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Abstract

Type IV secretion systems exist in a number of bacterial pathogens and are used to secrete

effector proteins directly into host cells in order to change their environment making the envi-

ronment hospitable for the bacteria. In recent years, several machine learning algorithms

have been developed to predict effector proteins, potentially facilitating experimental verifi-

cation. However, inconsistencies exist between their results. Previously we analysed the

disparate sets of predictive features used in these algorithms to determine an optimal set of

370 features for effector prediction. This study focuses on the best way to use these optimal

features by designing three machine learning classifiers, comparing our results with those of

others, and obtaining de novo results. We chose the pathogen Legionella pneumophila

strain Philadelphia-1, a cause of Legionnaires’ disease, because it has many validated

effector proteins and others have developed machine learning prediction tools for it. While

all of our models give good results indicating that our optimal features are quite robust,

Model 1, which uses all 370 features with a support vector machine, has slightly better accu-

racy. Moreover, Model 1 predicted 472 effector proteins that are deemed highly probable to

be effectors and include 94% of known effectors. Although the results of our three models

agree well with those of other researchers, their models only predicted 126 and 311 candi-

date effectors.

Introduction

Bacterial pathogens can use secretion systems to deliver proteins to the host cell. There are

nine known secretion systems, but the focus of this study is on the type IV secretion system

(T4SS). The T4SS is composed of multiple proteins responsible for secreting effector proteins

directly into eukaryotic host cells. When effector proteins are translocated into host cells, they

manipulate their defence systems, causing infections. In order to understand how these effec-

tor proteins manipulate the host cell, it is first necessary to identify them. However, this can be
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a difficult task because they are not well conserved among organisms. Several methods have

been proposed for identifying effector proteins with experimental validation being the most

accurate but also the most expensive and time consuming [1–4]. Accurate prediction of candi-

date effectors would expedite the experimental validation process. As a result, recent studies

have focused on using prediction approaches such as scoring effector proteins based on their

characteristics or using machine learning algorithms [5–11]. Several studies have reviewed the

existing methods for predicting effector proteins: Zeng et al. focused on the progress made in

the field of effector prediction for different types of secretion systems, including the T4SS, and

studied the features used [12]; An et al. reviewed the methods and tools developed for predic-

tion of type III, IV, and VI effector proteins [13] and introduced several ensemble approaches

for identifying T4SS effectors by integrating results from several predictors; and McDermott

et al. reviewed recent methodologies and studied features for predicting both type III and IV

secretion system effectors [14] while Wang et al. tested a variety of well-known T4SS classifiers

over a range of sequence-derived features and developed Bastion4 as a result [11]. In addition,

several previous studies focused on creating databases of validated effectors to facilitate future

research involving effector proteins for different species, which helped us create our own dataset

[15, 16]. Because prior methods considered different sets of features, we examined their effec-

tiveness in an earlier study and determined a set of optimal features for prediction of T4SS effec-

tor proteins [17–18]. By features, we refer here to the characteristics and properties of protein

sequences that can be measured and thus assigned binary or continuous numerical values.

In our previous study, we identified a set of optimal features using four datasets of validated

effector and non-effector proteins from four different Proteobacterial pathogens, Legionella
pneumophila, Coxiella burnettii, Bartonella spp., and Brucella spp. that works well for predic-

tion of T4SS effector proteins. In this study, we use this set of optimal features to develop a

machine learning based classifier to predict T4SS effectors, which is trained using the set of val-

idated effector and non-effector proteins from our earlier study of all four pathogens. Our

goals are four-fold: i) to test our classifier on a pathogen with many validated effectors to ascer-

tain how well it works for a single pathogen, ii) to determine the best way to use the optimal

features to achieve the most accurate results, iii) to compare our results with those of other

T4SS effector prediction models, and iv) to obtain de novo results. Therefore, we selected the

L. pneumophila strain Philadelphia-1 genome/deduced proteome as the subject of our study

because it has the greatest number of validated effector proteins, and several prediction algo-

rithms have used this organism as their subject. L. pneumophila is a Gram-negative bacterial

pathogen from the class Gammaproteobacteria which causes Legionnaires’ disease, and many

studies have focused on this pathogen and its effector proteins [19–33].

To analyze our optimal features, we actually developed three different machine learning

classifiers. We first explain how we design and validate our three machine learning models,

two of which are ensemble classifiers. Next, we use the models on the whole proteome from L.

pneumophila strain Philadelphia-1 and compare our results with those of previous studies for

L. pneumophila. Finally, we obtain de novo predictions of effector proteins for L. pneumophila.

Materials and methods

Fig 1 represents the workflow used to complete this study. Each step is described in more detail

in subsequent sections.

Creating training and test datasets

Our training dataset was composed of effectors and non-effectors from four different bacterial

pathogens: L. pneumophila, C. burnettii, Brucella spp., and Bartonella spp. In our previous
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paper, each of these pathogens was treated as a separate dataset [18], and we determined effec-

tive features for each using a feature selection method. Based on our results, we proposed a

final set of effective features for prediction of T4SS effectors. In the present study we merged

these four datasets to create a set of known effectors and non-effectors which was used as the

training set for our problem. This dataset consisted of 1,127 data points among which there

were 429 effectors and 698 non-effectors. The protein sequences for our training dataset are

presented in S1 File. We also created a test set, which is composed of 2,942 protein sequences

from the complete proteome of L. pneumophila strain Philadelphia-1 S2 File.

Features

The features used in this study are the set of optimal features proposed in our earlier work

[18]. In our previous study we did a comprehensive literature review and compiled a list of all

the features used for prediction of T4SS effector proteins. Because some of the features were

vectors, we began with 1,027 features. By vector, we mean that a particular feature had multiple

Fig 1. Workflow.

https://doi.org/10.1371/journal.pone.0202312.g001
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values. For example, there are 20 different amino acids so that the amino acid composition fea-

ture for a protein sequence has 20 different percentage values. Using a multi-level feature selec-

tion approach, we proposed a set of optimal features for our prediction problem and retained

370 features. Overall, they include chemical properties, structural properties, compositional

properties, and position-specific scoring matrix (PSSM)-related properties, which are a type of

compositional property.

Our optimal feature set includes 15 features that are related to the chemical and structural

properties of protein sequences. Chemical properties such as hydropathy are considered to be

important for T4SS effector prediction because they determine how proteins interact with their

environment and because they are believed to be key mediators in determining how effectors

enter host cells [6, 8]. The structural properties of proteins, such as coiled coil domains, allow

protein-protein interactions within host cells thus effecting cellular processes [6, 8–9]. Our fea-

ture set also includes compositional properties of protein sequences, comprising selected ele-

ments of the amino acid and dipeptide composition vectors totalling 57 in number. In addition,

they include 298 features from the PSSM profile for protein sequences and its auto-covariance

correlation composition vector [34]. Compositional properties are considered to be effective for

T4SS effector prediction because they determine the shape of the protein, and they also account

for amino acid frequencies and motifs [7]. The effectiveness of PSSM-related features are

described in other studies as well [35, 36]. Wang et al. have provided a tool to produce a variety

of features based on PSSM profiles of protein sequences [37], and some of the features derived

from these may also be helpful for predicting T4SS effector proteins.

All features are explained at greater length in [18].

Machine learning models and validation

A major goal of this paper was to determine how to use the optimal feature set to obtain the

most accurate results. As such, we considered different methodologies and algorithms, for

example, using a single classifier versus an ensemble classifier, and decided to design three sep-

arate models based on a division of the features. To test our classifiers, we used several stan-

dard metrics for machine learning models: accuracy, recall, precision, and the Matthews

Correlation Coefficient (MCC).

Our first model, Model 1, was based on the use of the entire optimal feature set. We calcu-

lated the features for all the protein sequences in our dataset of effectors and non-effectors.

These 370 features are shown in S1 Table. We used this dataset to train a support vector

machine (SVM) classifier. An SVM is a powerful machine learning classifier often used for

supervised learning, that is learning based on using labelled training data [38]. It allows the use

of different Kernel functions to create classifiers that fit a dataset. Our second and third mod-

els, Models 2 and 3, were ensemble classifiers composed of three separate classifiers. Each of

these classifiers was designed to work with a subset of the optimal feature set. By dividing the

features among several classifiers, we wanted to decrease the possibility of overfitting effects on

our results. Overfitting occurs when a model fits training data too well, causing the model to

be less accurate for new data. Here, we chose three SVM classifiers for each ensemble model

and with all redundant and highly correlated features removed; each of three SVM classifiers

determines whether a protein sequence was an effector protein or a non-effector protein. The

final prediction was based on the output class that had the majority of votes from all three clas-

sifiers. When two or more classifiers voted for a protein sequence to be an effector, it was pre-

dicted to be an effector protein. We used the SVM tuning function in R to find the best

parameters for our SVM classifiers which resulted in the use of a radial Kernel and a C param-

eter of 1 [39].

Machine learning prediction of Legionella pneumophila effectors based on an optimal features set
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As mentioned, Model 1 used all the selected features. For our first ensemble classifier,

Model 2, the three groups of features were divided among our three classifiers as follows: i) fea-

tures related to PSSM composition, ii) features related to the auto-covariance correlation of

PSSM, and iii) chemical, structural, and compositional features S1 Table (e.g., amino acid

composition, dipeptide composition, average hydropathy, total hydropathy, hydropathy of C

terminal, hydropathy of N terminal, number of coiled coil regions, signal peptide probability,

polarity, molecular mass, length, and homology to known effectors). For our second ensemble

classifier, Model 3, the three groups of features divided among our classifiers were as follows: i)

PSSM-related features (PSSM composition and auto covariance correlation of PSSM), ii) fea-

tures related to the composition of amino acids in protein sequences (amino acid composition

and dipeptide composition), and iii) chemical and structural features (average hydropathy,

total hydropathy, hydropathy of C terminal, hydropathy of N terminal, number of coiled coil

regions, signal peptide probability, polarity, molecular mass, length, and homology to known

effectors).

After building our dataset and designing our machine learning classifiers, we used 10-fold

cross-validation to validate our models and to test for overfitting in the results. The dataset was

randomly divided into ten groups, and for each fold, one group was kept for testing and the

other nine groups were used for training. We calculated confusion matrices for each cross-vali-

dation step for all three models. A confusion matrix is a table that displays the results of a

machine learning algorithm for known test data. When a positive value (here an effector pro-

tein) is correctly identified, it is called a true positive (TP); when a negative value (here a non-

effector protein) is correctly identified, it is called a true negative (TN); when a positive value is

identified as a negative value, it is called a false negative (FN); and when a negative value is

identified as a positive value, it is called a false positive (FP). From the confusion matrices, we

calculated accuracy measures for the models. The final accuracy for the models was obtained

by taking the average of the ten different folds. In addition, because the number of effectors

(429) and non-effectors (698) in our dataset was not the same, we calculated recall and preci-

sion. Recall is a measure of sensitivity, and precision is a measure of relevance. When these val-

ues are sufficiently high, it indicates that our results are not affected by the unbalanced dataset.

Finally, we calculated the MCC values for our models as another means of determining their

accuracy. The MCC is a measure of correlation between real and predicted values. The equa-

tions for accuracy, recall, precision, and MCC are presented in (1)–(4) [40].

Accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
ð1Þ

Recall ¼
TP

TPþ FN
ð2Þ

Precision ¼
TP

TPþ FP
ð3Þ

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð4Þ

To compare their performance visually, we plotted Receiver Operating Characteristic

(ROC) curves for 10 folds of each model. An ROC curve demonstrates the True Positive rate

versus False Positive rate of a model when the threshold for discrimination of two output clas-

ses is varied. We also presented the average Area Under the Curve (AUC) for ROC plots of 10

folds for further comparison of the models.
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The next step after designing and validating our models was to use them for predicting

effector proteins in the whole proteome of L. pneumophila strain Philadelphia-1. This prote-

ome contains 2,942 protein sequences and was used as our test set S2 File. We calculated the

feature values for all the protein sequences in L. pneumophila using different tools and pro-

gramming languages as described in [11]. We then used our three models for de novo predic-

tion of effector proteins in the L. pneumophila proteome. Models 2 and 3 each consisted of 3

separate classifiers with each classifier determining whether one of the 2,942 L. pneumophila
protein sequences was an effector or non-effector. Protein sequences receiving two or three

positive votes were predicted as effectors.

The final step in this study was to compare our results to those obtained previously by oth-

ers for prediction of effector proteins for L. pneumophila. We selected the study performed by

Burstein et al. in 2009 which used a voting scheme based on four different algorithms [5] and

the study performed by Meyer et al. in 2013 which used a scoring method [6]. Results and

comparisons are discussed in the next section.

Results and discussion

We developed three models to test the accuracy of our optimal feature set. Model 1 used the

entire set of 370 features with an SVM, and Models 2 and 3 also used the entire set of features.

However, they were divided into subsets and used with three separate SVM classifiers compris-

ing ensemble models. We used 10-fold cross-validation to test these models. The accuracy

results calculated for each of the 10 folds are shown in Tables 1 through 3 for Models 1 through

3, respectively.

The final accuracy for each model is obtained from the average of the ten values, and these

are given in the first line of Table 4.

The three values are 94.05%, 93.64%, and 92.44%, for Models 1, 2, and 3, respectively.

These values are close indicating the accuracy of all three models.

As described earlier, we calculated recall and precision for our three models to ensure that

the overbalanced training data did not affect the results and also as another means of validating

our results. Average values for the three models are presented in Table 4 where even the lowest

value of 87.33% for the average precision value for Model 3 is still very good. All other results

are above 90% and indicate both that the overbalanced training data did not affect the machine

learning results and that the results for all three models are very good. This is further sup-

ported by the values for average MCC and AUC presented in Table 4, which demonstrate

good performance for all three models with Model 1 showing the best performance. Also, the

corresponding ROC curves for all three models for 10 folds are shown in Fig 2 confirming the

Table 1. Accuracy measures for 10-fold cross-validation of Model 1 using the entire feature set for prediction.

Fold Accuracy (%)

1 2 3 4 5 6 7 8 9 10

Model 1 95.13 93.80 93.75 92.47 93.75 93.36 95.08 95.13 95.11 92.92

https://doi.org/10.1371/journal.pone.0202312.t001

Table 2. Accuracy measures for 10-fold cross-validation of Model 2 using three feature subsets. i) PSSM composition features, ii) PSSM auto-covariance correlation

features, and iii) chemical, structural, and compositional features.

Fold Accuracy (%)

1 2 3 4 5 6 7 8 9 10

Model 2 93.36 93.36 95.53 92.47 93.74 92.44 93.30 95.13 93.30 93.80

https://doi.org/10.1371/journal.pone.0202312.t002
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results based on the average AUC. As can be seen in this figure, results from Model 1 are the

most consistent.

The next step was using our three designed classifiers on the whole proteome of L. pneumo-
phila strain Philadelphia-1 to predict effector proteins with results presented in Table 5.

The number of predicted effectors is shown in the second column of Table 5. The greatest

number of effectors is 760 predicted by Model 1 followed closely by 717 predicted by Model 2.

Model 3 predicts 568, considerably fewer and to our knowledge, effector predictions for the

three models are greater in number than any previous study for L. pneumophila strain Phila-

delphia-1. As another test of the accuracy of our models, we considered the validated effectors

and non-effectors for L. pneumophila strain Philadelphia-1 to see which of them were pre-

dicted correctly from the test set. These results are shown in the third and fourth columns of

Table 5. The lowest of the six results is 94.9% again indicating the overall accuracy of the three

models. Model 1 predicts 315 of the 316 validated effector proteins correctly for an accuracy of

99.7%, and Model 3 predicts 521 of 526 non-effector proteins correctly for an accuracy of

99.0%.

We compared our results to effector candidates predicted in two previous studies [5, 6] that

focused on L. pneumophila strain Philadelphia-1. The first by Burstein et al. experimentally

validated 40 new effector proteins and also proposed 126 effector candidates. The second by

Meyer et al. proposed 311 candidate effector proteins. These two sets of predicted results

shared 45 protein sequences in common, which is 36% of the predicted sequences in [5] and

14% of the predicted sequences in [6]. Our three model comparisons are shown in the fifth

and sixth columns of Table 5, and a Venn diagram of the number of candidate effector pro-

teins predicted by Model 1, by Burstein et al. [5], and by Meyer et al. [6] is shown in Fig 3.

Model 1 shares 101 of 126 or 80.2% in common with [5] and 273 of 302 or 90.4% in common

with [6] (after removing known non-effectors from their candidates). Interestingly, as shown

in Fig 3, Model 1 also predicted all 45 protein sequences shared by [5] and [6] and also pre-

dicted all the 40 new validated effector proteins by [5].

While all three models give good results, the overall results presented in this section indicate

that Model 1 is the strongest of the three models. The accuracy metric is the highest, but in

addition three of the fold values are above 95%. Recall, precision, and MMC are most consis-

tent, and comparison with results from previous studies is strongest. The candidate effector

proteins for L. pneumophila are listed in S2 Table. They are also listed in three groups based on

Table 4. Average accuracy, recall, precision, MCC, and AUC measures over 10 folds for the three effector predic-

tion models.

Model 1 Model 2 Model 3

Average accuracy 94.05% 93.64% 92.44%

Average recall 92.00% 93.06% 92.83%

Average precision 92.49% 90.91% 87.33%

Average MCC 0.87 0.86 0.84

Average AUC 0.983 0.979 0.970

https://doi.org/10.1371/journal.pone.0202312.t004

Table 3. Accuracy measures for 10-fold cross-validation of Model 3 using three feature subsets. i) PSSM-related features, ii) compositional features, and iii) chemical

and structural features.

Fold Accuracy (%)

1 2 3 4 5 6 7 8 9 10

Model 3 90.70 91.59 92.41 91.59 94.64 92.92 93.30 90.13 93.30 93.80

https://doi.org/10.1371/journal.pone.0202312.t003
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the results of the other two models and after removing known non-effectors. If predicted by all

three models, they are listed in Group 1, by two models in Group 2, and by Model 1 only in

Group 3. We assume the first group of 472 has the greatest likelihood of being an effector, the

second group of 167 the next most likelihood, and the third group of 107 the next most.

Table 6 represents the statistics for Group 1 sequences, which are most likely to be effectors.

Interestingly, while the statistics are still excellent, they are slightly lower than for Model 1

prior to grouping.

Given the differences shown in Fig 3 and Table 5, we conclude that the features used in

machine learning predictors are of major importance. More specifically, the reason we pre-

dicted more effectors and have more consistent results with previous studies is related to the

set of optimal features that we used. This feature set was based on a thorough study of features

for the problem of T4SS effector prediction [11, 12]. As the two previous studies developed

their models based on a subset of the optimal features, it is likely that they were not able to cap-

ture as many effectors. They also had fewer validated effector proteins with which to work

compared to the number available to us.

Conclusion

In this study, we designed three machine learning classifiers using an optimal set of features

and used these classifiers to obtain de novo predictions for effector proteins for L. pneumophila
strain Philadelphia-1. While all three models were accurate, we found that the strongest model

was a straightforward classifier that used all 370 features with a support vector machine. The

accuracy, recall, and precision for this model validation, were all greater than 90%. The results

Fig 2. ROC curves for three designed classifiers for 10-fold, cross-validation results. (a) Model 1, (b) Model 2, and (c) Model 3.

https://doi.org/10.1371/journal.pone.0202312.g002

Table 5. Comparison of results for the three effector prediction models for L. pneumophila strain Philadelphia-1.

Number of predicted effector proteins Number of correctly

predicted known:

Number of effectors predicted

by our models among results for:

Effectors

(316)

Non-effectors

(526)

S4TE

(302)

Burstein et al.

(126)

Model 1 760 315 (99.7%) 514 (97.7%) 273 (90.4%) 101 (80.2%)

Model 2 717 300 (94.9%) 518 (98.5%) 253 (83.8%) 100 (79.4%)

Model 3 568 306 (96.8%) 521 (99.0%) 258 (85.4%) 97 (77.0%)

https://doi.org/10.1371/journal.pone.0202312.t005
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of this model compared well with those obtained from two previous research studies predict-

ing more than 80% of the same candidate effector proteins that they did. However, while these

older models predicted 126 and 311 candidate effector proteins, our model predicted 472 effec-

tor proteins that are deemed most probable of being effectors which is more than other mod-

els. The reason for these prediction results and consistency with previous predictions, is due to

the optimal set of features used.

Supporting information

S1 File. Training set composed of known effectors and non-effectors for L. pneumophila,

C. burnettii, Brucella spp., and Bartonella spp.

(FASTA)

Fig 3. Venn diagram comparing predicted effector proteins for three methods. The pink circle shows the results for

Model 1, the yellow circle for the S4TE method, and the blue circle for the method by Burstein et al.

https://doi.org/10.1371/journal.pone.0202312.g003

Table 6. Comparison of results for the most probable group of candidate effectors by Model 1 for L. pneumophila strain Philadelphia-1.

Number of predicted effector proteins Number of correctly

predicted known:

Number of effectors predicted

by our models among results for:

Effectors

(316)

Non-effectors

(526)

S4TE

(302)

Burstein et al.

(91)

Model 1- Group 1 472 297 (93.7%) 525 (99.8%) 243 (80.5%) 101 (72.2%)

https://doi.org/10.1371/journal.pone.0202312.t006
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