns, are both effective in improving characterization between the hy-
potension and normal class. The accuracy was as high as 0.974, but precision and recall for
the positive class (hypotension) were rather low. This shows that the model works better
with the normal class than with the hypotension class. The model was trained to precisely
detect the hypotension and, as a result, it misses a significant portion of the hypotension,
consequently yielding a low recall.
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Table 3. Prediction results according to different windowing intervals and different feature sets.

Feature Set

Windowing

30 s 10 s

Accuracy Precision Recall Accuracy Precision Recall

Statistics 0.961 0.679 0.316 0.967 0.792 0.403
Peak + Change 0.958 0.646 0.269 0.963 0.750 0.338

Peak + Change + Fourier 0.963 0.759 0.335 0.971 0.873 0.451
Peak + Change + Fourier + Wavelet 0.964 0.780 0.345 0.972 0.891 0.468

Statistics + Peak + Change 0.963 0.745 0.339 0.970 0.861 0.444
Statistics + Peak + Change + Fourier 0.965 0.775 0.372 0.973 0.887 0.491

Total 0.966 0.970 0.379 0.974 0.904 0.511

To improve the performance, we modified the machine learning algorithm by adding
different class weights to the cost function of the algorithm. Various methods were used
to assign the weight onto the class as shown in Table 4. The balanced method involves
adding weight in reverse order to the class distribution. The balanced subsample calculates
weights which are inversely proportional to the class frequency based on bootstrap sam-
ples. We could improve the recall when adjusting the weight assigned to each class, but
should compromise the precision metric. Thus, we kept the original normal without the
weight assignment.

Table 4. Prediction results according to different weights on the classes.

Class Weight

Windowing

30 s 10 s

Accuracy Precision Recall Accuracy Precision Recall

balanced 0.964 0.795 0.326 0.972 0.914 0.461
balanced

subsample 0.964 0.800 0.326 0.972 0.914 0.462

6:4 0.966 0.789 0.388 0.974 0.901 0.515
7:3 0.965 0.764 0.393 0.974 0.893 0.519
8:2 0.965 0.757 0.400 0.974 0.884 0.523
9:1 0.965 0.739 0.408 0.974 0.867 0.526

We also checked the receiver operating characteristic (ROC) curves for the best per-
formed model in Figure 9. The ROC curves are consistently close to the ideal point which
is (0, 1) for all cross-validation sets. As shown in Figure 9, the specificity relating to the
normal class, calculated as the 1-x axis value (False Positive Rate), is very close to 1. This is
because most of the samples are normal and the algorithm works well for this major class.

To build an explainable machine learning algorithm, we assessed the impact of any
given variable on the performance using feature importance. Feature importance is com-
puted based on how important any given feature is to aid in the classification process
when the classifier is built, determined by its effect on the performance measures. Gini
importance is computed from the random forest structure. As shown in Figure 10, the most
important features are listed as mean, RSS, RMS, and min of IBP. In terms of feature groups,
the statistical feature set, the peak analysis feature set, the frequency analysis feature set,
and the change analysis feature set were found to be important in that order.

5.3. Exploratory Analysis

Table 5 lists the vital signs according to hypotension and non-hypotension. All vital
signs, except for the number of changes in the mean, were found to be significantly different.
Overall, the IBP of the hypotension class is lower than that of the non-hypotension class.
However, its skewness is higher. The IBPs of hypotension patients reach higher peaks than
the non-hypotension class, and the peak values of the hypotension class are lower than
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those of the non-hypotension class. In addition, the peak values of the hypotension class
have rather larger deviation than the normal class. The frequency of the hypotension class
is higher than the non-hypotension class. This implies that IBP right before hypotension
exhibits high vibration. The wavelet’s scales of the hypotension class are lower than
those of the non-hypotension class. This implies that more sharp oscillations occur in the
hypotension class compared to the non-hypotension class.
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Table 5. Clinical patient characteristics in terms of vital signs.

Features
Non-Hypotension Hypotension

p-Value
Mean Standard

Deviation Mean Standard
Deviation

mean 84.403 12.810 65.480 10.956 <0.001
min 60.737 10.545 44.821 9.254 <0.001
max 124.119 18.869 105.325 17.668 <0.001
sd 17.528 4.873 16.007 4.485 <0.001

skewness 0.717 0.250 0.917 0.319 <0.001
rms 86.299 13.085 67.514 11.215 <0.001
rss 172,598.647 26,169.658 135,027.662 22,429.642 <0.001

IQR 28.128 10.679 22.535 8.861 <0.001
kurtosis −0.678 0.841 −0.252 1.130 <0.001

p_n: number of peaks 30.221 23.457 52.457 30.431 <0.001
p_interval:means of peaks interval 81.605 67.791 45.741 30.487 <0.001

p_interval_std: standard deviation of
peak intervals 47.246 79.895 25.111 29.733 <0.001

p_mean: mean of peaks 58.673 4.928 49.040 10.455 <0.001
p_max: maximum of peaks 62.625 3.514 56.908 11.508 <0.001
p_min: minimum of peaks 55.299 6.916 42.889 10.630 <0.001

p_std: standard deviation of peaks 2.052 1.766 3.927 2.327 <0.001
Cf: crest factor 1.442 0.111 1.566 0.154 <0.001

cp1: number of mean changes 1.000 0.002 1.000 0 0.699
cp2: number of variance changes 0.257 0.437 0.282 0.450 <0.001

cp3: number of mean and variance
changes 0.991 0.095 0.987 0.112 <0.001

freq1: first strongest frequency 1.270 0.350 1.321 0.471 <0.001
freq2: second strongest frequency 1.271 0.349 1.323 0.469 <0.001
freq3: third strongest frequency 1.273 0.350 1.327 0.467 <0.001

po1: power of freq1 44,614.235 29,670.556 34,609.313 24,780.054 <0.001
po2: power of freq2 44,543.150 29,603.424 34,514.360 24,627.371 <0.001
po3: power of freq3 44,427.961 29,481.031 34,375.202 24,425.994 <0.001

scale1: the first largest scales of wavelet 0.785 0.288 0.775 0.426 <0.001
scale2: the second largest scales of

wavelet 0.787 0.290 0.777 0.431 <0.001

5.4. Comparison Analysis with Another Dataset

We performed an extra experiment with another dataset to verify the universal-
ity of our model. The public data from Seoul National University Hospital include all
6388 cases published in VitalDB whereby arterial pressure waveform monitoring was
performed under general anesthesia. Those who are under the age of 18, weigh less than
30 kg or more than 140 kg, or who are less than 135 cm or more than 200 cm in height were
excluded. In addition, the data cover 3278 files, excluding cases of transplant surgery, heart
surgery, and vascular surgery. Like the data from Bucheon Hospital, it is recorded in units
of 100 Hz. In this paper, only 983 were used for comparison, i.e., 30% of the data from Seoul
National University Hospital. We found that the performance of our model for this dataset
decreased, especially in terms of precision, as shown in Table 6.

Table 6. Verification results of the proposed model for other dataset.

Windowing

30 s 10 s

Accuracy Precision Recall Accuracy Precision Recall

0.989 0.652 0.441 0.992 0.764 0.540
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The data from Seoul National University Hospital performed worse than the data from
Soonchunhyang University Bucheon Hospital. This appears to be due to the difference in
the type of surgery between the two datasets. In the case of the Seoul National University
Hospital data, all surgeries, except for transplant surgery, heart surgery, and vascular
surgery, were included, whereas the data from Soonchunhyang University Bucheon Hospi-
tal were only for laparoscopic cholecystectomy. In addition, although the Seoul National
University Hospital data had a larger number of samples than the Bucheon Hospital data,
the event imbalance was more severe. Based on 30 s, the ratio of hypotension samples
over entire samples for Bucheon hospital was 4.7% (11,956/240,314) and the ratio for Seoul
hospital was 1.3% (3559/260,683).

6. Discussion and Conclusions

Currently, several studies that predict the amount of stroke, heart failure, and hypoten-
sion using vital signs during surgery have been published [15,16,18,19]. In the near future,
results of these studies may be adopted as useful diagnostic tools, enabling an immediate
reaction to hemodynamic changes and improving perioperative prognosis.

The present authors conducted a study to predict the occurrence of hypotension 5 min
in advance using vital signs. For that, we proposed a systematic feature engineering to
build a real-time prediction model for hypotension in the operation room. This forecasting
problem is quite challenging compared to diagnosis that detects high-risk patients at
current. In particular, the forecasting problem that specifies the event occurrent time is very
difficult to advance the predictable time. In this work, we challenged this problem through
a systematic feature engineering and machine learning algorithm.

To process this problem, we tried to set up more a realistic condition than previous
works. We included any hypotension, while previous works included the hypotension
events that last for long time. One-off occurrences are more difficult to detect because there
may be less precursor symptoms. In addition, we doubted whether previous works focus
on the first point rather than following points during the hypotension. Any samples that
embed hypotension during the observation and the delay should be deleted because they
may give hints.

For more information, we performed the comparison between the patients who suffer
hypotension or not. Appendix A Table A1 lists the clinical characteristics of patients,
including electronic medical record and laboratory data. The only age among demographics
and anesthesia time, operation time, crystal fluid amount, blood loss, and anesthesia
method among operation-related variables recorded in EMR differed significantly between
hypotension and normal groups. Among the preoperative test results, most variables such
as Hb, Hct, Plt, PT, INR, aPTT, AST, ALT, Alb, Na, K, and Cl have significantly lower values
of hypotensive patients than those of normal patients. Glc, BUN, and Cr did not differ
significantly and had no clinical implication. Among preoperative laboratory test results,
chloride concentration differed significantly between the groups. Among past disease
records, valvular heart disease, Diabete smellitus, HbA1c, and cerebrovascular disease
showed a significant difference between normal and hypotension groups. The presence of
this disease is found to significantly increase the risk of hypotension.

From the current experiment, we could identify several future research directions.
Our problem is highly imbalanced for the hypotension class; thus, the model tends to

be fitted to the normal class. As a consequence, it is hard to achieve good performance for
the hypotension class. More specifically, our model does not cover hypotension samples,
resulting in low recall. The low recall indicates that many patients who suffer hypotension
later show no difference 5 min later compared to normal patients. This arguably suggests
that the 5 min delay was too long, or that our feature engineering was insufficient. In future
work, we will compromise the delay by checking the time point when differences between
hypotension class and normal class are maximized.

From the feature importance, we found that the IBP values themselves were lower in
hypotension than in the normal class. From this observation, more sophisticated statistical
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features can improve the performance. p-Values corresponding to a certain one-side test
statistic will tell the difference in the distributions of IBP in normal and hypotension classes.
These p-values indicate how a large portion of the data is lower than the threshold. We aim
to vary the threshold to improve the performance.

Data were generated with windows of 30 s and 10 s, and features were extracted
accordingly. The shorter the windowing interval, the better the performance. Furthermore,
the model using all the features among the feature combinations showed the best perfor-
mance. For future work, we will generate samples with the windowing interval in small
units, such as 1 s. Furthermore, we will vary the observation and class observation period
and check the performance. The best combination will be derived through the experiment.

Lastly, we will also apply other algorithms, such as deep learning on raw data, or
other assemble methods, such as XGboost or stacking based on the same feature sets.
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Appendix A

Table A1. Clinical patient characteristics in terms of demographics, operation records, preoperative
test results, and past disease history (% for discrete variable or standard deviation for continuous
variable).

Characteristics No Hypotension (n = 347) Hypotension (n = 541) p

Demographics

Sex (Male) 182 (52.4%) 304 (56.2%) 0.306

Age 58.75 (15.04) 64.23 (15.15) <0.001 *

Wt 62.34 (16.71) 61.53 (18.32) 0.507

Ht 154.31 (36.22) 152.71 (39.43) 0.541

BMI 23.00 (6.81) 22.59 (7.46) 0.404

ANE.Time 246.48 (133.48) 270.44 (174.82) 0.030 *

Operation Time 177.87 (119.72) 203.90 (178.96) 0.017 *

Crystal (mL) 894.81 (742.36) 1184.80 (1187.60) <0.001 *

Colloid(mL) 239.39 (287.54) 274.62 (295.75) 0.080

Blood loss 201.06 (296.78) 373.76 (732.39) <0.001 *

Urine. output 473.90 (968.22) 403.19 (548.59) 0.166

http://aibig.sch.ac.kr/data/listPageDATAHealthcare.do
http://aibig.sch.ac.kr/data/listPageDATAHealthcare.do
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Table A1. Cont.

Characteristics No Hypotension (n = 347) Hypotension (n = 541) p

ASA

1 94 (27.1%) 88 (16.3%)

<0.001 *

2 129 (37.2%) 192 (35.5%)

3 112 (32.3%) 201 (37.2%)

4 12 (3.5%) 54 (10.0%)

5 0 (0.0%) 3 (0.6%)

6 0 (0.0%) 3 (0.6%)

EM 71 (20.5%) 175 (32.3%) <0.001 *

Anesthesia Method

BPB 0 (0.0%) 1 (0.2%)

<0.001 *

BPB_Volatile 0 (0.0%) 1 (0.2%)

CSE 0 (0.0%) 1 (0.2%)

MAC 0 (0.0%) 2 (0.4%)

spinal 5 (1.4%) 8 (1.5%)

TIVA 195 (56.2%) 171 (31.6%)

volatile 147 (42.4%) 357 (66.0%)

Preoperative Test

Hb 10.03 (5.52) 8.22 (5.92) <0.001 *

Hct 29.83 (16.32) 24.50 (17.63) <0.001 *

Plt 197.13 (134.62) 164.36 (140.36) 0.001 *

PT 10.25 (5.40) 8.99 (6.39) 0.002 *

INR 0.79 (0.42) 0.69 (0.50) 0.004 *

aPTT 27.18 (14.72) 23.91 (17.26) 0.004 *

AST 21.12 (17.61) 18.01 (17.89) 0.011 *

ALT 19.10 (19.65) 14.93 (17.92) 0.001 *

Alb 3.00 (1.80) 2.47 (1.92) <0.001 *

Glc 71.67 (62.64) 64.42 (71.44) 0.122

BUN 13.40 (10.95) 12.19 (12.15) 0.134

Cr 1.97 (9.75) 1.43 (7.69) 0.357

Na 110.41 (56.63) 93.87 (65.06) <0.001 *

K 3.27 (1.73) 2.80 (1.99) <0.001 *

Cl 82.88 (42.61) 70.80 (49.13) <0.001 *

History of Diseases

HBsAg 17 (6.2%) 10 (2.7%) 0.050 *

RPR 4 (1.5%) 2 (0.5%) 0.441

Hypertension 150 (43.2%) 271 (50.1%) 0.054

Atrialfibrillation 16 (4.6%) 29 (5.4%) 0.734

Coronary artery disease 18 (5.2%) 38 (7.0%) 0.338

Angina pectoris 11 (3.2%) 18 (3.3%) 1.000

Myocardial infarction 3 (0.9%) 8 (1.5%) 0.620

Congestive heart failure 5 (1.4%) 16 (3.0%) 0.221

Valvular heart disease 3 (0.9%) 16 (3.0%) 0.062 *

Asthma 15 (4.3%) 36 (6.7%) 0.190
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Table A1. Cont.

Characteristics No Hypotension (n = 347) Hypotension (n = 541) p

COPD 8 (2.3%) 20 (3.7%) 0.337

Interstitial lung disease 1 (0.3%) 1 (0.2%) 1.000

Hepatitis 8 (2.3%) 6 (1.1%) 0.263

Liver cirrhosis 9 (2.6%) 12 (2.2%) 0.894

Viral carrier 4 (1.2%) 3 (0.6%) 0.552

Fatty liver 1 (0.3%) 0 (0.0%) 0.823

HBV 12 (3.5%) 8 (1.5%) 0.088

HCV 4 (1.2%) 4 (0.7%) 0.786

Alcoholic 4 (1.2%) 5 (0.9%) 1.000

Autoimmune 0 (0.0%) 1 (0.2%) 1.000

Acute kidney injury 4 (1.2%) 7 (1.3%) 1.000

Chronic kidney injury 19 (5.6%) 26 (4.8%) 0.237

End stage renal disease 16 (4.6%) 30 (5.5%) 0.647

Diabetes mellitus 77 (22.2%) 178 (32.9%) 0.001 *

HbA1c 1.42 (2.80) 2.04 (3.20) 0.003 *

Thyroid disease 17 (4.9%) 18 (3.5%) 0.452

Myasthenia gravis 0 (0.0%) 1 (0.2%) 1.000

Morbid obesity 2 (0.6%) 2 (0.4%) 1.000

Epilepsy 2 (0.6%) 2 (0.4%) 1.000

Cerebrovascular disease 14 (4.0%) 42 (7.8%) 0.037 *

Cerebral aneurysm 8 (2.3%) 11 (2.0%) 0.971

Dementia 6 (1.7%) 15 (2.8%) 0.440

Note: * p < 0.05.
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