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Abstract

Infection with Chlamydia trachomatis targets epithelial cells within the genital tract which 

respond by secreting chemokines and cytokines. Persistent inflammation can lead to fibrosis, tubal 

infertility and/or ectopic pregnancy; many infections are asymptomatic. Most studies have 

investigated the inflammatory response in the initial stages of infection, less is known about the 

later stages of infection, especially with a low, potentially asymptomatic, bacterial load. Our 

objective was to determine the inflammatory mediators involved in clearance of low-grade 

infection and the potential involvement in chronic inflammation. Six to eight week old C3H/HeJ 

mice were pretreated with 2.5 mg medroxyprogesterone acetate on day -10 and -3 before infection. 

Mice (n=3 for 28 d, n=3 for 35 d) were infected with 5 × 102 inclusion-forming units of C. 

trachomatis, serovar D; vaginal cultures were obtained weekly to monitor infection. Control mice 

(n=3 for 28 d, n=3 for 35 d) were sham infected. Mice were killed on day 28 (experiment 1) and 

day 35 (experiment 2) post-infection and vaginal tissue, uterine horns and oviducts collected for 

analysis of mRNAs encoding inflammatory cytokines and chemokines. Total RNA was isolated 

and a superarray analysis performed using mouse Cytokines and Chemokines PCR arrays (Qiagen, 

Valencia, CA). Statistical differences in gene expression were determined using a paired Students 

t-test. At 28 days after infection, the expression of mRNA encoding 6, 35 and 3 inflammatory 

genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). At 35 

days after infection, the expression of mRNA encoding 16, 38 and 14 inflammatory genes differed 

from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). Understanding the 

mechanisms involved in the inflammatory response at later stages of infection should aid in the 

development of treatment options that minimize the development of asymptomatic, chronic 

inflammation-induced infertility.
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Introduction

Chlamydia trachomatis is an obligate intracellular pathogen and the most frequently 

reported sexually transmitted bacteria in the United States [1]. C. trachomatis targets 

epithelial cells within the genital tract initiating an immune response. Infectious load is 

correlated to clinical pathogenesis [2,3]; infection with C. trachomatis is often 

asymptomatic. If left untreated the bacteria can ascend to and infect the oviducts [4,5]. 

Untreated C. trachomatis infection can lead to persistent or recurrent inflammation, fibrosis, 

scarring, pelvic inflammatory disease (PID), tubal infertility, and/or an increased 

susceptibility to ectopic pregnancy [6,7].

Upon infection, C. trachomatis elementary bodies (EBs) invade host epithelial cells in the 

genital tract. Within the host cells, EBs differentiate into reticulate bodies (RBs) which 

actively replicate within the host cell cytoplasm and then reorganize back into infectious 

EBs. This biphasic life cycle as well as adaptation to evade the immune response allows C. 

trachomatis to persist for extended periods within host epithelial cells, inducing a chronic 

inflammatory response [8–12].

Previous studies have investigated the inflammatory response of C. trachomatis in the initial 

stages of infection, including regulation by cytokines, chemokines and inflammatory 

mediators involved in the recruitment of immune cells [5,8,10,13,14]. For example, 

Rasmussen et al. [10] demonstrated that once C. trachomatis has established infection 

within epithelial cells, the innate immune response allows for the production of pro-

inflammatory cytokines such as interleukins 1, 6, 8 (Il-1, Il-6, Il-8), tumor necrosis factor-

alpha (TNF-α), and colony stimulating factor 2 (CSF 2). Secretion of these cytokines and 

chemokines recruit immune cells such as natural killer (NK) cells and phagocytes. 

Following an established intracellular infection, the T-cell mediated immune response then 

becomes the critical element required for clearance [15]. However, evidence suggests that 

this T-cell response also contributes to the pathology following infection. Th1 cells limit 

replication of C. trachomatis, but Th2 cells inhibit Th1 responses leading to continued 

production of pro-inflammatory cytokines which can lead to fibrosis [16]. C. trachomatis 

also induces production of TNF-α, which promotes apoptosis of infected and bystander cells 

[17]. Overall, understanding cytokine and chemokine regulation during both acute and 

chronic phases of infection may contribute to the development of treatment options that will 

minimize the long-term inflammatory consequences attributed to this disease.

Limited investigation of the overall inflammatory response during the later stages of 

infection has been performed, especially after infection with a low bacterial load. For 

example, Maxion and Kelly [5] used 107 IFUs of the mouse pneumonitis biovar of C. 

trachomatis and reported that cytokine and chemokine expression differs in anatomically 

distinct regions of the genital tract. Specifically, these authors investigated the expression of 

chemokines associated with Th1 and Th2 responses in the oviducts and cervical-vaginal 
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regions of the reproductive tract during the induction phase (0–14 days) and resolution phase 

(14–35 days) of infection. Our objective was to determine within the reproductive tract the 

concurrent level of expression of mRNA encoding inflammatory mediators during the later 

phases of infection using a relatively low infectious load of C. trachomatis biovar, serovar 

D, one of the most prevalent serovars involved in urogenital infections of humans [18]. Two 

separate experiments were performed, with tissues collected at 4 and 5 weeks after infection 

(experiment 1 and 2, respectively). Our hypothesis was that mRNA encoding pro-

inflammatory cytokines and chemokines will be differentially expressed in the female 

reproductive tract of mice infected with C. trachomatis at both 28 and 35 days post-infection 

compared to controls.

Materials and Methods

Ethics statement

All animal experiments were performed according to the guidelines and protocol approved 

by the University of California Irvine Institutional Animal Care and Use Committee 

(protocol # 2009–2868).

Animal model

Using a previously described model of confirmed genital infection by C. trachomatis, 

serovar D, female C3H/HeJ mice, 6- to 8-week old, (Jackson Laboratories, Sacramento, CA) 

were pretreated with 2.5 mg medroxyprogesterone acetate (SICOR Pharmaceuticals) on 

Days -10 and -3 before infection [19,20]. In both experiments mice were infected via 

vaginal challenge with 5 × 102 inclusion-forming units (IFUs) of C. trachomatis, serovar D 

in 0.01 mL of Eagle Minimal essential media (MEM, Gibco) on Day 0, as previously 

described [19,20]. Control mice were also pretreated with medroxyprogesterone acetate, but 

were sham infected with Eagle Minimal essential media (MEM, Gibco) alone. Vaginal 

swabs were obtained twice weekly after infection and cell cultures were performed to 

monitor infection as previously described [19–21].

Mice were killed on day 28 (n=3 for control and infected) in experiment 1 and day 35 (n=3 

for control and infected) in experiment 2. Immediately before being sacrificed vaginal 

cultures were obtained and all mice inoculated vaginally with C. trachomatis remained 

culture positive but at a significantly lower level than that obtained throughout the first two 

weeks of infection. Results of vaginal cultures following infection with this strain/dose of C. 

trachomatis, serovar D have been reported, including number of IFUs recovered [20]. 

Vaginal tissue, uterine horns and the oviducts were collected and snap-frozen for later 

extraction of RNA.

Isolation of RNA and gene expression analysis

Total RNA was extracted from each tissue sample using TRIzol reagent (Invitrogen, 

Carlsbad, CA) and purified through RNeasy columns (Qiagen, Valencia, CA). To determine 

the effect of treatment on the expression of genes involved in the inflammatory response, a 

targeted real time PCR SuperArray analysis was performed using RT2 Profiler PCR arrays 

for mouse Cytokines and Chemokines (Qiagen), as previously described [22]. Real-time 

Cerny et al. Page 3

Reprod Syst Sex Disord. Author manuscript; available in PMC 2016 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCR were performed on an Eppendorf Mastercycler ep realplex2 system (Eppendorf, 

Hamburg, Germany).

Gene expression was standardized against GAPDH as a housekeeping gene and analyzed by 

the 2−ΔΔCT method [23]. Statistical differences in the expression of mRNA were 

determined using a paired Students t-test.

Results

Experiment 1: Expression of mRNA encoding inflammatory genes in vaginal, uterine and 
oviduct tissues at 28 days post-infection

Gene expression analysis was used to determine the effect of infection on the expression of 

inflammatory mRNAs at 28 days post-infection. In vaginal tissue collected at 28 days after 

infection, the expression of mRNA encoding 6 inflammatory genes increased and no genes 

decreased when compared to controls (Table 1).

In uterine samples collected at 28 days after infection, the expression of mRNA encoding 32 

inflammatory genes increased and 3 genes decreased when compared to controls (Table 2).

Of the 6 inflammatory mRNAs that increased within vaginal tissue after infection, 4 were 

also differentially affected by treatment in uterine samples. In oviducts collected at 28 days 

post-infection, the expression of mRNA encoding 2 inflammatory genes increased and 1 

gene decreased. Of the 3 inflammatory genes affected by treatment within the oviduct, 

mRNA encoding 1 gene, chemokine (c-c motif) ligand 12 (Ccl12), was also increased in 

uterine samples.

Experiment 2: Expression of mRNA encoding inflammatory genes in vaginal, uterine and 
oviduct tissues at 35 days post-infection

In vaginal tissue collected 35 days after infection, the expression of mRNA encoding 8 

inflammatory genes was increased and 8 decreased when compared to controls (Table 1). In 

uterine samples collected at 35 days after infection, the expression of mRNA encoding 32 

inflammatory genes increased and 6 genes decreased compared to controls (Table 3).

Of the 16 inflammatory mRNAs affected by treatment in vaginal tissue, 7 were also 

differentially expressed in uterine samples and 3 in oviduct samples. In oviducts collected at 

35 days post infection, the expression of mRNA encoding 13 inflammatory genes was 

increased and 1 gene decreased (Table 4).

Of the 14 inflammatory mRNAs affected by treatment within the oviduct, 5 were also 

differentially expressed in uterine samples and 3 in vaginal tissue.

Discussion

The host response to infection with C. trachomatis includes the induction of pro 

inflammatory cytokines and chemokines which leads to innate and adaptive immune cell 

recruitment and activation [24]. Although the immune response is critical to the clearance of 

infection, the cellular immune response in particular can cause tissue damage that promotes 
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fibrosis and can lead to infertility [16]. Considering that infection with C. trachomatis is 

often asymptomatic, the objective of these two experiments was to identify inflammatory 

mediators induced during the later phases of low-dose C. trachomatis genital infection in 

order to advance our understanding of disease progression and the immune response 

involved in potentially asymptomatic chronic inflammation.

It is well known that susceptibility to C. trachomatis infection is genetically controlled in 

mice. Both Tuffrey et al. [25–27] and Peterson et al. [19–21] have shown that human 

serovars of C. trachomatis can infect the genital tract of mice, specifically C3H/HeJ mice. 

Progesterone pretreatment is necessary, but this strain of mice remains culture positive for 

more than 4 weeks following infection [20]. In the current study, infected mice continued to 

have positive vaginal C. trachomatis cultures for the duration of the experiments with IFUs 

lower when the mice were killed compared to the first two weeks of infection.

In experiment 1, mice were killed 28 days post-infection. In vaginal tissue, mRNA encoding 

several cytokines and chemokines was affected by infection with C. trachomatis. Among 

differentially-regulated genes in vaginal samples, the expression of mRNA encoding 

chemokine (c-c motif) ligand 4 (Ccl4), also known as macrophage inflammatory protein-1β 

(MIP-1β), a potent lymphocyte chemo attractant, was induced at 28 days of infection, with 

greater than a 6-fold increase compared to controls. C-C motif chemokines are a subgroup of 

chemokines with two adjacent cysteine residues near the amino terminus [28]. Yilma et al. 

[29] reported an increase in Ccl4 production in mouse macrophages during the early 

response to C. trachomatis infection; therefore, our results suggest that this cytokine is 

actively involved in both the early response and late phases of infection. Interestingly, Ccl4 

is highly related to macrophage inflammatory protein-1α (Ccl3) and it is thought that these 

C-C motif chemokines are secreted to recruit specific T cell subsets during the immune 

response [30,31]. In our study, expression of mRNA encoding Ccl3 in the vagina was also 

increased at 28 days post-infection.

Of all the differentially affected mRNAs in vaginal tissue, the largest fold-change in 28 day 

infected samples was seen in the induction of mRNA encoding CD40 ligand (Cd40lg). 

Cd40lg is mostly found on the surface of CD4+ T cells and its interaction with Cd40 is 

required in the activation of humoral and cellular immune responses [32].

Within the uterus, treatment affected the expression of mRNA for five C-X-C motif 

chemokines. C-X-C motif chemokines are a subgroup of chemokines that have amino 

terminus cysteine residues separated by one amino acid [28]. Most notable is the induction 

of mRNA encoding chemokine (c-x-c motif) ligand 9 (Cxcl9). Previous studies have 

reported that Cxcl9 peaks during the early phases of infection in the upper genital tract and 

may be involved in Th1 responses [5], our results suggest that within the uterus, Cxcl9-

mediated inflammation remains ongoing even after the initial phase of infection. The 

expression of mRNA encoding several interleukins was also induced in the infected mouse 

uterus at 28 days post-infection, including Il1b, Il12a, Il12b, Il16, Il18, and Il27. Notably, 

Il12 is also reported to be involved in Th1 responses [33]. In our results, mRNA for Il12 

subunit alpha (Il12a) and subunit beta (Il12b) was induced at 28 days after infection. Several 

tumor necrosis factor family members and interferons were also induced, supporting the 
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hypothesis that inflammation remains active and ongoing within the uterus during the late, 

resolution phase of infection.

When compared to the response observed in vaginal and uterine tissues at 28 days, the 

oviduct had fewer mRNA differentially expressed after infection of mice with C. 

trachomatis.

The expression of mRNA encoding two genes was increased and one gene decreased. C. 

trachomatis -induced cell death within the oviduct is of concern due to long term sequelae, 

especially when considering that upon initial intracellular invasion of epithelial cells, C. 

trachomatis has the ability to prevent apoptosis of infected cells, therefore promoting 

infection [8,13,14]. Interestingly, the expression of mRNA encoding fas ligand (TNF 

superfamily, member 6; Fasl), a key mediator of apoptosis, was not affected by treatment at 

28 days post infection within the oviduct.

In experiment 2, mice were killed 35 days post-infection. The level of mRNA encoding 4 

interleukins (Il10, Il11, Il1rn, Il1a) was increased and 1 interleukin (Il18) decreased in 

vaginal tissue collected at 35 days post-infection. Of these, Il18 is reported to interact with 

Il12 to stimulate interferon gamma (IFN-γ) production from NK cells during the early host 

response to infection [34]. Although studies have reported that IFN-γ is crucial for immune 

cell responses to C. trachomatis [34–36], the expression of mRNA for Il12 did not differ at 

35 days after infection and there was a decrease in levels of mRNA for Il18. Furthermore, 

IFN-γ had the greatest fold change of all differentially induced mRNA in the infected 

vaginal tissues, suggesting that IFN-γ production is being stimulated by other 

immunoregulatory factors at this later stage of infection.

The increase in expression of mRNA encoding Il10 within vaginal samples collected at 35 

days after infection was not expected. Interleukin-10 is considered an anti-inflammatory 

cytokine and a recent study using C. trachomatis infected HeLa cells demonstrated that 

exogenous Il10 treatment decreased several inflammatory cytokines including TNF [37,38].

Similar to vaginal tissues, uterine samples collected 35 days post-infection with C. 

trachomatis had increased expression of Il10 and TNF. Furthermore, an increase in 

adiponectin (Adipoq) was observed. Similar to Il10, Adipoq has anti-inflammatory 

properties including regulating cell defense and survival during stress conditions [39,40]. In 

addition, a dramatic increase in the expression of mRNA for Cxcl11 (102-fold change) was 

observed. Cxcl11 shares features with Cxcl9 and Cxcl10, including induction by interferons 

and expression on activated Th1 cells [41,42]. It is reported that the Th1 response is crucial 

for controlling C. trachomatis infection, our results that mRNA for these transcripts were 

induced within the infected uterus is therefore consistent with other studies.

Within the oviduct mRNA encoding 13 genes was increased and one gene decreased at 35 

days after infection. The expression of mRNA encoding fasl increased at 35 days after 

infection with a 15-fold-change. In addition, changes in mRNA for other inflammatory 

mediators involved in tissue damage were detected, including Il1-a, which is released from 

lysed cells and acts by stimulating further cytokine release from neighboring cells [10]. 

Interestingly, levels of mRNA for Leukemia inhibitory factor (Lif) were increased in 35 day 
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infected oviducts. Guney et al. [43] demonstrated that LIF expression is increased in the 

oviducts of woman with ectopic pregnancies compared to non-pregnant woman. 

Furthermore, Ji et al. [44] proposed that LIF facilitates implantation of the embryo in the 

oviduct when the stromal surface is exposed due to epithelial cell shedding caused by 

chronic inflammation. The results shown here warrant further investigation especially since 

C. trachomatis have the ability to not only disrupt infected epithelial cells, but also non-

infected cells in proximity to the infection [8]. In oviductal epithelia, these changes in gene 

expression and disruption of cellular processes can increase the risk of chronic 

inflammation-induced pelvic inflammatory disease and infertility.

Overall, this study examined the coordinated and concurrent expression of mRNA encoding 

multiple cytokines in spatially distinct sections of the reproductive tract. We investigated the 

later stages of infection using a relatively low infectious dose in order to obtain a better 

understanding of the genetic mechanisms involved in chronic inflammation and cellular 

damage. Differences in the magnitude of response to infection in differing regions of the 

reproductive tract were expected, as were differences in the level of expression of specific 

mRNAs within a tissue over time [5], illustrating well the dynamic nature of the 

inflammatory response to infection and the need for inclusive analyses of inflammatory 

mediators.

Understanding the mechanisms involved in the inflammatory response at late stages of 

infection should aid in the development of treatment options that minimize chronic 

inflammation-induced pelvic inflammatory disease and infertility.
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Table 1

Effect of treatment on the expression of mRNAs in the vagina at 28 and 35 days post-infection. The 

normalized average ΔC+ value was calculated using GAPDH as the house-keeping gene. Fold change values 

(infected over control) in gene expression are presented as average fold change (2−(average Ct)) for differentially 

expressed mRNAs (P<0.05).

28 Day infected vs. control

Gene Symbol Control Avg. ΔC+
SEM

Infected Avg.
ΔC+ SEM

Fold change p-value

Ccl24 12.79 ± 0.76 10.62 ± 0.53 4.5 0.007

Ccl3 10.18 ± 0.54 7.81 ± 1.00 5.5 0.025

Ccl4 9.03 ± 0.59 6.28 ± 0.44 6.7 0.036

Cd40lg 14.01 ± 0.30 11.05 ± 0.36 7.8 0.011

Cxcl1 9.00 ± 0.25 6.18 ± 0.24 7.1 0.028

Il22 15.96 ± 0.37 15.03 ± 0.39 1.9 0.024

35 day infected vs. control

Bmp7 6.43 ± 0.17 6.51 ± 0.25 0.5 0.032

Csf3 4.88 ± 0.05 5.47 ± 0.06 0.5 <0.001

Ccl4 9.03 ± 0.58 6.28 ± 0.23 4.2 0.019

Ctf1 6.67 ± 0.15 7.19 ± 0.12 0.6 0.023

Hprt 1.65 ± 0.14 1.81 ± 0.04 0.6 0.022

Ifna2 11.3 ± 0.19 11.41 ± 0.24 0.4 0.014

Ifng 13.04 ± 0.54 9.68 ± 0.43 8.5 0.035

Il10 9.94 ± 0.38 8.35 ± 0.32 2.8 0.048

Il11 11.76 ± 0.07 10.52 ± 0.23 2.3 0.03

Il18 5.86 ± 0.22 6.54 ± 0.06 0.4 0.014

Il1a 7.13 ± 0.09 5.97 ± 0.04 1.4 0.007

Il1rn 6.36 ± 0.37 5.95 ± 0.13 1.9 0.042

Mif 0.43 ± 0.12 0.76 ± 0.08 0.7 0.045

Pf4 5.15 ± 0.19 5.26 ± 0.06 0.6 0.031

Thpo 12.95 ± 0.6 13.76 ± 0.16 3.7 0.019

Tnf 8.4 ± 0.19 6.86 ± 0.09 2.4 0.002
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Table 4

Effect of treatment on the expression of mRNAs in the oviduct at 28 and 35 days post-infection. The 

normalized average ΔC+ value was calculated using GAPDH as the house-keeping gene. Fold change values 

(infected over control) in gene expression are presented as average fold change (2−(average Ct)) for differentially 

expressed mRNAs (P<0.05).

28 Day infected vs. control

Gene Symbol Control Avg. ΔC+ SEM Infected Avg. ΔC+ SEM Fold change p-value

Ccl12 6.81 ± 0.37 4.39 ± 0.51 5.3 0.045

Il13 10.45 ± 0.21 11.69 ± 0.28 0.4 0.029

Il23a 11.43 ± 0.10 10.96 ± 0.08 1.4 0.021

35 Day infected vs. control

Bmp7 7.97 ± 0.21 6.99 ± 0.12 2 0.011

Ccl17 7.11 ± 0.52 6.19 ± 0.32 6.1 0.021

Cd40lg 13.02 ± 0.30 10.40 ± 0.36 6.2 0.03

Cx3cl1 5.16 ± 0.21 4.16 ± 0.18 2 0.025

Cxcl1 12.57 ± 0.25 9.99 ± 0.24 6 0.007

Fasl 12.75 ± 0.66 8.79 ± 0.34 15.6 0.019

Gpi1 2.71 ± 0.04 1.56 ± 0.26 2.2 0.039

Hsp90ab1 0.53 ± 0.18 1.98 ± 0.26 2.7 0.027

Il12b 13.10 ± 0.24 10.47 ± 0.17 6.2 0.003

Il1a 11.42 ± 0.22 9.65 ± 0.23 3.4 0.011

Il9 7.16 ± 0.21 8.21 ± 0.26 0.5 0.044

Lif 10.03 ± 0.38 8.77 ± 0.08 2.4 0.016

Mif 1.55 ± 0.09 0.17 ± 0.29 2.6 0.044

Osm 11.50 ± 0.44 9.93 ± 0.33 3 0.047
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