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Abstract: Sleep staging is the basis of sleep assessment and plays a crucial role in the early diagnosis
and intervention of sleep disorders. Manual sleep staging by a specialist is time-consuming and is
influenced by subjective factors. Moreover, some automatic sleep staging algorithms are complex
and inaccurate. The paper proposes a single-channel EEG-based sleep staging method that provides
reliable technical support for diagnosing sleep problems. In this study, 59 features were extracted
from three aspects: time domain, frequency domain, and nonlinear indexes based on single-channel
EEG data. Support vector machine, neural network, decision tree, and random forest classifier were
used to classify sleep stages automatically. The results reveal that the random forest classifier has
the best sleep staging performance among the four algorithms. The recognition rate of the Wake
phase was the highest, at 92.13%, and that of the N1 phase was the lowest, at 73.46%, with an average
accuracy of 83.61%. The embedded method was adopted for feature filtering. The results of sleep
staging of the 11-dimensional features after filtering show that the random forest model achieved
83.51% staging accuracy under the condition of reduced feature dimensions, and the coincidence
rate with the use of all features for sleep staging was 94.85%. Our study confirms the robustness of
the random forest model in sleep staging, which also represents a high classification accuracy with
appropriate classifier algorithms, even using single-channel EEG data. This study provides a new
direction for the portability of clinical EEG monitoring.

Keywords: EEG; sleep staging; support vector machine; decision tree; back propagation neural
network; random forest

1. Induction

Sleep is an extremely important physiological phenomenon for human beings, a
process of restructuring the organism [1]. When people enter the sleep state, most of the
physiological activities of the body are inert. At this time, the pituitary gland secretes
more growth hormones and prohormones, promoting the adjustment and reorganization of
cells and tissue repair, eliminating human fatigue, and preparing for human physiological
activities when awake [2,3].

It is worth noting that sleep is not a single process and can be divided into different
sleep periods depending on the depth of sleep [4,5]. Current research suggests that sleep
staging is divided into three major stages distinguished by specific brain waves and their
ratios: wake (W), no-rapid eyes movement (NREM), and rapid eye movement (REM) [6,7].
According to the Rechtstaffen and Kamp (R&K) guidelines, the NREM stage was further
subdivided into four stages, 1, 2, 3, and 4 (also referred to as S1, S2, S3, and S4) [6]. In
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general, the standard R&K sleep is divided into six stages, namely W, S1, S2, S3, S4, and
REM [7]. In 2007, the American Academy of Sleep Medicine (AASM) divided NREM into
three phases consisting of NREM1 (N1), NREM 2 (N2), and NREM 3 (N3). Therefore,
according to the AASM standard, the sleep epoch can be divided into five stages: W,
N1, N2, N3, and REM. Accurate sleep staging is the foundation for understanding sleep
mechanisms and the clinical diagnosis and treatment of sleep disorders.

Traditional sleep staging requires manual labeling by a professional physician based
on Polysomnography (PSG) of subjects during sleep. Although manual labeling by experts
enables accurate sleep staging, the disadvantages are cumbersome collection process and
time-consuming manual labeling [8–10]. In addition, patients must wear special equipment
and complete the PSG acquisition in the laboratory throughout the night [11,12]. The
patient’s sleep efficiency is also affected by the discomfort of sleeping in an unfamiliar
environment [13]. Based on these challenges, researchers have tried to develop scoring
methods that automatically analyze sleep stages. In recent years, more and more studies
have been conducted using machine learning algorithms for sleep staging based on features
such as physiological signals such as electroencephalography (EEG), electrocardiogram
(ECG), electrooculogram (EOG), electromyogram (EMG), and respiration [14–16]. Nu-
merous studies have found that the EEG signals are considered the most important and
commonly used signals in sleep staging analysis [17,18]. The authors of [19] used multiple
EEG channels to sleep stages and obtained a high accuracy rate. However, equipment with
multiple EEG channels limits the movement of participants and affects the portability and
wearability of sleep quality assessment devices.

Automatic sleep staging based on single-channel EEG signals has become a research
focus in this field. The authors of [20] extracted 39 features from the time domain, frequency
domain, and nonlinear features of the EEG signal and obtained an accuracy of 85.7% using
a support vector machine (SVM) algorithm for automatic classification of sleep. The authors
of [21] performed staged sleep based on a random forest (RF) classifier, and the classifier
could achieve 87.82% accuracy when the number of selected features was 136. The accuracy
of sleep staging has largely relied on the type of classifier. Besides SVM and RF classifiers,
K-nearest neighbors, linear discriminant analysis (LDA), and naive Bayes classifiers were
also used to perform EEG sleep stage classification [9,22]. In addition to the different
choices of classifiers, researchers also optimize the feature set selection to improve accuracy.
This is because using more features means that more computational power is required,
which also increases the complexity of the system. However, there is no uniform standard
on feature optimization methods. Some studies directly chose feature selection methods,
such as modified graph clustering ant colony optimization [21], to select the most optimal
feature set from the feature pool for correlation and redundancy analysis. There are also
studies that selected the feature with the highest weight as the most optimal feature set
based on the weight of each feature [17]. It is also worth noting that electrode selection in
single-channel-based automated staging is also an essential factor affecting the correct rate.
Some studies have used F4-M1 channels [23], and others have used Pz-Oz channels, or
Fpz-Cz channels, and staging based on prefrontal FP1 and FP2 channels [24–27]. Ghimatgar
et al. revealed that the results of sleep stage staging using Fpz-Cz EEG signals were more
accurate than other channels [21]. Additionally, most of the current tools based on a single-
channel design use the Fpz-Cz channel [8,21]. In the present study, we also performed
automatic staging of sleep based on EEG signals from the Fpz-Cz channel.

The difference from previous studies is that the current study used four classifiers,
namely SVM, RF, backpropagation neural network (BPNN), and decision tree (DT), which
have been applied in previous studies, to stage sleep. The optimal classifier was identified
by comparing their classification accuracies in the same dataset. Due to the nonlinearity
and non-stationarity character of EEG signals, it is not possible to fully reflect the signal
characteristics by extracting features from only one dimension, resulting in poor classifi-
cation results. Therefore, we used three types of parameters in this study: time domain,
frequency domain, and nonlinear features, making the classifier obtain the optimal input.
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In addition, the optimization of the feature set was also the focus of this study. On the basis
of retaining the original multi-dimensional features, we tried to use the embedded method
to filter features for the establishment of the sleep staging model. The embedded method
is a feature filtering method that uses machine learning algorithms and models to obtain
the weight coefficients of each feature and then selects features based on the coefficients
from largest to smallest [28]. If the feature set filtered by the embedded method can achieve
the same staging accuracy, the cost of computing sleep staging will be reduced in practical
applications.

In conclusion, this study aimed to find an optimal feature set that can perform auto-
matic sleep staging based on single-channel EEG signals by optimizing classifier algorithms,
feature extraction, and feature filtering, which provide a theoretical reference for the design
of clinical portable devices.

2. Material and Method
2.1. Material

The sleep EEG data used in this study came from the Expanded Sleep-EDF (ES-EDF)
database [29]. We selected 24 h EEG recordings (marked as SC) from 12 healthy subjects
aged 21 to 34 years. The sample consisted of five males and seven females. The Fpz-Cz
single-channel EEG signals were used in this study, and the sampling rate was 100 Hz. The
30 s EEG data (3000-point data) were defined as a sample. The sleep sample distribution
selected is shown in Table 1. The sleep staging results were manually labeled by experts
according to AASM standards. The staging accuracy of the proposed method was tested
by labeling the results of experts.

Table 1. Sample distribution by stage.

Sleep Stages Sample Number

W stage 2029
N1 stage 2029
N2 stage 2029
N3 stage 1671

REM stage 1938
Total 9696

2.2. Feature Extraction

As EEG signals have strong variability and are easily disturbed by other physiological
signals and the external environment, it is necessary to preprocess the original data to
eliminate the noise interference. This study used a finite impulse response (FIR) bandpass
filter in the range of 0.5–45 Hz to denoise the original EEG data. In order to achieve the
accurate staging of sleep, 57 features were extracted from the three aspects of time domain,
frequency domain, and nonlinear features. Table 2 describes the characteristics of each
signal. The features are described below.
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Table 2. EEG sleep staging characteristics.

Feature Symbol Computational Method Feature Symbol Computational Method Feature Symbol Computational Method

T1 Amplitude F5 E6 + E7 F24 (E2 + E3)/E4
T2 Mean Value F6 E8 F25 (E2 + E6)/E9
T3 Variance F7 E2/E1 F26 MPF
T4 SD F8 E3/E1 F27 MPF-low-δ
T5 Median F9 E4/E1 F28 MPF-high-δ
T6 Skewness F10 E5/E1 F29 MPF-θ
T7 Kurtosis F11 (E6 + E7)/E1 F30 MPF-α
T8 Maximum F12 E8/E1 F31 MPF-β
T9 Minimum F13 (E4 + E5)/E1 F32 MPF-γ
T10 ZCR F14 E5/(E6 + E7) F33 FV
T11 AFDN F15 (E4 + E5)/(E5 + E6 + E7) F34 FV-low-δ
T12 ASDN F16 E4/(E6 + E7) F35 FV-high-δ
T13 Activity F17 E3/(E4 + E5) F36 FV-θ
T14 Mobility F18 E4/(E3 + E5) F37 FV-α
T15 Complexity F19 E5/(E3 + E4) F38 FV-β
F1 E1 F20 E2/(E3 + E9) F39 FV-γ
F2 E2 + E3 F21 E5/E9 N1 FD
F3 E4 F22 (E6 + E7)/E9 N2 NSI
F4 E5 F23 E5/E4 N3 E

T, time domain features; F, frequency domain features; N, non-stationary features. FD, fractal dimension; SE,
sample entropy; ZCR, zero crossing rate; SD, standard deviation; E1, the total band power; E2, the low-frequency
δ-band (0.5–2 Hz) power; E3, the high-frequency δ-band (1.2–4 Hz) power; E4, the θ-band (4–8 Hz) power; E5, the
α-band (8–13 Hz) power; E6, the low β-band (13–20 Hz) power; E7, the high-frequency β-band (20–30 Hz) power;
E8, the low-frequency γ-band (30–45 Hz) power; E9, the δ + θ + α + β + γ + δ band power.

2.2.1. Time Domain Feature

The first to fourth moments (i.e., mean, variance, skewness, and kurtosis) are often
used in statistical features of EEG signals. The calculation method is as follows:

Xmean =
−

S(n) =
1
N

N

∑
n=1

S(n) (1)

s2 =
1
N

N

∑
n=1

X(n)2 (2)

skewness =
1

Ns3

N

∑
n=1

X(n)3 (3)

kurtosis =
1

Ns4

N

∑
n=1

X(n)4 − 3 (4)

Zero Crossing Rate

The zero-crossing method is a systematic analysis method expressed in the wave-
form as the intersection of the waveform at that point with the horizontal midline of the
waveform [30].

Calculating X (i) × X (i + 1) for i = 1, 2 . . . , n − 1 and counting the number NZ of i
satisfying X (i) × X (i + 1) < 0, the zero-crossing rate can be defined as follows:

ZCR =
NZ

N − 1
(5)

First-Order and Second-Order Difference and Its Normalization

Let X1(n) be a first-order difference of X(n) and X2(n) be a second-order difference of
X(n); then, the following equations can be obtained [31–33]:

X1(n) = X(n + 1)− X(n)(n = 1, 2, · · · , N − 1)
X2(n) = X(n + 2)− X(n)(n = 1, 2, · · · , N − 2)

(6)
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The mean value of the absolute value of the first-order difference:

δX =
1

N − 1

N−1

∑
n=1
|X1(n)| (7)

The mean value of the absolute value of the normalized first-order difference:

δ̃x =
δX
s

(8)

The mean value of the absolute value of the second-order difference:

γx =
1

N − 2

N−2

∑
n=1
|X2(n)| (9)

The mean value of the absolute value of the normalized second-order difference:

γ̃X =
γX
s

(10)

Hjorth

The time domain Hjorth parameter, also known as the normalized slope descriptor, is
a statistical function that can describe the instantaneous characteristics of EEG signals in
both the time domain and frequency domain [34]. The Hjorth parameter consists of three
descriptors: activity, mobility, and complexity. The activity represents the average power of
the EEG signal, which is the variance. Mobility is used to measure the average frequency
of EEG signals. Complexity is used to measure the bandwidth of an EEG signal.

Let X1(n) be a first-order difference of X(n) and X2(n) be a second-order difference of
X(n); then, the following equations can be obtained:

X1(n) = X(n + 1)− X(n)(n = 1, 2, · · · , N − 1)
X2(n) = X(n + 2)− X(n)(n = 1, 2, · · · , N − 2)

(11)

Note that the first-order difference here is the same as X1(n) defined in the previous
section. The mean values of the first- and second-order differences of X(n) are denoted as
µd and µdd, respectively, which satisfy:

µd =
X(N)− X(1)

N − 1
(12)

µdd =
X(1) + X(N)− X(2)− X(N − 1)

N − 2
(13)

Then, their variances are denoted as Sd and Sdd, respectively, which satisfy:

s2
d =

1
N − 1

N−1

∑
n=1

(
X′(n)− µd

)2 (14)

s2
du =

1
N − 2

N−2

∑
n=1

(
X′(n)− µ∆

)2 (15)

On this basis, the activity, mobility, and complexity formulas are as follows:

Activity = s2 (16)

Mobility =

√
s2

d
s2 =

sd
s

(17)
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Complexity =

√√√√ sdds2
d

s2
d

s2 =

sd
sd
sd
s
=

s·sdi

s2
d

(18)

2.2.2. Frequency Domain Feature

Since EEG presents different rhythm distributions in different sleep stages, the filtered
EEG signal was divided into seven frequency bands: low δ: 0.5–2 Hz; high δ: 1.2–4 Hz;
θ: 4–8 Hz; α: 8–13 Hz; low β: 13–20 Hz; high β: 20–30 Hz; and γ wave: 30–45 Hz.

The energy can be obtained according to different frequency ranges. The specific
calculation method is as follows:

1. Total frequency band power:

P =
NFT

∑
n=1

(
F(n)
NFFT

)2

where F(n) is the results of the signal X(n) at frequency n.

2. δ band power:

Pδ =
NFE

∑
n=1


(

Flow-δ(n) + Fhigh-δ(n)
)

NFFT

2

3. θ band power:

Pθ =
NFFT

∑
n=1

(
Fθ(n)
NFFT

)2

4. α band power:

Pα =
NFFT

∑
n=1

(
Fα(n)
NFFT

)2

5. β band power:

Pβ =
NGT

∑
n=1


(

Flow-β(n) + Fhigh-β(n)
)

NFFT

2

6. γ band power:

Pγ =
NFFT

∑
n=1


(

Flow-y(n) + Fhigh-γ(n)
)

NFFT

2

2.2.3. Nonlinear Features
Fractal Dimension

The fractal dimension (FD) can be used to represent the complexity of the time domain
signal. The Higuchi algorithm was used to calculate the fractal dimension feature FD of
X(n), as described [35].

The calculation formula is as follows:

Hm(k) =
N − 1[
N−m

k

]
k2

[ N−m
k ]

∑
n=1

|X(m + nk)− X(m + (n− 1)k)| (19)
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where [x] represents the maximum integer not exceeding x. The average value H(k) of Hm
(k) is calculated as follows:

−
H(k) =

1
k

k

∑
m=1

Hm(k) (20)

For different values of K, the calculated H(k) is different, but—log k is linearly related
to log H(k). The least-square method is used to fit the line equation, in which the slope is
the fractal dimension (FD) obtained.

Let kmin = 1 and kmax = [ N
20 ], and calculate H(k) for all positive integers K (kmin ≤ K ≤ kmax),

and further calculate the following:

µk = − 1
kmax−kmin+1

k
∑

k=kkin

ln k

µH = 1
kmax−kmin+1

k
∑

k=k
ln
−
H(k)

Then, the fractal dimension FD can be calculated by the following formula:

FD =
∑kmax

k=kmin

(
µH − ln

−
H(k)

)
(µk + ln k)

∑kmax
k=kmin

(µk + ln k)2

Non-Stationary Index

The non-stationary index (NSI) measures the variation of the local mean over time.
The signal is divided into m segments, the mean of each segment is calculated, and the
NSI is defined as the standard deviation of these m means. A larger NSI indicates a larger
oscillation of the local mean [36].

We used a large amount of experimental data as the basis, with the criterion of
minimum variance and mean square error, and with the help of a ninth-order polynomial
fit; after computational derivation, the stable value of NSI is best reflected as m = [0.15 × N].
Let N = mq + r, q being a positive integer and 0 ≤ r < m; then X(n) can be divided into m
segments as follows:

If r > 0:
Xk =

{
Xq(k−1)+1, · · · , Xqk

}
, k = 1, · · · , m

If r = 0:

Xk =
{

X(q+1)(k−1)+1, · · · , X(q+1)k

}
, k = 1, · · · , r;

Xk =
{

X(q+1)r+q(k−r−1)+1, · · · , Xqk+r

}
, k = r + 1, · · · , m0

Let Xk be the average of the set Xk, µ = 1
m

m
∑

k=1

−
Xk, and the NSI can be calculated

according to the following equation [37]:

NSI =

√√√√ 1
m

m

∑
k=1

(−
Xk − µ

)2

Sample Entropy

The core of sample entropy lies in comparing the self-similarity of sequences by
comparing the autocorrelation of equal-length subsequences in a sequence relative to the
growth of subsequence length [38]. The calculation of sample entropy does not depend on
the length of the data and has a better consistency.

For the signal X(n), the calculation method of sample entropy is as follows:
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Expand X(n) into N − m + 1 subsequences of length m, denoted as Xm,1, Xm,2, . . . ,
Xm,N+n+1, where Xm,I = {X(i), X(I + 1), . . . , X(i + m − 1)} of 1 ≤ I ≤ N − m + 1.

Define the distance d between Xm,i and Xm,j as the absolute value of the maximum
difference between the corresponding elements:

d
(
Xm,i, Xm,j

)
= max

k=0,··· ,m−1
(|X(i + k)− X(j + k)|)

For a given Xm,i, count the number of j (1 ≤ j ≤ n − m + 1, j 6= I) whose distance
between Xm,I and Xm,j does not exceed r, and write it as Bi. For 1 ≤ I ≤ N − m + 1; the
definition is the following:

Bm
i (r) =

1
N −m− 1

Bi

Define Bm(r) as:

Bm(r) =
1

N −m

N−m+1

∑
i=1

Bm
i (r)

Increase the dimension to m + 1, count Xm,i, and count the number of J (1 ≤ j ≤ N − m + 1,
j 6= I) whose distance between Xm,i and Xm,j is not more than r, denoted as Ai and Ai

m(r),
defined as:

Am
i (r) =

1
N −m− 1

Ai

Define Am(r) as:

Am(r) =
1

N −m

N−m

∑
i=1

Am
i (r)

Thus, Bm(r) is the probability that two sequences match m points under the similarity
tolerance r, while Am(r) is the probability that two sequences match the m + 1 point. Sample
entropy is defined as follow:

SampEn (m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
When N is a finite value, it can be calculated by the following formula:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
Usually choose m = 2 or m = 3; r = 0.2 s; and s is the standard deviation of X(n) [39].

2.3. Rank-Based Feature Selection Method

To simplify the computation process and improve the portability of the algorithm,
we performed feature screening on the features extracted in Section 2.2. The embedded
method uses machine learning algorithms and models to obtain the weight coefficients
of each feature and selects the features from the largest to the smallest according to the
coefficients. Therefore, the study used the feature selection method based on the tree model
to filter the features, and Table 3 shows the weight coefficients of each feature. In this study,
features with feature weight coefficients greater than 0.02 were selected as the final set of
classification features, so a total of 11 features was selected, including T6, T7, F2, F5, F6, F8,
F9, F12, F19, F22, and N2.
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Table 3. Weight coefficients of EEG sleep staging features.

Feature Symbol Weight Coefficient Feature Symbol Weight Coefficient Feature Symbol Weight Coefficient

T1 0.0030 F5 0.0394 F24 0.0012
T2 0.0006 F6 0.1459 F25 0.0053
T3 0.0051 F7 0.0038 F26 0.0011
T4 0.0122 F8 0.0281 F27 0.0028
T5 0.0111 F9 0.0457 F28 0.0007
T6 0.0513 F10 0.0038 F29 0.0011
T7 0.0201 F11 0.0106 F30 0.0013
T8 0.0015 F12 0.2043 F31 0.0007
T9 0.0066 F13 0.0024 F32 0.0006

T10 0.0086 F14 0.0142 F33 0.0007
T11 0.0013 F15 0.0124 F34 0.0037
T12 0.0049 F16 0.0110 F35 0.0014
T13 0.0101 F17 0.0105 F36 0.0006
T14 0.0048 F18 0.0104 F37 0.0010
T15 0.0050 F19 0.0540 F38 0.0005
F1 0.0148 F20 0.0008 F39 0.0006
F2 0.1049 F21 0.0031 N1 0.0045
F3 0.0056 F22 0.0301 N2 0.0470
F4 0.0125 F23 0.0077 N3 0.0032

2.4. Classification Models

In this study, four algorithms, namely the support vector machine (SVM), backprop-
agation neural network (BPNN), random forest (RF), and decision tree (DT) algorithms,
were chosen to classify the extracted features, and the classification accuracy was obtained.

SVM is a robust classifier widely used in supervised classification problems [40].
Before using SVM classification, all features were converted into sequences 0–1 by the
z-score standardization method. In this study, a linear function was selected as the kernel
function, and the hyperparameters were tuned by grid search. The BP neural network
algorithm is the most widely used neural network machine learning algorithm, which
mainly contains an input layer, an implicit layer, and an output layer, and each layer is
interconnected with the others for signaling through neural nodes [41]. Before classification
using a BP neural network, all features are normalized in the range [0, 1] using the min–max
normalization method. Since this study divided sleep into five periods, the number of
nodes in the output layer was set to five, the number of nodes in the implicit layer was
set to 20, the number of neural nodes in the input layer needed to be set according to
the number of feature values in different sample sets, and the learning efficiency was set
to 0.1. RF is an integrated algorithm consisting of multiple decision trees, and is one of
the more common classification algorithms [42]. The decision trees in this algorithm are
independent of each other, and the input sample set is analyzed and processed separately.
The classification results of each tree are collated to obtain the final classification result. The
Gini index measures the purity of the sample set, where the smaller the value, the lower the
probability of misclassification of the sample. The DT algorithm is an inductive learning
algorithm, a classification rule obtained by induction on a chaotic set of instances based on
instances [43]. There are two steps to deal with the classification problem of the decision
tree: first, the classification model of the decision tree is generated by a learning training
set; second, the model is used to classify unknown types of samples. The C4.5 decision tree
algorithm was applied in this study, and the splitting index was the information gain rate.

2.5. Validation of Classification Models

After the classifier design, a fair evaluation needs to estimate its performance over a
large number of objects corresponding to a selected set of features and classifier designs. In
this study, 20% of the samples (1940 samples) were randomly selected from the dataset as
the test set, and the remaining samples were used for training. The model was trained on
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the training set using five-fold cross-validation, using 80% of the samples in each round as
the training subset and the remaining 20% as the test subset.

After training with the model, there are four main categories when examining the
prediction effect of the model: true positive, which means the prediction is positive and
positive; fake positive, which means the prediction is positive but negative; true negative,
which means the prediction is negative but negative; and fake negative, which means the
prediction is negative but positive. Four metrics, namely accuracy, precision, recall, and
f1-score, were used as the evaluation metrics of the classifier [44].

(1) Accuracy is the simplest index, consisting of the number of correctly predicted
observations divided by the total number of observations:

accuracy =
TP + TN

TP + FP + TN + FN

(2) The precision describes the proportion of true positives among the predicted
positive samples:

precision =
TP

TP + FP

(3) Recall is the percentage of all actual positive samples that are predicted to be positive:

recall =
TP

TP + FN

(4) f1 is a more balanced index between precision and recall:

f1 =
TP

TP + FN+FP
2

3. Results
3.1. SVM Model: Results and Evaluation

Automatic staging of sleep EEG data was carried out using the SVM model. All 57-
dimensional features were selected. After the model parameters were adjusted, the model
with “C = 1.3, γ = 0.03” was selected for testing. The results show that the recognition rate
of phase W was the highest, and that of phase N1 was the lowest, with an average accuracy
of 81.86%, as shown in Table 4. The corresponding confusion matrix is shown in Figure 1.
It can be seen from Figure 1 that the REM and N1 stages were most likely to be confused.
The wrong predictions of the N3 stage are mainly concentrated in the N2 stage; the wrong
predictions of the N2 stage are scattered in the N3, N1, and REM stages; and the wrong
predictions of the W stage are mainly concentrated in the N1 stage.

Table 4. Comparison of SVM model staging results for all features with expert manual staging results.

Sleep Stages Training Samples Test Samples Correct Samples Precision Recall f1-Score

N3 1326 345 321 0.8992 0.9304 0.9145
N2 1601 428 336 0.8276 0.7850 0.8058
N1 1639 390 255 0.7143 0.6538 0.6827

REM 1547 391 316 0.7215 0.8082 0.7624
W 1643 386 360 0.9424 0.9326 0.9375

Accuracy = 81.86%.
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The expert manual staging results are visualized with the SVM model staging results
in Figure 2. The real label represents the result of manual staging by experts, while the
prediction label is the result of the SVM model. According to the results in the figure, the
sleep staging labeled by experts is highly consistent with that obtained by the SVM model,
as in only 12 of the 100 samples the predicted labels did not match the real ones.
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Figure 2. Comparison of expert manual staging results with SVM model staging results. The real
label represents the result of manual staging by experts, while the prediction label is the result of the
SVM model.

3.2. BPNN Model: Results and Evaluation

A BPNN model was used for automatic staging of sleep EEG. All 57-dimensional
features were selected. After model parameters were adjusted, two hidden layers with
18 neurons in each layer were selected for testing. As shown in Table 5, the average
recognition rate of stage W was the highest at 90%, followed by 84% of stage N2. The
recognition rate of the N3 and REM stages was close to 75%, and the lowest recognition rate
of the N1 stage was 66%, with an average accuracy of 78.33%. The corresponding confusion
matrix is shown in Figure 3. It can be seen that the two are most easily confused in the
REM period and N1 period; the wrong prediction of the N3 period is mainly concentrated
in the N2 period; the wrong prediction of the N2 period, N1 period, and REM period is
more scattered, indicating that these three periods are easily confused with other periods,
and the wrong prediction of the W period is mainly concentrated in the N1 period.
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Table 5. Comparison of BP model staging results for all features with expert manual staging results.

Sleep Stages Training Samples Test Samples Correct Samples Precision Recall f1-Score

N3 1326 345 321 0.7685 0.9623 0.8546
N2 1601 428 336 0.8397 0.6729 0.7471
N1 1639 390 255 0.6555 0.6538 0.6547

REM 1547 391 316 0.7521 0.6982 0.7241
W 1643 386 360 0.9007 0.9637 0.9312

Accuracy = 78.35%.
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The expert manual staging results were visualized with the BP neural network model
staging results, as shown in Figure 4. Due to the large number of samples in the test set,
only 100 samples are selected for visualization. According to the results in the figure, the
sleep staging labeled by experts was highly consistent with that obtained by the BP neural
network model, in which for only 12 of the 100 samples the predicted labels did not match
the real ones.
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3.3. DT Model: Results and Evaluation

The DT model was used for automatic staging of sleep EEG, and all 57-dimensional
features were selected. After adjusting the model parameters, a tree model with a depth
of 11 and a minimum number of leaf node samples of 11 was selected for testing, and the
results were as follows. The results revealed the highest recognition rate of 88% for the W
period, followed by 87% for the N3 period, and the lowest recognition rate of 62% for the
N1 period, with an average accuracy rate of 76.25% (Table 6). The corresponding confusion
matrix is shown in Figure 5. It can be seen that the REM period and N1 period were the
two most easily confused, but the distinction between these two periods and the N3 period
was relatively high, and this model had a better effect in distinguishing deep sleep from
light sleep; the false prediction of the N3 period was mainly concentrated in the N2 period;
the false prediction of the N2 period was scattered in the other four periods, and the false
prediction of the W period was mainly concentrated in the N1 period.

Table 6. Comparison of decision tree model staging results for all features with expert manual
staging results.

Sleep
Stages

Training
Samples

Test
Samples

Correct
Samples Precision Recall f1-Score

N3 1326 345 321 0.8773 0.8609 0.8787
N2 1601 428 336 0.7301 0.7079 0.7189
N1 1639 390 255 0.6247 0.6103 0.6174

REM 1547 391 316 0.6804 0.7187 0.6990
W 1643 386 360 0.8800 0.9119 0.8957

Accuracy = 75.82%.
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The expert manual staging results were visualized with the DT model staging results,
as shown in Figure 6. According to the results in the figure, the sleep staging labeled by
experts was highly consistent with that obtained by the DT model, in which for only 13 of
the 100 samples the predicted labels did not match the real ones.
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3.4. RF Model: Results and Evaluation

The RF model was used for automatic staging of sleep EEG, and all 57-dimensional
features were selected. After the model parameters were adjusted, a tree model with a
random forest size of 100 trees, a depth of 22 per tree, and a minimum number of leaf node
samples of 5 was selected for testing, with the following results. As can be seen from Table 7,
the recognition rate of the W stage was the highest at 92%, followed by 91% (N3). The
recognition rate of N2 and REM was about 80%. The lowest recognition rate of phase N1
was 73%, and the average accuracy of the five sleep stages was 83.61%. The corresponding
confusion matrix is shown in Figure 7. The two most easily confused were the REM and N1
periods; the erroneous prediction of the N3 phase was mainly concentrated in the N2 phase,
with a small number predicted as the W phase, which was caused by the low frequency
and high amplitude characteristics of the waveform of N3, causing the model to misclassify
it as EOG and thus predict it as the W phase; the wrong prediction of the N2 period was
scattered over the N3, N1, and REM periods; the wrong prediction of the W period was
mainly concentrated in the N1 period.

Table 7. Comparison of random forest model staging results for all features with expert manual
staging results.

Sleep Stages Training Samples Test Samples Correct Samples Precision Recall f1-Score

N3 1326 345 321 0.9171 0.9304 0.9237
N2 1601 428 336 0.8199 0.8294 0.8246
N1 1639 390 255 0.7346 0.7032 0.7032

REM 1547 391 316 0.7877 0.8015 0.8015
W 1643 386 360 0.9213 0.9404 0.9308

Accuracy = 83.56%.

The expert manual staging results are visualized with the RF model staging results,
as shown in Figure 8. According to the results in the figure, the sleep staging labeled by
experts is highly consistent with that obtained by the RF model, in which for only 12 of the
100 samples the predicted labels did not match the real ones.
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RF model.

3.5. Comparison of the Results of Four Models before and after Feature Screening

The 11-dimensional features after feature selection were input into four machine
learning models. The accuracy of the obtained models was compared with the accuracy of
all features, as shown in Table 8. The results indicate that the RF model had better sleep
staging than the other three models, with the highest recognition rate of 92.13% for stage W
and the lowest recognition rate of 73.46% for stage N1, with an average accuracy of 83.56%.
The results of sleep staging using the 11-dimensional features agreed with the results of
sleep staging using all features at 94.85%.
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Table 8. Comparison of sleep staging accuracy of different models before and after feature screening (%).

Sleep Stages
SVM BP DT RF

57 11 57 11 57 11 57 11

N3 89.92 88.67 76.85 89.89 89.73 88.48 91.71 92.11
N2 82.76 76.58 83.97 80.05 73.01 70.91 81.99 80.61
N1 71.43 70.50 65.55 63.27 62.47 61.42 73.46 72.85

REM 72.15 64.44 75.21 72.95 68.04 69.57 78.77 76.09
W 94.24 91.75 90.07 95.79 88.00 90.84 92.13 91.90

Total accuracy 81.86 77.99 78.35 79.59 75.82 75.88 83.56 82.53

4. Discussion

In this study, based on EEG signals of the Fpz-Cz-channel, a total of 57 features
were extracted from three dimensions: time domain, frequency domain, and nonlinear
parameters. Then, four classifiers, namely SVM, BPNN, DT, and RF, were used for automatic
sleep staging. The results show that the four classifiers have consistent results, that is, the
highest recognition rate for the W phase and the lowest recognition rate for the N1 phase.
The RF model exhibits the highest recognition accuracy among the four classifiers, followed
by SVM, BPNN, and DT.

We have sorted out previous studies regarding sleep staging, feature number, classifier,
single-channel name and accuracy, and kappa coefficient. Our study has three advantages
over previous studies. First, we used the Fpz-Cz channel EEG data with the best sleep
staging effect [21]. Second, in terms of the feature number, we extracted 57 features
from the time domain, frequency domain, and nonlinear parameters of the sleep EEG
signal for machine learning. Additionally, we used the embedded method to optimize the
features into 11 dimensions to explore their classification accuracy. Finally, although we
did not use all classifiers in terms of classifier selection, we selected several classifiers that
performed well in previous studies. Our results show that compared with other classifiers
(Table 9), RF achieves higher accuracy and maintains robust classification results both with
multidimensional features (57) and optimized feature sets (11), which is consistent with the
results of other studies [9,45,46].

The performance of classifiers also relies heavily on the associated features. In this
study, the embedded method was used to select features with feature weight coefficients
greater than 0.02 as the final set of classification features. Among the 11 features, there are
two features from the time domain, eight features from the frequency domain, and only
one from the nonlinear domain. These findings indicated that frequency domain features
accounted for a greater proportion of the automatic sleep staging, followed by time domain
features, possibly because different sleep stages exhibited different frequency and energy
characteristics. Studies have shown that δ and θ bands’ rhythm mainly existed in the N2 and
N3 stages [49], while α and β bands’ rhythm was detected mostly in the REM, awakening,
and N1 stages [47]. Moreover, the proportion of frequency domain features accounts for
the highest proportion in the optimal feature set; thus, future studies may consider the
accuracy of automatic staging explored by screening on frequency domain features.

In our study, regardless of the classifier algorithm used, the classification accuracy was
extremely high for stage W, whereas the recognition accuracy was lower for stage N1. The
stage characteristics of sleep staging may cause this. When in the W stage, the individual
still has a fairly complete consciousness, and the prominent EEG signal is characterized by
a mixture of alpha and beta waves with more pronounced EEG characteristics. The N1 is
the transition period of the brain from the conscious state to the sleep state, where the alpha
wave share gradually decreases, and theta waves begin to appear and gradually replace
alpha waves, suggesting that the EEG signal changes significantly during this period [50].
Thus, the W phase with stable features is easier to identify than the N1 phase with more
variable EEG signals.
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Table 9. The accuracy of sleep staging using single-channel EEG information.

Author/Year Sleep Stages Number of Features Classifier Channel of EEG ACC (%) or KC

[20] Five stages 39 SVM C3-A2 ACC = 85.7%

[47] Five stages Multiscale entropy and
autoregressive models LDA C3-A2 KC = 0.81

[48] Five stages 9 SVM Pz-Oz ACC = 87.5% KC = 0.81

[9] Five stages
The IMFs factor was set to 7 to
obtain the optimal number of

features

LDA, BPNN, SVM, k-NN,
LS-SVM, Bagging, AdaBoost

and Naïve Bayes
Pz–Oz

ACC (44.80–88.62%), AdaBoost
algorithm has the highest accuracy of

88.62%

[45] Five stages 10 K-NN, DT, RF, Multilayer
perceptron and Naïve Bayes

Fpz-Cz (highest ACC), Cz-A1,
C3-A2, Pz-Cz

ACC (71.80–89.74%)
RF classifier had the highest accuracy

of 89.74%

[21] Five stages 136 RF Fpz-Cz (highest ACC), Cz-A1,
C3-A2, Pz-Cz ACC = 87.82%

The present study Five stages 57 and 11 (Embedded method
feature optimization) SVM, DT, RF and BPNN Fpz-Cz

The ACC of 57 features (75.82–83.56%),
RF with the highest

The ACC of 11 features (75.88–82.53%),
RF with the highest

Note: KC, kappa coefficient; ACC, accuracy; SVM, support vector machine; LS-SVM, Least Squares-support vector machine; DT, decision trees; RF, random forest; LDA, linear
discriminant analysis; BPNN, backpropagation neural network; k-NN, k-nearest neighbor.
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It should be noted that previous studies have shown that an imbalance in the number
of categories during staging will affect the final accuracy. This means that when the number
of instances of one class in the training dataset far exceeds the number of instances of other
classes, the results tend to classify the data into the larger category [51]. However, in this
study, when using the staging data, the samples of both the W1 and N1 areas were 2029,
and the differences in the number of samples for each classification were small, which
could effectively avoid the problems caused by data distribution.

The boosting classification method was used in a previous study on the classification
effect of single-channel EEG signals, which showed that after extracting signal features
with ensemble empirical mode decomposition (EEMD), the classification accuracy of wake,
REM, DS, and LS4 states could reach 92.66% [52]. In this study, although we did stage dis-
crimination based on 57 features in the time domain, the frequency domain and nonlinear
features, the classification accuracy with the RF and SVM classification models attained
more than 80%, and RF achieved more than 90% classification accuracy for both the W and
N3 stages. In addition, one point that surpasses previous studies in this study is that we
used the embedded method to reduce the feature dimensions to 11; we still found better
classification results under the RF model. The amount of data was reduced by feature
screening, and the speed of computation and portability of the algorithm were improved.
The results further confirm that single-channel EEG is an available monitoring technology,
which will provide a new direction for the portability of clinical EEG monitoring.

The study has some disadvantages, which are mainly reflected in the results on sleep
staging. First, the recognition rate of the REM and N1 phases was lower. Second, the wrong
prediction of the W phase was mainly concentrated in the N1 phase. The main reasons
for these two problems are as follows: the EEG of the REM and N1 stages are mainly
low-voltage mixed frequency waves, and this study only extracted features based on EEG,
resulting in the REM and N1 stages not being easily distinguished; for the second point,
on the one hand, it is because there are slow eye movements in both the closed-eye W
and N1 stages. On the other hand, during the transition from the W stage to the N1 stage,
the experts’ interpretation is more subjective, making the accuracy of sleep staging results
difficult to guarantee. Therefore, improving the recognition rate of the REM and N1 stages
is still a direction to focus on in sleep staging research.
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