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Abstract

Proliferation is a fundamental trait of cancer cells but its properties and spatial organization in 

tumors are poorly characterized. Here we use highly multiplexed tissue imaging to perform single-

cell quantification of cell cycle regulators and then develop robust, multivariate, proliferation 
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metrics. Across diverse cancers, proliferative architecture is organized at two spatial scales: large 

domains, and smaller niches enriched for specific immune lineages. Some tumor cells express 

cell cycle regulators in the (canonical) patterns expected of freely growing cells, a phenomenon 

we refer to as “cell cycle coherence”. By contrast, the cell cycles of other tumor cell populations 

are skewed toward specific phases or exhibit non-canonical (incoherent) marker combinations. 

Coherence varies across space, with changes in oncogene activity and therapeutic intervention, 

and is associated with aggressive tumor behavior. Thus, multivariate measures from high-plex 

tissue images capture clinically significant features of cancer proliferation, a fundamental step in 

enabling more precise use of anti-cancer therapies.
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Although cell proliferation is a defining feature of cancer1 much of our understanding of 

the cell cycle comes from studying cell monocultures grown in vitro where nutrients and 

growth factors are abundant. These conditions commonly result in doubling times of 24–48 

hours2. By contrast, most solid tumors do not grow uniformly or according to exponential 

kinetics3,4 and even aggressive tumors such as metastases can have a doubling time of >90 

days5. While mutations in oncogenes and tumor suppressors are a prerequisite for cancer 

growth, cell-intrinsic growth signals arising from genetic changes are only one component of 

a complex set of factors that determine whether or not any specific cancer cell will divide in 

vivo6. Across space and over time, cancer cells are exposed to different levels of nutrients, 

oxygen, and metabolites, receive signals from neighboring immune and stromal cells, and 

must navigate the physical constraints of tissue architecture7–9; each of these potentially 

imposes conditions that foster proliferative, non-proliferative, and arrested states10.

Tumors removed during clinical care contain valuable information about tumor cell 

proliferation and the ways in which it is controlled. Tumor cell proliferation is primarily 

assessed in biopsies and resections using two features detectable by conventional tissue 

imaging: the frequency of mitotic figures as judged visually in hematoxylin and eosin 

stained tissue sections and the fraction of Ki-67-positive cells as measured using 

immunohistochemistry11. Both measures have substantial limitations. Mitotic figures reflect 

one brief phase of the cell cycle, and do not always represent active proliferation as they can 

also accumulate during mitotic arrest; their detection is also highly dependent on staining 

and fixation quality12. Ki-67 is not an essential cell-cycle regulator but rather a protein 

that organizes chromatin during mitosis and whose levels correlate with proliferation13,14. 

Studies in cultured cells show that Ki-67 levels change in a graded manner throughout 

the cell cycle, rising gradually during S phase, peaking during mitosis, and falling during 

anaphase and G115,16. Nonetheless, in clinical practice the proliferative index of tumors 

is scored as the percentage of Ki-67 positive cells, with each cell assigned a dichotomous 

Ki-67 positive (proliferating) or Ki-67 negative (non-proliferating) score. The imprecision 

of this approach underestimates the proportion of cells that are actually proliferating and 
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is subject to a range of confounders16,17. Multiple studies have demonstrated the potential 

of proliferative index to serve as both a prognostic and predictive cancer biomarker, but 

the analytic and pre-analytic variability of Ki-67 staining has made it difficult to realize 

this promise18,19. A more accurate and comprehensive means to assay proliferation that 

accounts for the complexities of cell-cycle dynamics is therefore needed for applications 

as diverse as tissue and tumor atlas construction20, biomarker assessment in clinical trials, 

and routine clinical decision-making. To be widely useful, approaches must be compatible 

with formalin-fixed paraffin-embedded (FFPE) preparations universally used with human 

biopsies and tissue from murine cancer models.

The multiplexed tissue imaging methods necessary to characterize cell proliferation in FFPE 

specimens have only recently become available20–24. These methods measure the levels of 

10–60 antigens at single-cell resolution and permit the identification and quantification of 

cell types and cell states as well as the description of cell-cell interactions and higher-order 

spatial relationships25. Multiplexed protein imaging is well-suited to studying processes 

that are controlled in a combinatorial manner by multiple protein factors. This is true 

of cell-cycle progression which is regulated by periodic synthesis and proteolysis of phase-

specific proteins whose biological activities can be assessed with considerable accuracy 

using protein-level measurements alone26,27. For example, the inverse oscillations of DNA 

licensing factors CDT128 and Geminin29 through G1/S/G2 are widely used to delineate 

cell-cycle phase transitions in cultured cells30. The availability of information on many 

different proteins provided by multiplexed measurements makes it possible to compute 

single-cell patterns of correlation and decorrelation among cell-cycle regulators and obtain 

insight into the fidelity of cell division.

In this study we use multiplexed measurements of cell-cycle regulators from fixed tissues 

in two ways. First, we develop a Multivariate Proliferation Index (MPI) that categorizes 

tumor cells as proliferative, non-proliferative or arrested based on information from multiple 

cell-cycle markers. This corrects for biases arising from the use of Ki-67 alone as a measure 

of proliferation. Second, we create a framework for studying cell-cycle dynamics using 

images of fixed tissues. This framework (cell cycle difference combined with classical 

multidimensional scaling; ccD-CMD) is based on time inference, a computational method 

for modeling dynamic processes in the absence of temporal data. Time inference methods 

have previously been described for inferring dynamics from images of cells grown in 

culture31,32 and from single-cell RNAseq data33–36; the ccD-CMD framework extends the 

time inference approach to multiplexed tissue images. Using these two approaches, we 

address fundamental questions about cell proliferation in cancer tissues.

Results

Using tissue-based cyclic immunofluorescence (CyCIF)24, we quantified 20–30 protein 

markers at subcellular resolution and localized cells within intact surgical specimens of 

multiple human carcinomas (breast, lung, colon, ovarian), mesothelioma, and gliomas 

(representing a total of ~27.9 million cells from >680 specimens; Supplementary-Table-1,2). 

We distinguished tumor cells from immune and stromal cells using lineage-specific markers 

(e.g., E-cadherin, pan-cytokeratin, SOX2, CD45, vimentin), and characterized the spatial 
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organization of proliferating and non-proliferating tumor cells (Fig.1–2). We mapped cells 

to a multi-dimensional marker space, before and after perturbation, by interpreting marker 

combinations in light of known protein expression patterns across the cell cycle (Fig.3–7).

A Multivariate Proliferation Index from multiplexed images

As a robust means to score cell proliferation based on a multivariate feature, we generated 

a categorical Multivariate Proliferation Index (MPI) based on staining intensities for three 

proliferation markers (Ki-67, PCNA, MCM2)37–40 and two cell-cycle arrest markers (p21, 

p27)41,42 (Fig.1a,b, Extended-Data-Fig.1a–c). An MPI value was assigned to each tumor cell 

based on the following rule: cells were scored as proliferative (MPI +1) if they expressed a 

positive balance of proliferation markers; non-proliferative (MPI 0) if they lacked expression 

of proliferation markers; and arrested (MPI −1) if they expressed high levels of one or both 

of the arrest markers, even if proliferation markers were also expressed.

The MPI classifications were consistent with those obtained by unsupervised clustering 

of single-cell data based on the same markers (Fig.1c,d, Extended-Data-Fig.1d,e), but we 

found that using MPI was advantageous because parameter tuning was not required to 

identify subpopulations (Supplementary-Note1). The quantification of proliferation by MPI 

was highly reproducible across adjacent sections from the same samples (R2= 0.88–0.96) 

and robust to errors in single-marker normalization (Extended-Data-Fig.1f–j). Notably, the 

robustness of an MPI+1 measurement across serial sections of the same tissue sample 

(median CV=0.14, maximum CV=0.47) substantially exceeded the robustness of the Ki-67 

positive fraction (median CV=0.33, maximum CV=0.99) (Fig.1d). This occurs because 

no single marker is sufficient for identifying a proliferative cell (Fig.1a,b, Extended-Data-

Fig.1a–c). For example, although Ki-67 is the most widely used measure of proliferation 

in diagnostic and research settings43,44, we found that 39–72% of MPI+1 cells were Ki-67 

negative but positive for PCNA or MCM2, depending on the tumor type (Extended-Data-

Fig.1b–c). This is consistent with data from cultured cells showing that Ki-67 expression is 

highest in the G2 phase of the cell cycle and that, when dichotomous scoring is imposed, 

proliferating cells prior to G2 can be scored ‘Ki-67 negative’15,16.

The frequency of proliferative cells (MPI+1) varied between tumor types (Fig.1e,f). To 

determine whether the variation in MPI across patient samples is associated with clinically-

relevant features of tumor behavior, we focused on breast cancer, where tumor subtype45, 

histological grade46, and p53 status47 are known predictors of outcome. In samples from 

75 patients, the fraction of MPI+1 cells varied from 0 to 1 and was highest in aggressive 

molecular subtypes such as HER2-amplified and triple-negative breast cancer (KS test, 

p<0.035, Fig.1g). The MPI+1 cell fraction also increased significantly with tumor grade and 

p53 status (KS test, p<0.035, Fig.1g, Extended-Data-Fig.1k). These associations were not 

observed for the Ki-67 positive fraction (Fig.1g).

Two length scales of proliferation in tumors

To determine whether proliferating and non-proliferating tumor cells are organized into 

distinct spatial domains, we quantified the spatial correlation within MPI categories (“self-

correlation”) and between MPI categories (“cross-correlation”) across 513 tumor specimens 
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including carcinomas, mesothelioma and gliomas. Visual inspection of multiplexed 

images and corresponding single-cell maps of MPI values revealed a variety of spatial 

patterns (Fig.2a, Extended-Data-Fig.2a–c). Across tumor types, self-correlations between 

proliferative (MPI+1) and non-proliferative (MPI 0) states were positive, strong, and highly 

significant, while cross-correlations were weak and variable (Fig.2b, Extended-Data-Fig.2d–

f). Thus, proliferating cells clustered together with other proliferating cells and away from 

non-proliferating and arrested cells.

Spatial self-correlation decreased with distance and was well fit by a two-exponential 

decay model (Fig.2c, validated by Ripley’s L metric, Extended-Data-Fig.2g–h). The fitting 

revealed that proliferation is organized at two physical scales: small niches spanning short 

length scales of ~10–30μm within larger structured neighborhoods spanning long length 

scales of ~100–300μm (Fig.2d).

In tissues from three breast cancer patients biopsied before, on, and after treatment, 

both short and long correlation lengths increased following therapy (Fig.2e). At short 

length scales in breast tissue from 75 patients (from Fig.1f,g above), MPI 0 tumor cells 

clustered away from T lymphocytes and were more frequently found in proximity to 

CD68-expressing macrophages, whereas MPI+1 tumor cells were associated with CD163-

expressing macrophages (correlation p<10−8) (Fig.2f,g). In estrogen receptor positive breast 

cancer, MPI+1 cells were significantly proximal to cytotoxic T cells (correlation p<10−8); 

this strong association was also observed in ovarian cancer but was absent in HER2+ and 

triple negative breast (TNBC) cancers (Fig.2f–i). We speculate that the short length scales 

observed in MPI data correspond to small clones that are also influenced by interaction 

with immune cells. Large proliferative neighborhoods may be organized by environmental 

conditions such as hypoxia48,49, nutrient availability, or tissue structure50.

Time inference of cell-cycle dynamics

To further characterize cells with different MPI values we stained tissues using antibodies 

against 10 well-established cell-cycle regulators including cyclins A1/A2, B1, D1 and 

E1, CDK inhibitors p21 and p27 and DNA replication regulators CDT1, Geminin, and 

phospho-RB (Supplementary-Table3). Single-cell intensity data revealed a wide range of 

marker intensities, but most markers did not have clearly separated high and low states 

(Fig.3a–b, Extended-Data-Fig.3a–c,4). Using this data, neither multidimensional gating nor 

conventional dimensionality reduction methods such as t-SNE provided obvious insight into 

the likely order of cell-cycle events (Fig.1c, Extended-Data-Fig.3d, Supplementary-Note1). 

We therefore sought an alternative approach informed by knowledge of cell-cycle dynamics.

Because the molecular events driving the cell cycle are mediated by coordinated fluctuations 

in cell-cycle regulators, correlation and anti-correlation in marker expression can be used to 

identify cell-cycle stage in a data-driven manner. As a first step we focused on proliferative 

MPI+1 epithelial cells and calculated a pairwise cell-cell correlation distance matrix in the 

space of cell-cycle markers (the “cell cycle Difference” matrix; ccD; Fig.3c, Supplementary-

Note1). We then transformed the data using classical multidimensional scaling (CMD) 

to enable visualization of the ccD in two dimensions. In the resulting “ccD-CMD” 

representation, proliferating cells from a breast tumor sample lay within a torus (Fig.3d). 
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Moreover, by mapping single markers onto the ccD-CMD representation it was evident 

that the toroidal organization of the data was driven by fluctuations in the expression of 

cell-cycle regulators expected for proliferating cells (Fig.3d).

In keeping with previous theoretical work on the cell cycle51, we assume that progression 

can be described by a deterministic dynamical system and that sampling is sufficiently 

dense to apply the ergodic principle. In this case the difference in cell-cycle position for 

two cells is proportional to their distance in ccD-CMD space. A circular trajectory through 

the toroidal landscape of the ccD-CMD (Fig.3d,e) therefore corresponds to prototypical 

progression from G1 to S to M and then back to G1. Leveraging this relationship we 

computed a best fit circle in the ccD-CMD landscape to order the cells in time, effectively 

reconstructing cell-cycle dynamics (Fig.3e, Extended-Data-Fig.5a–b). Conceptually similar 

time inference algorithms32–35 have previously been described for reconstruction of cell-

cycle dynamics, development, and other dynamic processes from fixed-time data. When we 

compared our ccD-CMD time inference algorithm to existing methods using synthetic data 

or real data from multiplexed imaging of a breast epithelial cell line grown in culture, we 

found that the ccD-CMD algorithm outperformed other inference algorithms in all settings 

(Extended-Data-Fig.5c–l; Supplementary-Note1).

Cell cycle coherence metrics from multiplexed images

Fitting a circle to the ccD-CMD data yielded two useful parameters: the uniformity of the 

distribution along the circumference of the circle which we described using the Inter-Octile 

Variation (IOV – the coefficient of variation of distribution of cells across pi/4 sections of 

the circle), and the average distance of data points from the best-fit circle (the circle fit 

distance, CFD) (Fig.3f). A low IOV indicates that cells in a population are evenly distributed 

through the cell cycle. CFD measures the dispersion of cells in ccD-CMD space: when 

the value is low, data from individual cells lie on or close to the best-fit circle. An even 

distribution of cells in ccD-CMD space corresponds to low IOV and low CFD values. This 

distribution is one in which the order of states is consistent with current understanding of 

cell-cycle dynamics26 as observed in freely growing cultured cells; we refer to this state 

as a “coherent” cell cycle (human tissue Fig.3e, cell culture Extended-Data-Fig.5b, Fig.3f). 

Loss of coherence indicates a loss of canonical cell-cycle dynamics either by increased 

accumulation of cells in a specific cell-cycle phase (increased IOV) or by a loss of molecular 

coordination between cell-cycle regulators (increased CFD).

To confirm these interpretations of IOV and CFD we performed plate-based CyCIF52 with 

non-transformed MCF10A mammary epithelial cells and MCF-7 breast cancer cells grown 

in culture and exposed to CDK4/6 inhibitors (palbociclib or abemaciclib), or the microtubule 

inhibitor nocodazole, or subjected to serum starvation (Fig.3g–k, Extended-Data-Fig.6a–c). 

CDK4/6 inhibitors are expected to cause G1/S arrest, nocodazole to cause G2/M arrest, and 

serum starvation to cause cell cycle exit; the induction of these responses was confirmed 

using EdU incorporation and cell-cycle assays (Extended-Data-Fig.6a–d). When CyCIF 

data were plotted in a ccD-CMD landscape, control untreated MCF10A and MCF-7 cells 

exhibited an IOVlow CFDlow (coherent) state consistent with unrestrained, normally ordered 

cell proliferation (Fig.3g,k Extended-Data-Fig.5a). Cells treated with CDK4/6 inhibitors or 
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nocodazole were skewed toward specific quadrants of the ccD-CMD landscape, representing 

IOVhigh CFDlow states (Fig.3g–k). By contrast, when cells were serum starved, data fell in 

a point cloud corresponding to an incoherent IOVhigh CFDhigh state. Thus, the higher the 

value of IOV and CFD the greater the deviation from unrestrained proliferation (Fig.3h–

k). Moreover, changes in IOV and CFD tracked with genotype-predicted responses to 

CDK4/6 inhibitors in Rb wild-type and mutant breast cancer cell lines53: palbociclib 

induced a IOVhigh state in Rb wild-type cells (MCF-7, SUM159, BT20) which arrested 

in the presence of CDK4/6 inhibitors. Rb-mutant cells (BT549, HCC1937), which are 

resistant to palbociclib, remained IOVlow CFDlow and cycling (Fig.3l). Additionally, MCF-7 

mouse xenografts treated with CDK4/6 inhibitors54 exhibited a dose-dependent decrease in 

MPI+1 fraction which correlated strongly with inhibition of tumor growth (Extended-Data-

Fig.6e–f). As in MCF-7 cell culture, CDK4/6 inhibitors induced a IOVhigh state in MCF-7 

xenografts (Fig.3m, Extended-Data-Fig.6g). Based on these observations, we conclude that 

the transformations involved in generating a ccD-CMD landscape and scoring IOV and CFD 

metrics faithfully capture key features of the cell cycle from fixed cell images.

HER2 levels modulate cell cycle coherence in breast cancer

We applied CyCIF and coherence analysis to study cell-cycle dynamics in human breast 

cancer tissues overexpressing the HER2 growth factor receptor55. HER2 overexpression 

promotes proliferation of mammary epithelial cells via receptor-mediated mitogenic 

signaling55,56 and high HER2 expression defines a major subclass of breast cancer and is 

routinely assessed using immunohistochemistry57. Both the magnitude and heterogeneity of 

HER2 protein expression are known to predict response to HER2-directed therapy58,55,59,60. 

We performed CyCIF on a cohort of 26 breast cancer specimens (TMA1, TMA2), identified 

MPI+1 epithelial cells, and used the ccD-CMD algorithm to quantify IOV and CFD for 

individual patients (Fig.4a,b). A subset of tumors was found to be in an IOVlow CFDlow 

state (e.g., Sample 1 in Fig.4c) and inspection of time-ordered cell-cycle markers confirmed 

prototypical “coherent” cell-cycle dynamics with a balanced distribution of proliferative 

tumor cells in both G1 and G2 phases (Fig.4c–e). However, other samples deviated 

substantially from this pattern. For example, in Sample 2 IOVhigh cells were ‘skewed’ 

towards G1 and in Sample 3 a CFDhigh high state was observed (Fig.4c,d) and cells 

expressed combinations of cell-cycle proteins that are not found in normally cycling cells. 

These unexpected combinations included CDT1 plus Geminin without detectable Ki-67, 

or a combination of high p21, Cyclin A, Cyclin D and phospho-Rb (Fig.4e). Across all 

specimens we observed a continuum of IOV and CFD values and, within a single specimen, 

coherence also varied in space with gradual transitions occurring over length scales of 

several millimeters (Fig.4f, Extended-Data-Fig.7). We combined the proliferative cells from 

four regions of interest (ROIs) within a single tissue and used the ccD-CMD algorithm to 

order cells by their cell-cycle positions, thereby obtaining insight into relative cell-cycle 

distribution in each ROI (Fig.4g). In ROI1, which had the highest coherence, cells were 

evenly distributed through the cell cycle whereas in ROI2–4, IOV was higher and cells 

were concentrated in different parts of the cycle (Fig.4g). Thus, proliferating breast cancers 

expressing the same oncogenic driver (HER2) can exhibit different cell-cycle dynamics 

within a single specimen and these can range from a canonical IOVlow CFDlow state, to 

skewed distributions consistent with cell-cycle phase imbalance (skewed: IOVhigh CFDlow), 
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as well as states not normally encountered in normally growing cells (non-canonical: IOVlow 

CFDhigh).

To explore the relationship between HER2 expression and coherence we used TMA1 

and TMA2 (n = 26, known HER2 positive). We binned single cells by HER2 protein 

levels and inferred cell-cycle dynamics (Fig.5a). Cells having the lowest HER2 levels were 

typically CFDhigh. Optimal coherence (IOVlow, CFDlow) was observed in cells expressing 

intermediate levels of HER2. By contrast, cells with the highest HER2 levels were also 

CFDlow; their cell-cycle dynamics were however skewed to late G1 and IOV was high 

(IOVhigh, CFDlow) (Fig.5a, Extended-Data-Fig.8a). Similar results were observed in biopsies 

from patients enrolled in a clinical trial (NCT02326974) of neoadjuvant dual HER2 therapy 

(n=5, Fig.5b,c).

To determine if altering HER2 expression affects cell cycle coherence, we used a 

genetically engineered mouse model (GEMM) of breast cancer in which HER2 expression 

can be induced ~100-fold and then silenced in mammary tissue using a doxycycline-

regulated construct (MMTV-rtTA/tetO-HER2; Fig.5d)56. HER2-expressing mice develop 

ductal carcinoma in situ (DCIS) after three weeks of Dox-On, and palpable invasive 

carcinoma with a median latency of 53 days. Upon doxycycline withdrawal (Dox-Off), 

tumor regression is apparent with 100% penetrance. However, more than two-thirds of mice 

exhibit tumor recurrence within 120 days56. This murine model therefore mimics important 

aspects of tumor dynamics in response to HER2-targeted therapy in patients, although on a 

faster time scale.

Mammary tissues collected over a nine-week period of HER2 induction and seven days 

of subsequent HER2 repression underwent CyCIF to assay tumor cell-cycle dynamics 

(Fig.5d–i). After nine weeks of HER2 overexpression tumors adopted a proliferative state 

with a skewed cell cycle (IOVhigh CFDlow, Fig.5h,i). This state resembles established 

human tumors expressing high HER2 (Fig.5a). Within two days of HER2 withdrawal, 

cell-cycle dynamics changed to an incoherent state (IOVlow CFDhigh; Fig.5h–i, Extended-

Data-Fig.8b,c), even though neither proliferation (MPI+1 fraction) nor tumor cellularity had 

yet decreased (Fig.5f,g). Seven days after HER2 withdrawal, only ~2.5% of tumor cells 

remained and these exhibited skewed IOVhigh CFDlow cell-cycle dynamics (Fig.5h,i). For 

comparison, we examined a residual tumor having a detectable population of proliferating 

cells following neoadjuvant dual HER2 therapy in a patient enrolled in a clinical trial 

(NCT02326974) (Fig.5b). In this specimen, HER2 levels were lower than in any pre-

treatment sample and the state was IOVhigh CFDlow (Fig.5c). These data suggest that 

the relationship between HER2 levels and cell cycle coherence is bell shaped, with the 

highest coherence observed at intermediate receptor levels. In both humans and mice, 

HER2-independent residual disease adopted the skewed cell-cycle dynamics observed in 

pre-treatment tissues having high HER2 expression.

Coherence metrics are associated with clinical outcome

To study how coherence changes with therapy, we assayed specimens from three patients 

with localized breast cancer biopsied before, during, and after treatment (these patient 

samples were also analyzed in Fig.2e). In one patient with TNBC biopsied prior to treatment 
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(pre), following 12 weeks of neoadjuvant paclitaxel (on), and after 20 additional weeks 

of treatment with doxorubicin-cyclophosphamide (post) (Fig.6a), we found that either 

paclitaxel or doxorubicin-cyclophosphamide induced only small changes in the MPI+1 

fraction (Fig.6b), even though the Ki-67+ fraction fell ~50% in the on-paclitaxel specimen 

(Fig.6c). ccD-CMD analysis of the three longitudinal TNBC samples showed that the 

resulting cell-cycle dynamics were mostly coherent throughout the treatment (CFD<40, 

IOV<0.6, Fig.6d). However, the dynamics of the “on” sample skewed towards the G1 phase 

of the cell cycle (Fig.6e–g), consistent with data from intravital imaging of xenograft models 

treated with paclitaxel61. G1 accumulation in the presence of paclitaxel explains why Ki-67 

staining alone underestimated the proliferative fraction (Fig.6c). In another type of breast 

cancer (ER+ HER2−) two other “pre-on-post” sample sets collected longitudinally over 

time showed drastic changes in coherence metrics induced by therapy (Fig.6h,i), even when 

treatment lasted for as little as two weeks (“pre” to “on” samples). Changes in coherence 

were independent of changes in the fraction of proliferating cells (Fig.6h). We conclude 

that cell cycle coherence is a plastic phenotype that provides a sensitive measure of therapy-

induced changes independent of significant reductions in proliferative index.

To determine if differences in cell cycle coherence are associated with differences in 

outcome we assayed specimens from patient cohorts diagnosed with two different lethal 

malignancies (mesothelioma, glioblastoma). Patients were stratified into a coherent IOVlow, 

CFDlow group and an incoherent group encompassing either IOVhigh or CFDhigh states 

(Fig.7a,b). Patients whose tumors exhibited coherent cell-cycle dynamics had significantly 

worse outcomes (logrank p<0.02). Similar results were obtained if tumors were stratified 

into three groups (coherent, skewed, non-canonical; Extended-Data-Fig.9). We conclude that 

cell cycle coherence in mesothelioma and glioblastoma is associated with aggressive tumor 

behavior.

Discussion

Cancer is a disease of excess cell proliferation but cell-cycle progression, even in highly 

malignant cells, is still subject to regulation by both cell-intrinsic and cell-extrinsic 

factors27,1,62. The effects of such regulation on tumor cell proliferation is largely unexplored 

in the setting of intact human tumors. Instead, in the vast majority of studies involving 

human tumors and mouse models, proliferative fraction is captured via a dichotomous 

assessment of the signal intensity of a single marker: Ki-67. This approach incorrectly 

makes some dividing cells appear non-proliferative and fails to capture the wide-ranging 

states that proliferating tumor cells can assume. Here we present a multiplexed approach 

for determining the emergent features of dynamic processes in tumors that provides a 

foundation for understanding how tumors integrate microenvironmental, cell-intrinsic, and 

physical signals to grow in different niches.

Specifically, a Multivariate Proliferation Index (MPI) provides a means to quantify 

proliferative index based on the expression of multiple cell-cycle regulators – not just Ki-67 

– and cell cycle coherence measures how closely cell-cycle dynamics conform to those 

of the well understood cell cycles in freely dividing cancer cells. We show that only a 

subset of tumors grows with ”canonical” dynamics while others are skewed towards specific 
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cell-cycle phases or express unanticipated combinations of regulators. In both humans and 

mice, we find that intermediate levels of HER2 expression promote coherent cell-cycle 

dynamics, whereas higher levels of oncogene overexpression lead to skewed dynamics, 

potentially resulting from phase-specific deceleration or acceleration involving skipped 

restriction points63,64. High coherence may not necessarily translate into faster growth, 

but skewed and non-canonical dynamics are associated with more favorable outcomes in 

two highly lethal malignancies. This finding is also consistent with evidence that many 

oncogenes are toxic to tumor cells when expressed at very high levels65. We anticipate 

that MPI and coherence will be broadly useful concepts even through the precise cell-cycle 

regulators used to compute these parameters are likely to change with further study.

We observe diverse cell-cycle states within and across specimens. By contrast, the spatial 

organization of cells into proliferative and non-proliferative domains of two characteristic 

lengths appears to be conserved across cancers of diverse histology. We speculate that 

small-scale proliferative structures correspond to cells and their daughters arising after 

a few relatively rapid cell divisions, perhaps corresponding to well-adapted clones or 

to favorable mitogenic gradients, nutrient availability, or mitogenic cell-cell interactions. 

Large neighborhoods likely arise from differences in environmental conditions that extend 

across tumors and from structural constraints. These neighborhoods contain thousands of 

either proliferating or non-proliferating cells, reminiscent of developmental patterning by 

morphogen gradients66.

Basic research, clinical trials, and precision cancer medicine require new quantitative 

measurements and computational approaches to correctly quantify cancer cell states and 

phenotypes, and their spatial organization in tissues20,67,68. This information is orthogonal 

but complementary to characterization of genomic heterogeneity in tumors, and is expected 

to provide new means to understand response to treatment and the evolution of drug 

resistance69–72.

Methods:

Our research complies with all relevant ethical regulations and was reviewed and approved 

by the Institutional Review Boards (IRB) at BWH, HMS and DFCI.

Data availability

Images, generated datasets and corresponding analysis are available in the Synapse.org 

repository syn2230077175. Multiplexed images of human HER2 breast cancer used in 

Fig. 3a can be viewed in Minerva Story73,74 an interpretive guide for interacting with 

multiplexed tissue imaging data https://tinyurl.com/minerva-proliferation. Imaging data and 

other data supporting the findings of this study are available from the corresponding author 

on reasonable request.

Code availability

MATLAB codes used to process and analyze the plate-based CyCIF (p-CyCIF) and tissue-

based CyCIF (t-CyCIF; shortened as ‘CyCIF’) and the codes used for ccD-CMD analysis 

are available at https://github.com/santagatalab.
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Experimental model and subject details

Cell Lines—BT20, BT549, HCC1937, MCF-7, MCF10A, SUM159 cells were purchased 

from ATCC and grown in medium (Gibco) supplemented with 10% fetal bovine serum 

and 1% penicillin/streptomycin (Gibco, 15070–063). Cell lines were regularly retested 

for identity using short tandem repeat (STR) markers. Growth medium details: EMEM 

(BT20), RPMI-1640 + 1μg/mL Insulin (BT549), RPMI-1640 (HCC1937), DMEM (MCF-7). 

MCF10A cells were grown with 5% horse serum (Gibco, 16050–122), 1% P/S, 0.1% Insulin 

(IN, Sigma, #I1882), 0.05% hydrocortisone (HC, Sigma, #H0888), 0.02% human-EGF 

(Sigma, E5036), and 0.01% cholera toxin (Sigma, #C8052). SUM159 cells were grown with 

F-12 + 5% FBS + 1% P/S, 1 μg/ml HC, 5 μg/ml IN, 10 mM HEPES. Cells were incubated at 

37°C and 5% CO2.

Human Tissue Sections—Whole slide tissue sections of breast, ovarian, and squamous 

cell lung carcinoma, and sections of tissue microarrays (TMAs) of breast carcinoma 

(HTMA226, 227, 240; triplicate 0.6mm diameter cores per case; courtesy of DFCI Breast 

Oncology Group), glioma (HTMA399; quadruplicate 0.6mm cores), colorectal carcinoma 

(HTMA402; triplicate 0.6mm), and mesothelioma (HTMA403, triplicate 1.0mm cores) were 

prepared from formalin-fixed, paraffin-embedded (FFPE) tissue blocks from the archives of 

BWH Pathology. See Supplementary Table 5 for clinical information of cases analyzed as 

whole sections. Progression free survival analysis was performed on a subset of cases from 

HTMA399 and HTMA403 and included only patients with clinical follow-up following 

resection of primary tumors that were treated using standard-of-care regimens (therapy 

information: Supplementary Tables 6–7); in the case of gliomas (HTMA399), only IDH-

wt glioblastoma were used. FFPE sections of breast carcinoma TMA BRC15010 and 

eight TMAs comprising case sets 14–17 of the Cancer Diagnosis Program Breast Cancer 

Stage II TMA were acquired from Pantomics, Inc. and the Mid-Atlantic Division of the 

Cooperative Human Tissue Network at University of Virginia (clinical data available at 

https://chtn.sites.virginia.edu/tissue-microarrays#CDPProgn2).

Animal experiments—MMTV-rtTA/tetO-HER2 mice were previously generated56; the 

transgene was induced by introducing a doxycycline containing diet to 8 week-old female 

FVB MMTV-rtTA/tetO-HER2 mice56. Two mice were sacrificed at 3, 6, and 9 weeks 

following introduction of the doxycycline diet and 2, 4, and 7 days after withdrawal of 

doxycycline by switching to a standard diet. Mice were euthanized using CO2 inhalation, 

and all mouse experiments were performed in accordance with protocol 06–034 approved 

by the DFCI and HMS IUCAC. Multiple primary tumors were excised from each mouse 

and processed into FFPE blocks. The TMA of MCF-7 cell xenograft used in Fig.3m and 

Extended-Data-Fig.6e–g was created for a prior publication54 and analyzed with CyCIF. 

Tumor change was calculated as the difference in size between the end of the 4-day 

treatment and the tumor size before treatment. Tumor size=(length × width2)/2 measured 

using calipers.
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METHOD DETAILS

Experimental methods

Plate-based Cyclic Immunofluorescence (p-CyCIF)—MCF10A cells were plated 

in flat-bottom polystyrene 96-well plates at ~1e6 cells/mL. Two plates were seeded for 

two treatment times; 12 wells were seeded (triplicates × 4 treatments). After 24h, cells 

were either given fresh media or treated with serum-free media, 1μM palbociclib (Sigma, 

#PZ0383), or 5μM nocodazole (Cell Signaling Technology, 2190S) and incubated at 37°C 

for 24 or 48h. After treatment, Click-iT™ EdU Alexa Fluor™ 488 solution (Molecular 

Probes, PZ0383) was added (final concentration 10 μM) and incubated at 37°C for 2h. Cells 

were washed in Dulbecco’s phosphate-buffered saline (DPBS; Gibco, 14190–250) and fixed 

with 3.7% paraformaldehyde (Electron Microscopy Science, C993M23) for 30min. Cells 

were washed and permeabilized with 0.5% Triton® X-100 (Sigma, X100) in PBS (Gibco, 

10010023) for 15min.

Other cell lines (BT20, BT549, HCC1937, MCF-7, SUM159) were seeded at densities 

ranging from 8,000–12,000 cells/well in 96 well plates (Corning 3603, Corning, NY). Drugs 

were added 24h later with an HP D300e Digital Dispenser (HP, Palo Alto, CA). Serum 

starvation of MCF-7 cells used 1% FBS. Following 24h of treatment, cells were pulsed with 

EdU in 10% OptiPrep for 1h and then fixed with 4% formaldehyde in 20% OptiPrep for 1h. 

Stain/fix solutions were replaced with PBS and plates were sealed.

p-CyCIF was performed using multiple cycles of incubation with primary-labeled antibody, 

imaging, and fluorophore inactivation as per ref.52. Primary conjugated antibodies and 

Hoechst 33342 (Thermo Fisher Scientific, 62249) were diluted in Odyssey Blocking Buffer 

(LI-Cor, cat. no. P/N 927–40003) and incubated at 4°C overnight (Supplementary Table 8 

list the antibodies and dilutions ranging from 1:10–1:500). Cells were washed and placed 

in PBS for imaging using DAPI, FITC, Cy3, and Cy5 channels on GE IN Cell Analyzer 

6000. Fluorophores were inactivated with 200μL of bleaching solution (4.5% H2O2, 20 mM 

NaOH in PBS; Sigma, 216763, Sigma, 221465) for 1h under LED lights (Amazon, cat. no. 

B078JCBW9S) and washed before adding a new cycle of three antibodies. After completing 

all cycles, EdU Click-iT Reaction was performed and imaged.

Deep Dye Drop—Cell lines were maintained in recommended conditions and seeded at 

densities ranging from 1,500–2,000 cells/well in 384-well CellCarrier plates (Perkin Elmer, 

Waltham, MA) using a Multidrop Combi Reagent Dispenser (Thermo Fisher Scientific, 

Waltham, MA). 24h later cells were drugs were added with an HP D300e. Cells were stained 

and fixed for analysis at the time of drug delivery and after 24h treatment according to 

the Deep Dye Drop protocol76. Cells were pulsed with 10μM EdU (Lumiprobe, Waltham, 

MA) and stained with LIVE/DEAD Far Red Dead Cell Stain (LDR, 1:2000) (Thermo Fisher 

Scientific, Waltham, MA) in 10% OptiPrep (Sigma Aldrich, St Louis, MO) for 1h. Cells 

were then fixed with 4% formaldehyde (Sigma Aldrich, St. Louis, MO) in 20% OptiPrep 

for 30 min. Following aspiration with an EL406 automated plate washer (Biotek, Winooski, 

VT), cells were permeabilized with 0.5% Triton-X1000 (Sigma Aldrich, St. Louis, MO) in 

10% OptiPrep for 20min and EdU was labeled by Click-chemistry (2mM copper sulfate, 

4μM sulfo-cy3-azide, 20 mg/ml ascorbic acid, 20% OptiPrep) for 30min. Staining reagents 
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were aspirated and cells were blocked with Odyssey buffer (LI-COR Biosciences, Lincoln, 

NE) for 1h and stained overnight at 4°C with an Alexa-488 conjugated anti-phospho-histone 

H3 (pH-H3; clone D2C8) antibody (1:2000 in Odyssey buffer, Cell Signaling Technology, 

Danvers, MA) and 2 μg/ml Hoechst 33342 (Sigma Aldrich, St. Louis, MO). Cells were 

washed once with PBS-T (0.1% Tween 20) and twice with PBS and plates were sealed. 

Fixed cells were imaged with a 10x objective using an ImageXpress confocal microscope 

(Molecular Devices, San Jose, CA). MetaXpress software was used to segment nuclei 

based on Hoechst signal, and LDR, EdU and pH-H3 intensities within nuclear masks were 

extracted. LDR intensity was used to classify live and dead cells, EdU and pH-H3 intensities 

were used to assign cells to the S- and M- cell cycle phases, and Hoechst signal for DNA 

quantification.

Tissue Cyclic Immunofluorescence (t-CyCIF)—CyCIF was conducted following 

published protocols24,77 on full slide tissues and TMAs. FFPE slides were baked at 60°C for 

30min, dewaxed using Bond Dewax solution at 72°C, and antigen retrieval was performed 

with Epitope Retrieval 1 solution at 100°C for 20min using the BOND RX Automated 

IHC/ISH Stainer. Antibodies for each cycle were diluted in Odyssey Blocking Buffer and 

incubated overnight at 4°C in the dark (Supplementary Table 8 lists antibodies). After 

antibody incubation, slides were stained with Hoechst 33342 for 10 min at RT. Slides were 

coverslipped using 20–50% glycerol solution (Sigma, G5516) in PBS. Images were taken 

using DAPI, FITC, Cy3, and Cy5 channels either on the GE IN Cell Analyzer 6000 (20x/

0.75NA objective) or on the RareCyte CyteFinder (20x/0.75NA objective). After imaging, 

fluorophores were inactivated (4.5% H2O2, 20mM NaOH in PBS, 45 min) under LED 

lights, and the next cycle was performed.

Image processing

p-CyCIF and t-CyCIF image processing is organized in the following steps detailed 

further below. Additional details and access to the underlying code can be found at https://

github.com/labsyspharm/ashlar and https://github.com/santagatalab.

i. stitching, registration, correction of acquisition artifacts were performed using 

ASHLAR and the BaSiC algorithm. ASHLAR outputs a single pyramid ome.tiff 

file;

ii. the ome.tiff file is re-cut into tiles (typically 5000×5000 pixels) containing 

only the highest resolution image for all channels. One random cropped image 

(250×250 pixels) per tile is outputted for segmentation training (using Fiji); for 

p-CyCIF steps i-ii are optional;

iii. ilastik software is trained on cropped images to label nuclear, cytoplasmic, and 

background areas. Ilastik outputs a 3-color RGB image with label probabilities;

iv. RBG probability images are thresholded and watershed in MATLAB to segment 

the nuclear area. Cytoplasmic measurements are derived by dilating the nuclear 

mask;
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v. single-cell measurements are extracted for each channel (cell-pixel median 

and mean for both nuclear- and cytoplasmic-area) as well as morphological 

measurements of area, solidity, and cell location coordinates.

BaSiC—The BaSiC ImageJ plugin tool is used to perform background and shading 

correction of images78. The BaSiC algorithm calculates the flatfield, the change in effective 

illumination across an image, and the darkfield, which captures camera offset, thermal noise. 

The dark field correction image is subtracted from the original image, and the result is 

divided by the flatfield image correction.

ASHLAR—ASHLAR is used to stitch and register image tiles in subsequent layers to those 

in the first layer79 and outputs an OME-TIFF file containing a multi-channel mosaic of the 

full image across all imaging cycles (https://github.com/labsyspharm/ashlar).

ilastik—ilastik is used to generate nuclear and cytoplasmic segmentation masks from 

OME-TIFF files80. For increased processing speed, randomly selected 250 × 250 pixel 

regions from the original OME-TIFF are used for training. User annotations are used to 

train non-linear classifiers that are applied to the entire image to obtain masks describing 

probabilities of each pixel belonging to nuclear, cytoplasmic, or background areas. A 

MATLAB (version 2018a) script uses these masks to construct binary masks for nuclear 

and cytoplasmic area.

Data analysis workflow

Data analysis is divided in a set of pre-processing steps in which data from different tissues 

is i) log2-transformed and aggregated together, ii) filtered for image analysis errors, and iii) 

normalized on a channel-by-channel basis across the entire data from a single experiment 

(performed in MATLAB).

Data aggregation—The processing workflow outputs one ome.tiff image and one data file 

(.mat) for each tissue area imaged. The data matrices from each .mat file are concatenated 

into a single matrix for measured metrics (median/mean, nuclear/cytoplasmic) into a 

single structure (“AggrResults”). The morphological data (i.e., area, solidity, and centroid 

coordinates) are concatenated into a single structure (“MorpResults”), also containing the 

indexing vector to keep track of the tissue of origin within the dataset.

Data filtering—Single cells are filtered to identify and potentially exclude from subsequent 

analysis errors in segmentation and cells lost through the imaging using morphological 

criteria based on cell-object segmented area (nuclear area and cytoplasmic area within 

a user-input range and nuclear object solidity above a user-input threshold) which are 

applied to all rounds for the cell object, and DAPI-based criteria which are applied to 

DAPI measurements for each round (nuclear measurements and ratio between nuclear and 

cytoplasmic measurements above user-input threshold). Filter information is allocated to 

a logical (0–1) structure ‘Filter’, and used to select cells to further analyze by indexing. 

Threshold selection is dataset dependent and performed by data inspection. Values used in 

each dataset are available with data analysis codes (Synapse.org, syn22300771).
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Data normalization—Each channel distribution is normalized by probability density 

function centering and rescaling to center distributions of the log2 fluorescent signal at 0 

and rescale the distribution widths to facilitate cross-channel comparisons. The data is first 

log-transformed (base 2). The standard normalization is performed using a 2-component 

Gaussian mixture model, each model capturing the negative and the positive cell population. 

If this model fails to approximate the channel distribution, two other strategies are 

attempted: i) a 3-component model is used assuming the components with the two highest 

means are the negative and positive distribution (i.e., discarding the lowest component) or ii) 

the user selects a percentage ‘x’ of assumed positive cells and a single Gaussian distribution 

fit is performed on the remainder of the data to capture the negative distribution. The single 

Gaussian fit is then used as the lower component in a 2-component model to estimate 

positive population distribution. The selected strategy is described (syn22300771).

The “add_coeff” is defined as the intersection of negative and positive distributions. The 

“mult_coeff” is defined as the difference between the mean of negative and positive 

distributions. The full distribution is normalized by subtracting the add_coeff and dividing 

by the mult_coeff. The normalization is performed on nuclear and cytoplasmic single-cell, 

single-channel distributions individually.

Individual analyses performed in selected datasets is as follows:

Cell type calling strategy—Cells from t-CyCIF are separated into lineages by cell-type 

markers based on the sign of the normalized value:

• epithelial cells, E-cadherin OR pan-cytokeratin positive;

• immune cells, CD45, CD3D, CD4, CD68, CD163, or CD8a positive;

• stromal cells, αSMA positive and negative for epithelial markers OR Vimentin 

positive and immune marker negative;

• others/not classifiable, negative for all the markers in above categories

Conflicts such as a cell called as more than one cell-type are resolved by comparing markers 

that triggered the cell-type calls and assigning cell type based on highest marker level. If 

markers are within 10% of each other, the cell is “not classifiable”.

Multivariate Proliferation Index (MPI) calculation—The Multivariate Proliferation 

Index, or MPI, is based on the normalized measurement of 5 markers: three proliferation 

markers (Ki-67, MCM2, PCNA) and two cell cycle arrest markers (p21, p27). The method 

avoids relying on single markers while separating cells expressing high level arrest markers 

(even if proliferation markers are expressed). The logic for the MPI determination is:

The determination of threshold values for proliferation and arrest is dataset dependent.

MPI:=
+1 if(∑prolif − min(prolif) > threshprolif
−1 if(max(arrest)) > thresharrest
0 otherwise
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However due to our marker normalization strategy the values were comparable between 

datasets (threshprolif = 0 and thresharrest ~ 0.25–0.75, tuned based on Ki-67 levels).

Clustering and t-SNE—Clustering is performed using k-means algorithm. Cluster 

arrangement is determined by hierarchical clustering of k-means clustering mean value per 

cluster (performed in MATLAB using “kmeans” and “clustergram”). t-SNE embedding was 

performed on a subset of cells with perplexity parameter set at 500.

Spatial Correlation Analysis—Spatial correlations Cxy(r) were computed as Pearson 

correlation between a cell of group X and its kth nearest neighbor of group Y, for their 

respective variables x and y. A value of Cxy (r) was computed for each k up to 100, and 

distance r was assigned to each k as the average distance between kth nearest neighbors. 

For the MPI spatial correlation cell groups X and Y were both epithelial/tumor cells, and 

variables x and y were logical, whether the cell belonged to the specified MPI category 

or not. For correlation between MPI categories and tumor microenvironment, group X was 

the epithelial/tumor cells and group Y was immune compartments. Variable x and y were 

logical, x = MPI category, y = subtype of immune cells. To calculate characteristic lengths l1 

and l2, the Cxy data was fitted with a two exponential fit y = a1*exp(−x/l1) + a2*exp(−x/l2) 

by least-square fitting with all parameters constrained to be positive (MATLAB in-built 

function lsqcurvefit). Estimates derived from TMA cores were filtered for fits with residuals 

below 0.05 (as calculated by lsqcurvefit function) and for cores with >100 MPI+1 cells. 

Long range estimates were filtered for values below the core size (1.0mm for mesothelioma, 

0.6mm for others).

Ripley’s L spatial aggregation analysis—Ripley’s K index was calculated using 

formula K(r) = (sum(D(D~=0)<r)/n)*(1/lambda), where D is calculated using rangesearch.m 

Matlab function, n is the number of cells, and lambda is overall tissue cell density. Ripleys’ 

L function is defined as L(r) = sqrt(K(r)/π)). Transformation to Ripley’s L allows for more 

direct interpretation in uniformly distributed samples L(r)-r = 0.

Upset plot—Upset plots are computed using the R-package available at https://

caleydo.org/tools/upset/.

Pairwise cell cycle difference (ccD) and classical multidimensional scaling 
reduction (CMD)—ccD is calculated by taking the absolute value of the pairwise Pearson 

correlation between the cell cycle marker vector of normalized values of each cell. The 

CMD is performed with a MATLAB built-in function cmdscale. The ccD is reshaped to 

fit the requirements expected by the cmdscale algorithm, ccD’ = 0.5-ccD/2. The first two 

dimensions of the CMD scaling are plotted and used for further analysis.

Circular fit, cell cycle dynamics reconstruction, and cell cycle coherence 
summary metrics—For both simulation data and p-CyCIF/t-CyCIF data the same 

algorithm was used. CMD scaled two-dimensional data is fit by least-squares minimization 

to a circle. For each point in the data two parameters are calculated: i) distance to closest 

point of the circle (circle fit distance, CFD) and ii) angle of the point to the origin of the 

fitted circle. The angle is used to order cells in what is referred to as “cell cycle ordering”. 
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Given the cyclical structure of the ordering, the origin (time 0) is arbitrary and set to separate 

M phase markers from early G1. Cell cycle distribution plots (Fig.4g, Fig.6g) are computed 

by aggregating cells from the ROI listed (5,000 cells max per ROI), running the ccD-CMD 

algorithm to order cells along the cell cycle, quantifying the histogram of cells belonging to 

each ROI, and normalizing the frequency to the cell number of the specific ROI.

Cell cycle coherence distance is the CFD detailed above. The angular distribution coefficient 

of variation is calculated by binning the angle measurements into 8 bins and calculating 

the proportion of cells/bin. The calculation is repeated by shifting the bin position by π/8 

to ensure lack of positional bias in bin definition. We hence refer to this metric as the inter-

octile angular variation (IOV). The IOV is the coefficient of variation of bin proportions 

(equal to 0 in a uniformly distributed population).

A comparison between ccD-CMD pseudotime cell cycle ordering and three time inference 

algorithms is detailed in Supplementary-Note1 and Extended-Data-Fig.5.

Outcome analysis—Outcome analysis was performed using Kaplan-Meyer estimation 

and logrank test. The analysis was computed in MATLAB using the MatSurv function81. 

Cutoffs were chosen based on cell line observations (IOV = 0.62, CFD = 42) or using 

the median value for Ki-67 cutoff. The CFD threshold for the mesothelioma cohort was 

lowered to 37 in order for the “non-canonical” category to have a minimum of 5 patients. 

Analysis was restricted to cases with >500 MPI+1 cells. The treatment received is listed in 

Supplementary-Tables6–7. Only patients that received chemotherapy were included.

Cell cycle modeling

The cell cycle was modeled in silico using a system of ordinary differential equations 

(ODEs) based on the model by Csikász-Nagy and Tyson82. A Python script utilizing 

Euler’s method was used to solve the ODEs. Measurement noise sampled from a 

Poisson distribution was introduced to reproduce background from microscopy experimental 

settings, to include both the shot noise and measurement fluctuations. For the “untreated” 

conditions, the ODEs, kinetic constants, and initial values were based on published 

parameters82, the only variation being lowering of the “maxmass” parameter to 1.8. The 

“G1 arrest” condition was simulated by setting values of the active CDK/cyclinD complexes 

to zero to model the effects of palbociclib.

Statistics & Reproducibility

Curve fitting was performed using MATLAB (except for linear fit in Extended-Data-Fig.1f,g 

which was performed in MS Excel). Statistical tests used are Pearson correlation, 2-sided 

t-test, 2-sided Kolmogorov–Smirnov (KS) and logrank as specified in figure legends (Fig.1g, 

2g, 2i, 3h–i, 7a,b; Extended-Data-Fig.1f–i, 1k, 2f, 4b, 9b–c) performed with MATLAB built-

in functions (no multiple hypothesis correction was used). Only samples with a minimum 

of 100 single cells (after quality control filtering) were included in analyses. Significance 

was defined as p-value<0.05. Information on sample size, number of independent repeats 

used, and statistics to summarize data is presented in Supplementary-Table1. Sample sizes 

were chosen to robustly exceed sample sizes from relevant literature on single cell imaging. 
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When the distribution and variation of phenotypes observed were unknown, we used non-

parametric hypothesis testing strategies. No data was excluded. Whenever data was filtered 

to subselect a population for a figure, the procedure is detailed in the text, figure legend or 

methods section. Sample randomization was not performed. Whenever visual analysis was 

performed (pathology scoring) the investigators performing the analysis were not involved in 

the data collection and were blinded to sample identity.
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Extended Data

Extended Data Fig. 1: Multivariate Proliferation Index (MPI) in human cancer tissues
a. Clustered heat map of log2 normalized cell lineage marker signal intensities on a per-cell 

basis derived from CyCIF images of 4 whole slides of lung squamous cell carcinoma 

(SCC) and ovarian carcinoma, and tissue microarrays (TMAs) from glioma, colorectal 

carcinoma (CRC) and mesothelioma. b-c. Clustered heat map of single-cell signal intensities 

of cell cycle markers for epithelial/tumor cells in Fig. 1a (breast carcinoma) and panel 
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a. Ki-67+ cells were identified by normalization using Gaussian mixture modeling with 

2 components. Multivariate Proliferation Index (MPI) indicated: +1 (proliferative, green), 

0 (non-proliferative, blue), or −1 (arrested, red). d. K-means clustering heat map of five 

MPI markers for epithelial/tumor cells of three HER2+ breast cancer samples (k = 20 

clusters), and heat map of single-cell normalized log2 intensities. In both, the corresponding 

MPI category is depicted for comparison (k-mean clustering fraction of MPI category is 

depicted). e. UMAP plots for 180 samples of breast carcinomas from the Cooperative 

Human Tissue Network (CHTN) Stage II TMAs (#14–17) with proliferation markers 

mapped to color (MPI categories were not used as UMAP variables, n = 10,000 cells). f. 
MPI robustness comparison between five sets of serially cut tissue sections from Pantomics 

TMA BRC15010 and g. between two sets of serially cut tissue sections of the 3 breast 

HER2-positive cases from Fig. 1c,e. Each dot represents the fraction of MPI +1 cells 

in the two indicated tissue sections (linear least-square fit with fixed origin at y=x=0). 

h-j. Permutation testing of breast carcinomas from the CHTN Stage II TMAs (#14–17, 

n = 180 samples) with MPI calculations performed by adding increasing amounts of 

normally distributed noise (0.1x, 0.25x, 0.5x and 1x standard deviations of original marker 

distribution) to the five MPI cutoffs, repeated 1000 times using i. linear regression, i. 
correlation analysis (boxplots: median, 25–75th percentile and min-max extremes from 

MatLab boxplot.m function), and j. intra-cohort ordering of MPI estimates. k. Comparison 

of MPI 0, and MPI −1 fractions in epithelial/tumor cells across different classifiers of breast 

cancer in Fig. 1g (n=142 samples, mean + SD, 2-sided KS p-values with 0.05 significance 

cutoff).
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Extended Data Fig. 2: Multivariate Proliferation Index (MPI) short- and long-range correlations 
in human cancer tissues
a-b. Composite CyCIF image from a. lung squamous cell carcinoma, and b. ovarian 

carcinoma (scale bar, 1mm) and corresponding image of long-range whole slide spatial 

maps of MPI categories (smoothed over 40 neighboring cells for visualization purposes 

only). Inset panel showing both smoothed and single-cell MPI calling in marked region 

of interest. Further inset panel of single-cell MPI calling and corresponding composite 

CyCIF image (scale bar, 100 μm; white = pan-cytokeratin, green = MCM2, red = p27, 
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blue = DNA; example from 4 biological independent specimens). c. Spatial maps of MPI 

categories from inset 1 from Fig. 2a smoothed over 40 neighboring cells and non-smoothed 

(single-cell calling). d. Red density curve shows sample distribution of spatial correlations 

within and across (“self corr” and “cross corr”) MPI categories for mesothelioma, glioma, 

colorectal carcinoma (CRC) and three breast TMAs (n = 52, 163, 89, 69, 85, 57 samples 

respectively, k = 5th neighbor approximation, KS density approximation). Blue density curve 

shows bootstrap distribution comparison obtained by randomly shuffling of MPI labels 

(10 independent shuffles). e. Heat map of spatial correlations within and across randomly 

shuffled MPI labels (“self corr” and “cross corr”, k = 5th neighbor, n = 513 samples). f. 
2-sided t-test p-values for red density curve distributions in panel d (log10 scale used for 

visualization purposes). g. Plots of spatial correlation from whole slides images of samples 

in Fig. 2d with two exponential fit for the three MPI categories. h. Ripley’s L-r function for 

MPI +1 across breast, lung, and ovarian tumors (whole slide images, Fig. 2d). Each column 

represents an individual and independent tissue.

Extended Data Fig. 3: Limits of cell cycle marker single cell distributions and multi-channel 
gating interpretation in tissues
a. Representative single-channel cell cycle marker images from CyCIF imaging with E-

cadherin from tissue in Fig. 3a (scale bar 100 μm, example from 3 biological independent 

specimens). b. Single-channel distributions and two-dimensional scatter plots of a subset 

of cell cycle markers from HER2 positive breast cancer case #2 in Fig. 1c,e (n = 1,000 

epithelial/tumor cells, log2 signal per cell prior to normalization). c. Single channel 

distributions for cell lineage, proliferation, and cell cycle markers from three HER2+ breast 

cancer samples (KS density approximation) used in Fig. 1c,e. For proliferation and cell cycle 
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markers only epithelial/tumor cells were used. d. Upset plot of three HER2+ breast cancer 

samples (n = 0.52 million cells) from Fig. 1 c, e showing frequency of cell cycle marker 

positivity and their combinations sorted by frequency.

Extended Data Fig. 4: Example of 27-plex CyCIF experiment with tumor sample and tonsil 
control tissues
a. Example of positive and negative staining for all markers in CyCIF experiment through 

rounds of cyclic imaging. Three independent samples are shown: Ctrl is a non-malignant 

tonsil tissue sample (‘control’), #1 and #2 are glioma samples. Plots are single-cell kernel 

density estimation for patient samples from respective images (median per pixels within 

the cell area, log2 FAU, not normalized, black = tonsil, yellow = glioma sample #1, 

magenta = glioma sample #2, n = 4,278, 2,629, and 2,609 cells, respectively). Each row 

of images and data is a successive round of CyCIF acquired from the same tissue area (Rx 

is the xth round of imaging). All images from antibody channels were linearly contrasted 
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between 0 and 2000 fluorescence units for ease of comparison. Scale bar, 50 μm. Examples 

from tissue microarray containing 176 independent glioma specimens and 8 independent 

control specimens. b. Scatter plots of the single-cell correlation of the signal intensity 

of unconjugated antibodies to the indicated markers versus their fluorophore conjugated 

versions from 142 samples of tissue from 75 patients (Pantomics TMA BRC15010). Pearson 

correlation coefficients (C) are shown. All correlation had p-value < 10−175. c. Plot of the 

phospho-Rb signal from MPI0, MPI +1/Ki-67−, and MPI +1/Ki-67+ cells from Pantomics 

TMA BRC15010 acquired using both conjugated (‘direct IF’) and unconjugated (‘indirect 

IF’) phospho-Rb antibodies (n=74 cores, Line is mean value).

Extended Data Fig. 5: Testing of ccD-CMD framework using cell cycle perturbation in vitro and 
cell cycle modeling in silico, and comparison of temporal inference methods
a. Left, histograms of fluorescence single-cell log2 normalized signal by plate-based CyCIF 

(p-CyCIF) from untreated (blue) and 24h palbociclib 1μM treated (orange) MCF10A cells 
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grown in culture (n = 10,000 cells per condition). Right, ccD-CMD plot. b. Heat map and 

time plot of single-cell signals ordered by ccD-CMD (normalized log2 FAU, n=10,000 cells 

moving mean over 200 cells). c. Traces from generalized model of mammalian cell cycle81. 

Top panels, no noise added. Middle panels, Gaussian measurement noise added (additive 

and multiplicative). Gray areas are the time frame used for plots in panels d. d. ccD-CMD 

plot of mathematical model results in shaded areas of panel c. Bottom panel, simulation 

switch to G1 arrest parameters (CDK/CyclinD complex set to 0) after one cell cycle. Color 

is the time variable in the mathematical model (n = 10,000 points). e-h. Comparison of 

time inference methods ccD-CMD, SCORPIUS, Palantir and Cyclum applied to e. synthetic 

data generated by the mathematical model in panel e. (n = 10,000 observations), f. HER2+ 

breast cancer tissue data from Fig. 3a–f., and g. MCF10A untreated cells from Fig. 3g. 

Left, two dimensional visualization output. Right, pseudotime ordering output (n = 5,000 

cells, same cells used for all algorithms, normalized log2 FAU, moving mean over 200 

cells). h. Comparison between two dimensional reduced space visualization from three time 

inference algorithms with data from HER2+ breast patient samples #1, 2, and 3 from Fig. 

4b–d. i. Coefficient of variation of coherence metrics IOV and CFD in 5 tissues using 

increasing number of cells (n > 20,000 cells per tissue, CV calculated over 40 independent 

sub-samplings). j. Comparison of IOV and CFD when one or two markers are removed from 

ccD-CMD algorithm. Data from untreated MCF10A cells used in panel g. The green dot 

is the original representation. Orange, one marker removed. Blue, two markers removed. k. 
Comparison of IOV and CFD when MPI 0 and MPI −1 cells are added at increasing ratios. 

l. Examples of pseudotime ordering by ccD-CMD algorithm showing inferred CDT1 and 

Geminin across six tissues areas.
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Extended Data Fig. 6: Orthogonal validation of changes in MPI and cell cycle coherence using 
cell cycle inhibition in vitro and in vivo
a-b. Stacked bar graphs showing a. cell cycle fractions using the dye drop method76 and 

b. MPI frequencies by p-CyCIF for MCF-7 cells at baseline and in response indicated 

treatments for 24h c. Cell cycle fractions in five breast cancer cell lines showing differential 

response to treatment with increasing doses of Palbociclib dependent on the Rb status of 

the cell line. d. ccD-CMD plot from p-CyCIF from fixed untreated cells (Control), and 

cells exposed to 1 μM Palbociclib for 24h. Enlarged dot represents the average of 3 distinct 

biological replicates, n = 1000 cells each. e-g. t-CyCIF validation in MCF-7 xenografts 

in nude mice54. Doses are in mg/kg. e. Scatter plot of change in tumor size and MPI +1 

fraction. Vehicle, n = 14 tumors from 7 mice. Abemaciclib, n = 6 tumors from 3 mice 

per dose. Palbociclib, n = 8 tumors from 5 mice. Each dot represents an individual tumor 

(2-sided Pearson correlation p-value). f. MPI and Ki-67 fractions per TMA core (mean of 
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n = 35, 15, 17, 18, and 24 total cores, 2-sided t-test p-value). g. ccD-CMD plots from 

individual MCF-7 xenografts tumors (4000 cells per mouse, n=12, 6, 6, 6, 8 mice).

Extended Data Fig. 7: Cell cycle dynamics from ccD-CMD from human cancer tissues
a. Scatter plot of CFD versus IOV (for each ROI from Fig. 4f). b. K-means clustering 

of cell cycle markers from selected ROIs used in Fig. 4g (n = 3600 cells per ROI, k 

= 15 clusters). Left, single-cell clustering with ROI annotation (log2 normalized FAU). 

Middle, cluster median. Right, ROI composition for each cluster. c. Scanned image of 

hematoxylin and eosin (H&E) stained section from three HER2 positive breast tissues with 

pathology annotations. d. Composite CyCIF images of tissues from panel c (green CD45, 

red Vimentin, white E-Cadherin, scale bar 2mm). e. Inter-Octile Variation IOV, f. Circle Fit 

Distance (CFD), and g. MPI +1 fraction for each ROI noted in panel d.
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Extended Data Fig. 8: HER2 expression and cell cycle dynamics in human breast cancer tissues 
and HER2 driven mouse model of breast cancer
a. ccD-CMD plots for two HER2+ breast cancer tissue microarrays (TMA # 1 and #2) for 

increasing levels for HER2 protein. Single cells binned by normalized HER2 levels (n = 

5,000 cells per bin were used). Right, ccD-CMD scatter plots of highest HER2 bin for both 

TMA1 and 2 with single marker normalized intensities mapped to color (n = 5,000 cells). b. 
ccD-CMD scatter plots of the single-cell data from MPI +1 cells from time course of HER2 

induction and repression in GEMM with single marker normalized intensities mapped to 

color (n = 5,000 cells per plot, p27 was not used by the ccD-CMD algorithm). c. Mean +/− 

25th percentile of circle fit distance of cell cycle markers in tumor cells (in situ and invasive) 

from Fig. 5h (n = 5,000 cells per plot).

Gaglia et al. Page 28

Nat Cell Biol. Author manuscript; available in PMC 2022 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 9: Association between with clinical outcome and cell proliferation metrics
a. Scatter plots of CFD versus IOV from mesothelioma and glioblastoma sample cohorts 

(n = 22 and 32 patients, respectively). Colors represent binning into coherence groups 

according IOV and CFD metrics. b-c. Kaplan Meier estimation and logrank p-value of 

progression-free survival (PFS) for the two patient cohorts in Fig. 7. Patients were binned in 

b. three groups “coherent”, IOVhigh “skewed” and IOVlow CFDhigh “non-canonical” groups 

from panel a). or c. two groups based on the median Ki-67+ fraction.
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Figure 1. Multivariate Proliferation Index (MPI) is linked to clinical parameters
a. Top, clustered heat map of normalized log2 fluorescence signal intensities of cell lineage 

markers from CyCIF images (one cell per column, breast tumor tissues n = 2.5 million 

cells). Bottom, clustered heat map of signal intensities of five markers in epithelial/tumor 

population (n = 1.4 million cells), sorted by MPI categories: +1 (proliferative, green), 

0 (non-proliferative, blue), or −1 (arrested, red). b. Representative immunofluorescence 

images of individual tumor cells from breast cancer (from panel a., E-cadherin+) showing 

MPI marker expression and corresponding MPI category (scale bar 2 μm, example from 

three biologically independent breast cancer specimens). c. t-SNE plots for the three breast 

carcinoma tissues with proliferation and cell cycle markers mapped to color (MPI categories 

were not used as t-SNE variables, n = 2,500 cells/tissue). d. Coefficient of variation of the 

MPI +1 and Ki-67+ fractions across 5 serial sections of Pantomics BRC15010 TMA; each 

dot represents a core with ≥500 cells in each section (n=74 cores, mean + SEM). e. Stacked 

bar graph of MPI categories from epithelial/tumor cells from three types of carcinomas (n 

= 3 breast, 4 lung, 4 ovarian cases). f. Stacked bar graph of MPI categories from epithelial/

tumor cells from 142 breast samples from 75 patients (Pantomics BRC15010). The receptor 

status of each tumor is indicated as reported by the vendor (‘path’) and from direct CyCIF 

measurements (‘IF’). g. Comparison of MPI +1 and Ki-67+ fraction of epithelial/tumor cells 

across different classifiers of breast cancer (n = 142 samples from panel f, mean + SD, 

2-sided KS p-values, all other comparisons were above 0.05 significance cutoff).
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Figure 2. MPI reveals two proliferative domains of cancer proliferative architecture
a. Spatial maps of MPI categories (the whole slide and inset 1 were smoothed over 40 

neighboring cells, for visualization purposes only) and corresponding composite CyCIF 

images (left) from a HER2-positive breast tumor (white = E-Cadherin, green = MCM2, 

red = p27, blue = DNA). b. Heat map of spatial correlations within and across MPI 

categories (“self corr” and “cross corr” respectively, k = 5th neighbor, n = 513 samples). 

c. Spatial correlation plot and two-exponential fit. Inset depicts the two exponential curves 

that composed the fit (“short “and “long” scales). d. Spatial correlation decay lengths for 

multiple cancer types (n = 53 breast, 73 colon carcinoma, 122 glioma, 32 mesothelioma 

samples from four tissue microarrays; median +/− 25th percentile) and 15 whole slide cancer 

tissues (7 breast, 4 lung, 4 ovarian). e. Spatial correlation lengths through treatment (see 

Supplementary Table 4 for details). f-i. Spatial correlation between epithelial tumor cells and 

immune cells (f and h), and corresponding p-values (g and i) for breast cancer cohort (ER+ n 

= 46, HER2+ n = 37, TNBC n = 18 samples, Pantomics BRC15010) and individual ovarian 

whole tumor slides (n = 4). Pearson correlation p-values are displayed in log10 color scale.
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Figure 3. A framework for inferring cell cycle dynamics from multiplexed imaging data
a. Composite fluorescence image of a subset of cell-cycle markers and E-cadherin (breast 

tumor, scale bar, 50μm). b-e. ccD-CMD algorithm computational steps to order cells 

along cell-cycle pseudotime (n=10,000 cells from a HER2+ breast cancer tissue). b. 
Histograms of the fluorescence signal of cell-cycle markers measured at single-cell level. 

c. Hierarchical clustering of pairwise cell cycle Difference (ccD). d. Plot of ccD with 

classical multidimensional scaling to two dimensions (ccD-CMD) (left, n=10,000 cells) with 

expression of cell-cycle markers mapped to color (right). e. Schematic of best-fit circle of 

ccD-CMD scatter (red dashed line, top) and time ordering of cell cycle from ccD-CMD from 

G1 start (inferred from marker expression). Heat map and time plot of single-cell normalized 

signal intensity measurements of cell-cycle markers from the time-ordered cells (n=10,000 

cells; moving mean over 200 cells). f. Derivation of Inter-Octile Variation (IOV) and Circle 

Fit Distance (CFD) metrics. g. ccD-CMD plot of single-cell multiplexed data of cell-cycle 

markers from p-CyCIF from fixed untreated MCF10A cells (Control), serum starved for 
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48h (Starv), and exposed for 24 and 48h to nocodazole or palbociclib. Colors represent 3 

biological replicates, n=1000 cells each. h-i. Bar graphs of IOV and mean +/−25th percentile 

CFD (2-sided KS p-value). j. IOV-CFD scatter plot for each treatment in panels h and i 

(lines connect mean treatment values). k-l. IOV-CFD scatter plots from p-CyCIF data from 

k. MCF-7 cells treated for 24h (n=3 biological replicates; mean indicated by larger circle), 

and l. panel of cell lines treated with palbociclib 1μM (n=1000 cells each). m. IOV-CFD 

scatter plots from t-CyCIF data from MCF-7 xenografts treated daily for four days with 

vehicle (n=14 tumors from 7 mice) or with abemaciclib dosing (n=6 tumors from 3 mice/

dose) or palbociclib (n=8 tumors from 5 mice). Doses are in mg/kg. Median +/− SEM. 

Multiplexed images of human HER2 breast cancer used in Fig. 3a viewable in Minerva 
Story73,74 interpretive guide https://tinyurl.com/minerva-proliferation.
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Figure 4. Extraction of cell cycle coherence metrics from multiplexed images of human cancer 
tissues
a. Scheme to classify tumor cell populations using the MPI and characterize cell cycle 

coherence states. b. Scatter plot of cell cycle coherence metrics IOV and CFD for 25 HER2+ 

breast samples. c. Examples of ccD-CMD plots for 3 samples (indicated in panel b) with cell 

cycle markers (+/−95th percentile range in sample, log2 normalized FAU). d. Distribution 

of cell density and heat maps of cell cycle markers with cells binned by the circle fit 

angle for the 3 samples in panel c. (color, median bin intensity, normalized maximum to 

minimum). e. Representative immunofluorescence images of individual tumor cells from 

Sample 1 (Ordered Coherent Cells) and Sample 3 (Non-Canonical Cells). (scale bar 2 μm, 

example from 25 biologically independent specimens in b.). f. (Left to Right) Scanned 

image of hematoxylin and eosin (H&E) stained section from a HER2+ positive breast 

tumor with pathology annotations. Composite CyCIF images of tissues with annotated 

regions of interest (ROI) used for analysis (scale bar 2mm). Spatial ROI maps of MPI 

and coherence metrics IOV and CFD. g. Comparison of selected ROIs from panel f. Left, 

Pearson correlation matrix of cell cycle markers. Middle, ccD-CMD plot for each ROI. 

Right, plot of distribution of cells along cell cycle time from ccD-CMD performed on data 

from the 4 combined ROIs.
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Figure 5. Coherence metrics are modulated by HER2 expression in human breast cancer tissues 
and HER2-driven mouse model of breast cancer
a. Top, Coherence metrics CFD and IOV for HER2+ TMA1 and TMA2 cells (MPI +1 

cells only) binned by HER2 levels (CFD mean +/− 25th percentile, n = 5000 cells per bin). 

Bottom, CFD versus IOV per HER2 bin, lines connect data from increasing HER2 mean 

levels. b. Single-cell data summary for a 5-patient HER2+ breast cancer cohort enrolled 

in an anti-HER2 clinical trial (gray markers are 2 pre-treatment biopsies, red markers are 

two areas of post-treatment resections). Top, percent HER2 positive cells in MPI +1 set 

per sample. Middle, total number of epithelial/tumor cells per sample. Bottom, fraction of 

cells in each MPI category. Cases 4 and 5 had a pathological complete response (pCR) 

to neoadjuvant therapy and did not have tumor cells in the matched resection samples. c. 
CFD and IOV versus average HER2 levels for clinical trial samples from panel b, and plot 

of CFD versus IOV with HER2 level in color scale (mean log2 normalized FAU). Shapes 

represent patients (n = 2 biopsies per patients). Red diamond is a post-therapy resection 

sample. d-h. MMTV-rtTA tetO-HER2 genetically engineered mouse model (GEMM, n=2 

mice per experiment, cell numbers in panel f.). d. Schematic diagram of HER2 induction 
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(dox ON) and repression (dox OFF) and tissue harvest times. e. HER2 protein fluorescence 

in regions of normal epithelium, and in situ and invasive breast carcinoma of HER2 GEMM 

as defined by histology review (median +/− 25th percentile). n=2 mice per experiment, exact 

number of cells plotted in panel f. f. Cell number and fraction of total cells present as benign 

duct epithelium, and in situ or invasive breast carcinoma in time. g. Fraction of tumor cells 

(in situ and invasive) in time in the three MPI categories. h. ccD-CMD plot of the MPI +1 

cells for each time point (n = 5,000 cells per sample, day 4 did not have enough MPI +1 

tumor cells). i. CFD versus IOV for time points of the GEMM experiment from panel h.

Gaglia et al. Page 40

Nat Cell Biol. Author manuscript; available in PMC 2022 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Coherence metrics change with treatment
a. Clinical and pathologic features of biopsy/resection tissues from a patient with triple 

negative breast cancer (TNBC) characterized by CyCIF imaging. Three samples include 

the diagnostic biopsy (pre) and two samples after indicated treatments (on, post). b-c. 
Plot of b. fraction of cells in the three MPI categories and c. Ki-67 positive fraction 

through the treatment course for samples in panel a. d. Scatter plot of CFD versus IOV for 

triple-negative breast cancer (TNBC) patient (pre n = 5,000, on n=2,250, post n = 5,000 

single MPI +1 cells). e-f. ccD-CMD plot of combined data from TNBC pre, on, and post 

samples with data e. corresponding to time of biopsy indicated by color, and f. with single 

marker normalized intensities mapped to color (n = 5,000 cells per plot, phospho-histone H3 

(pH-H3) was not used by the ccD-CMD algorithm). g. Distribution of cells along cell cycle 

time in the three samples and heat map of marker expression for single cells across cell cycle 

time combined for the three samples (moving mean over 100 cells). Upper panels, single 

time point cell frequency distribution. h. Plot of fraction of cells in the three MPI categories 

through the treatment course for samples from two ER+ breast cancer patients pre-, on-, 

and post-treatment (see Supplementary Table 4 for treatment details). i. Scatter plot of CFD 

versus IOV for two ER+ breast cancer patients pre-, on-, and post-treatment from panel h.
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Figure 7. Coherence metrics are associated with clinical outcome
a. Left, scatter plot of CFD versus IOV from a mesothelioma sample cohort (n = 22 

patients). Colors represent binning into coherence groups according to IOV and CFD 

metrics. Right, corresponding Kaplan Meier estimation of progression-free survival (PFS) 

for the patients (logrank p-value). b. Left, scatter plot of CFD versus IOV from a 

glioblastoma sample cohort (n = 32 patients). Colors represent binning into coherence 

groups according to IOV and CFD metrics. Right, corresponding Kaplan Meier estimation 

of progression-free survival (PFS) for the patients (logrank p-value).
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