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What are the causes of natural selection? Over 40 years ago, Van Valen

proposed the Red Queen hypothesis, which emphasized the primacy of

biotic conflict over abiotic forces in driving selection. Species must continually

evolve to survive in the face of their evolving enemies, yet on average their fit-

ness remains unchanged. We define three modes of Red Queen coevolution to

unify both fluctuating and directional selection within the Red Queen frame-

work. Empirical evidence from natural interspecific antagonisms provides

support for each of these modes of coevolution and suggests that they often

operate simultaneously. We argue that understanding the evolutionary

forces associated with interspecific interactions requires incorporation of a

community framework, in which new interactions occur frequently. During

their early phases, these newly established interactions are likely to drive

fast evolution of both parties. We further argue that a more complete synthesis

of Red Queen forces requires incorporation of the evolutionary conflicts within

species that arise from sexual reproduction. Reciprocally, taking the Red

Queen’s perspective advances our understanding of the evolution of these

intraspecific conflicts.
1. Introduction

The Red Queen does not need changes in the physical environment, although she can
accommodate them. Biotic forces provide the basis for a self-driving . . . perpetual
motion of the effective environment and so of the evolution of the species affected
by it. [1, p. 19]
Van Valen’s ‘Red Queen hypothesis’ (RQH) emphasized the primacy of biotic

interactions over abiotic forces in driving evolution. This was a revolutionary

advance in biological thinking on the sources and modes of selection driving

evolutionary change. Previously, the view of evolution by natural selection was

that of a ‘hill climbing’ process, which shaped organisms to be well adapted to

their environment. Because abiotic environments commonly change slowly with

respect to the inhabiting organisms, evolution was thought to slow to a halt as

the optimal phenotype is reached, recommencing only when conditions change.

Biotic environments, by contrast, are themselves subject to evolution and so can

change rapidly. According to the RQH, each adaptation by a species is matched

by counteracting adaptations in another interacting species, such that perpetual

evolutionary change is required for existence. Despite continued evolution,

average relative fitness remains constant: evolution is a zero-sum game.

In the original paper, the RQH is proposed as a microevolutionary mechanism

to explain a macroevolutionary observation: that the probability of taxon extinction

appears independent of age. Van Valen named this the Law of Constant Extinction

[1]. This law has proved controversial, and the strength of the supporting fossil evi-

dence has been called into question [2]. Yet the broader insight that intrinsic biotic
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Table 1. Distinguishing the three modes of Red Queen. We define three distinct modes of RQ that are theoretically capable of sustaining perpetual
coevolutionary cycling: Fluctuating Red Queen, Escalatory Red Queen and Chase Red Queen (defined in the main text). While we believe that each mode is
necessary, it is less certain whether these modes are sufficient to encompass all manifestations of RQ dynamics in nature. It is possible (although given the
intensive research over the past 40 years perhaps unlikely) that additional modes remain to be described theoretically.

FRQ ERQ CRQ

genetic architecture few major loci polygenic or quantitative trait polygenic or quantitative trait

basis of interaction matching difference matching

selection mode fluctuating directional (unidimensional) directional (multidimensional)

allele frequency dynamics oscillations selective sweeps selective sweeps

adaptive landscape multiple fitness optima fixed fitness optimum shifting fitness optimum
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conflicts should drive perpetual evolutionary change, and that

this could have macroevolutionary consequences, has been

hugely influential [3,4]. Over the past 40 years, research inspired

by the RQH has advanced our understanding of evolution in

two major areas: first, the microevolutionary dynamics arising

from biotic conflicts, and second, the role for biotic drivers in

macroevolution. Citations of ‘a new evolutionary law’ reveal a

recent surge of interest in the RQ, mirrored by recent increases

in the numbers of published studies on the RQH (electronic sup-

plementary material, figure S1). The RQ is therefore a pervasive

concept in biology, but its usage has somewhat diverged as the

RQ metaphor has been applied to different fields.

For many evolutionary biologists, the RQH is most strongly

associated with debates surrounding the evolution of sex. The

RQH provides a mechanism by which sexual species are pro-

tected from elimination by asexuals despite the latter’s higher

per capita reproductive rates. The maintenance of sexuals

relies on rapid host–parasite coevolution such that parasites

disproportionately infect common, asexual host genotypes,

and rare genotypes, such as those possessed by sexuals, can

avoid parasite adaptation. This body of theory [5] has been

tested across a range of natural systems (e.g. [6–8]), providing

compelling empirical support for this idea. However, Van

Valen’s original insight—that biotic conflicts are the primary

driver of evolutionary change—has far wider implications.

Here, we try to provide a holistic, biological view of the impor-

tance of RQ processes in interspecific conflicts, and how the

study of the microevolutionary process described by the RQH

has also been extended, beyond sex, to the maintenance of gen-

etic diversity and rapid evolutionary change in communities.

We then examine how intraspecific conflicts that follow from

the evolution of sex can also be viewed in RQ terms.
2. Microevolution of interspecific conflicts
(a) Which species interactions sustain perpetual

evolution?
As originally conceived, the RQH encompassed all biotic con-

flicts over energy distribution (currency of the RQ) among

species, thus unifying all trophic levels within the same frame-

work [1,9]. As a result, Van Valen’s RQH made no distinction

between competitive and antagonistic (e.g. predator–prey,

parasite–host) species interactions. Coevolutionary theory,

however, suggests that these forms of biotic interaction vary

in their propensity to sustain the perpetual, reciprocal coevolu-

tionary cycles often called ‘Red Queen dynamics’. Competition
is generally unlikely to drive perpetual evolutionary change of

this kind. Coevolution of competitors tends towards character

displacement [10], and thus weakens the intensity of the biotic

interaction and the strength of selection over time. By contrast,

RQ dynamics are more readily observed in models of antagon-

istic coevolution whereby the strength of selection acting on

each species is roughly symmetrical. Symmetry is fulfilled in

most host–parasite interactions, which have become the

major focus of the microevolutionary research into the RQH,

often in the context of the host–parasite coevolution selecting

for sex [11,12]. The potential for RQ dynamics is expected to

be limited when there is asymmetry in the strength of selection,

such as that often found in many predator–prey interactions

[13] (the ‘life-dinner principle’ [14]). However, important

exceptions exist—in situations where prey have physical or

chemical defences that make them dangerous to predators

the strength of selection is likely to be more equitable [15].
(b) Three modes of Red Queen dynamics
We define three broad classes of RQ dynamics distingui-

shed by the modes of selection operating and the genetic

architecture of coevolving traits (table 1):

(1) Fluctuating Red Queen (FRQ), in which fluctuating selection

drives allele frequency oscillations in both parties. For the

FRQ to operate, interactions between antagonists require

tight matching of traits under the control of few genetic

loci. Exploiter populations track the common genotype of

the victim species, and rare victim genotypes are at an

advantage because they avoid exploitation. Allelic diversity

is maintained within populations because matching pairs

of antagonists’ alleles undergo continuous time-lagged,

negative frequency-dependent oscillations (e.g. [16]).

(2) Escalatory Red Queen (ERQ), in which directional selection

drives escalation of polygenic or quantitative trait values.

The outcome of interactions is determined by the differ-

ence between antagonists’ traits along a unidirectional

axis [17]. Both antagonists are therefore under selection

to ‘exceed’ the trait of the other species and coevolution

proceeds as an arms race of recurrent selective sweeps.

Arms races do not necessarily continue indefinitely and

may either reach a stable equilibrium or drive one species

extinct, bringing dynamic coevolution to an end [14].

However, RQ coevolutionary cycling can occur if the

evolution of extreme trait values is bounded by costs or

constraints and periods of escalation are followed by

de-escalation [18].
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Figure 1. Natural systems used to explore Red Queen dynamics. (a – c ) FRQ dynamics: (a) stickleback fish and trematode parasites, (b) Potamopyrgus antipodarum
snails and trematode parasites, and (c) Daphnia waterfleas and microparasites. (d ) Mixed FRQ/ERQ dynamics: Linum marginale and Melampsora rust fungus. (e – g )
ERQ dynamics: (e) Taricha newts and Thamnophis snake predators, ( f ) wild parsnip and predatory webworms, and (g) Camellia and weevil predators. (h) CRQ
dynamics: Crossbills and lodgepole pine trees. Photo credits: (a) M. Milinski; (b) C. Lively and G. Harp; (c) J. Wolinska and P. Juracka; (d ) P. Thrall and
J. Burdon; (e) B. Brodie III; ( f ) M. Berenbaum; (g) H. Toju; (h) C. Benkman. (Online version in colour.)
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(3) Chase Red Queen (CRQ), in which local directional selection

drives coevolutionary chases between exploiter and victim

around phenotype space. Here, the coevolutionary game

constantly changes. CRQ will generally occur when the

interaction has a more complex genetic basis and hence

can chase in multiple ways (in multidimensional phenotype

space). Victims are under selection to increase phenotypic

distance through de novo evolution of novelty, while exploi-

ters are under selection to reduce phenotypic distance.

Coevolution proceeds as a series of selective sweeps,

which reduces genetic diversity within populations but

drives divergence between populations. Sustained cycles

of coevolutionary chase may occur through phenotype

space whereby the direction and intensity of selection

vary according to the relative locations of the species in

phenotype space [19,20].

(c) Red Queen over space and time
For FRQ coevolutionary interactions, the phase of allele fre-

quency oscillations is likely to vary among populations. The

genotypes or traits that are common and beneficial in one sym-

patric set of populations of interacting antagonists may be

neither common nor beneficial in another. Thus, an antagonist

species can be locally adapted to their sympatric interacting

species population, but perform poorly in an interaction with

an allopatric population. This has been widely demonstrated

in host–parasite interactions, whereby parasites are better at

infecting sympatric hosts, but allopatric hosts are better at
resisting infection [21,22]. Consistent with this idea, parasites

have been shown in natural systems to ‘track’ common host

genotypes over time and subsequently drive down their fre-

quency in the population [7,23,24]. Given that one genotype

cannot dominate under this scenario, FRQ dynamics are pre-

dicted to maintain high levels of within-population genetic

diversity (electronic supplementary material, box S1), and

thus sexual reproduction (see above). Among populations,

field collections of asexually reproducing invertebrates have

revealed positive relationships between the diversity of clonal

genotypes within a population and the frequency of infection

by parasites [7].

ERQ coevolution can give rise to spatial variation in the

extent of coevolutionary escalation. Indeed, spatial variation

is a potential signature of correlated defence and counter-

defence trait evolution [25–28] (e.g. as between camellia peri-

carp thickness and camellia weevil rostrum length; figure 1).

At the genomic level, bacteriophage phi-2 showed evidence

of increased population divergence, as well as rapid evolution-

ary change, in response to ERQ coevolutionary dynamics with

the bacterial host, Pseudomonas fluorescens [29]. Likewise, in

CRQ interactions, divergence can be observed in the forms

of the matching traits (e.g. [30,31]), such as the morphologies

of lodgepole pine seed cones and the bills of seed predatory cross-

bills (electronic supplementary material, figure S2; cf. [32]).

Moreover, there is evidence from a range of natural species inter-

actions that is consistent with on-going selective sweeps driven

by directional selection (e.g. [28,33–35]). The de-escalatory

phase of ERQ dynamics is less well documented, although
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patterns consistent with ERQ cycles have been described for

some of the defensive chemical and counterdefences in wild pars-

nip and its specialized webworm herbivore [28]. Contemporary

phenotypic mismatches between levels of toxin and antitoxin

in natural populations of newt versus its garter snake predator

are also suggestive of a de-escalatory phase in a coevolutionary

interaction [36].
blishing.org
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(d) Mixed modes of Red Queen
Recent empirical data suggest that the traditional theoretical

dichotomy between fluctuating and directional reciprocal

selection during coevolution may be an oversimplification.

Mixed modes of reciprocal selection (i.e. combinations of fluc-

tuating and directional selection) have been observed to

operate within a given species interaction (i) at different loci

within a genome, (ii) at different stages of a coevolutionary

interaction, (iii) under different environmental conditions

and (iv) at different spatial scales, as discussed below. This

detailed view of the modes of selection operating has bene-

fited from advances in experimental approaches to studying

coevolution where the action of other sources of selection

can be ruled out [37].

(1) Different modes of coevolution within a genome. Different modes

of selection were observed operating at different loci within

the same genome in nematode hosts experimentally coevol-

ving with a bacterial parasite [38]. This suggests that

infection/resistance is a multiphase process [39,40], and

that different components of the immune response may be

simultaneously under contrasting modes of selection. Pat-

terns of genetic diversity across the genome are therefore

probably shaped by a patchwork of evolutionary processes.

(2) Change in the mode of coevolution over time. Temporal

changes in the mode of coevolution are also evident. As

demonstrated in a recent experimental study of coevolu-

tion of the bacterium P. fluorescens and phage phi-2, a

prolonged period of escalatory arms race coevolution

can be a prelude to sustained FRQ dynamics [41]. An

initial phase of escalating bacterial resistance and phage

infectivity traits gave way to continual turnover of bac-

terial and phage genotypes with different specificities of

resistance and infectivity, respectively, with no further

change in the magnitude of these traits. This switch

appeared to occur because accumulating costs of bacterial

resistance progressively weakened the ability of bacteria

to respond to directional selection [41].

(3) Environmental impacts on the mode of coevolution. Further

observations of the Pseudomonas–phage experimental

system suggest that the prevailing environment can shift

the mode of coevolution, even in the early stages. While

nutrient-rich liquid media supports an ERQ coevolution-

ary arms race, coevolution of the same bacteria–phage

interaction in soil always follows a FRQ dynamic [42].

Once again this change in the mode of reciprocal selection

appears to be mediated by the costs of bacterial resistance,

which are elevated in nutrient-poor soil environments.

(4) Different modes of coevolution across spatial scales. Evidence

from field studies of wild flax–flax rust populations

reveals different modes of reciprocal selection depending

upon the spatial scale of observations. At large spatial

scales, covariation in population-level resistance and

infectivity is consistent with ERQ coevolution [43], yet
at smaller spatial scales, short-term within-population

temporal change in resistance and infectivity traits and

the underlying genes appears consistent with FRQ

coevolution [44].

The discovery that mixed modes of reciprocal selection

operate across a range of interspecific antagonisms broadens

the scope for perpetual RQ coevolution, particularly in ERQ

systems where arms races occur and de-escalatory phases

have not yet been observed.
(e) Red Queens in the community
The standard model of RQ interactions focuses on the ability

of evolution to be sustained in pairwise interactions that

themselves persist indefinitely. However, each pair of antag-

onistic species are probably only co-travellers for a finite

period of time. The ‘end’ of interactions may be associated

with mutual extinction (e.g. parasite removes its host

species), with the victim evolving to remove the exploiter,

or through the parasite fading out epidemiologically, because

of evolved or externally forced changes in the demography/

density of the host.

One property of antagonism is thus that any particular

exploiter species is likely to be lost from a particular victim

species. Pathogens able to attack the most common host

species and impose selection (via FRQ dynamics) have been

suggested to maintain species diversity in plant [45] and

hybridizing communities [46] by preventing domination by

one species. Clade selection for parasites that can shift to

new host species may result, and exploiters that lose the

ability to shift are doomed.

An important property of novel interactions is that they

are likely to impose strong selection on both parties. The

parasite finds itself in a novel host environment, in which

rapid adaptation is likely, and the host is exposed to a

novel parasite, which may interact with them via systems pre-

viously not exposed to selection. The early phase of novel

interactions associated with host shifts is thus likely to be

dominated by episodes of directional selection, rather than

cycling of existing allelic variants. It is notable that granuly-

sin, a gene with one of the strongest signatures of selection

in the human lineage [47], is associated with resistance to

Mycobacterium tuberculosum, a pathogen that emerged in

humans following urbanization [48]. Thus, the ability of a

particular interaction to create continued change may rep-

resent a fraction of evolution driven by current antagonistic

partners. We need to expand our view of antagonistic inter-

actions to the community context and recognize that an

intrinsic property of antagonism is the presence of host shifts.

A further aspect of community context that requires con-

sideration is extension of models beyond binary interactions.

In nature, hosts carry a variety of antagonists, as well as

related beneficial microbes. While some immune pathways

may be specific to particular pathogens, others may have

interplay with other pathogens and beneficial symbionts.

Adaptation with respect to one party may thus impact

upon others, such that the community context of antagonists

and symbionts may modulate dynamics from that expected

in simple binary interactions. For instance, the gut is host to

pathogens, commensals and beneficial microbes. It has

recently been observed that hybrid Nasonia fail to regulate

the development of their gut microbiota, with hybrid larvae
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killed by the pathological impact of their own gut microbiome

[49]. Here, selection on the innate immune system with respect

to different microbiome members may in turn lead to diver-

gence between species. Clearly, a community coevolutionary

context will sometimes be essential to understand evolutionary

patterns and outcomes.
ypublishing.org
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3. Microevolution of intraspecific conflicts
When Van Valen conceived the RQ, he conceptualized it purely

in terms of interactions between members of different species.

However, our current, broader view—as continual evolution

in the absence of environmental change—allows it to extend

to intraspecific interactions. The evolution of sex, itself a poten-

tial consequence of interspecific RQ forces, establishes the

possibility of conflicts over gene transmission during meiosis

or reproduction, creating the conditions for the evolution of self-

ish genetic elements. It also establishes the possibility of conflict

between the sexes, and between parents and offspring [50].

The RQ is a useful vehicle for exploring these interactions

as (i) the interactions are antagonistic and (ii) the strength of

selection is symmetric between interacting parties. We first

define the major battlegrounds of conflicts—within genomes,

between the sexes, within the sexes, and between parents and

offspring—and then in each case assess the role of the RQ.

(a) Red Queen and intragenomic conflict
Selfish genetic elements are genes (or sets of co-inherited

genes) whose spread through populations imposes a cost to

the individual that bears them [51]. For instance, a meiotic

drive element in a heterozygote establishes overrepresenta-

tion of the chromosome bearing it in the gamete pool,

commonly through preventing the formation of gametes

that lack it. This behaviour aids the spread of the driver

into the population, but does so at a cost to the individual

carrier. Because drive elements are costly, mutations that pre-

vent their deleterious action may spread in response to the

presence of a driving chromosome, and these ‘suppressors’

produce selection on the drive element itself.

Intragenomic conflicts are known to undergo escalatory

arms race dynamics, and are also likely to show FRQ behaviour.

ERQ dynamics are best characterized in the Drosophila simulans
‘Winter’ meiotic driver, which comprises an X-linked gene Dox
(Distorter on X) that drives against the Y chromosome in males

[52]. Dox is suppressed by an autosomal gene, Nmy (Not much
yang) [53]. Consistent with ERQ dynamics, there is evidence

of recent selective sweeps at both loci [54], occurring more

recently in both cases than the origin of the genes themselves,

implying they are not in the first phase of an arms race, but

an escalation.

FRQ behaviour has not yet been observed in nature for

selfish genetic elements, but is predicted to occur both for

meiotic drive [55,56] and cytoplasmic male sterility (CMS)

[57]. In CMS, certain mitochondrial genotypes prevent pollen

production in hermaphrodite plants. This phenotype diverts

resource to ovules, which drives the maternally inherited mito-

type into the population. CMS mitotypes select for the presence

of restorer loci that rescue anther/pollen activity. There are

genetic specificities in this system likely to support FRQ

dynamics, with multiple CMS mitotypes alongside multiple

restorers, with particular restorers effective against only certain

mitotypes [58,59]. However, the frequent emergence of both
CMS and meiotic drive in hybrid individuals suggests some

CMS mitotypes and driving chromosome types become per-

manently suppressed within species [57]. Thus, RQ dynamics

are limited in duration, and the continued existence of conflicts

is associated with recurrent mutation to transmission

distortion.
(b) Red Queen and sexual conflict
Conflict between the sexes occurs because of differences in

the evolutionary interests of sexes (in dioecious species) or

of sex functions (in hermaphrodites) [60–62]. It reflects sex

differences in costs of reproduction and situations in which

the genes residing in each sex, or sex function, can gain fit-

ness by causing the other sex to invest more [60,62–65]. For

example, if males gain fitness through investing in longer

matings, but females simultaneously lose fitness because

long copulation is costly (e.g. predation risk), there will be

sexual conflict over mating duration [66]. This can lead to

sexually antagonistic selection [65,67,68].

Sexual conflict is most intense when current mates have

low interest in the success of their partner’s future reproduc-

tive bouts; for example, where there is promiscuity and low

relatedness between mating partners [69]. The interactions

show equality or symmetry—both parties have to interact to

gain fitness, unlike the asymmetrical relations between pre-

dators and prey. However, intersexual interactions can

develop asymmetry as it nearly always pays for males, but

not necessarily for females, to mate [60].

Surprisingly, despite the power of the RQ metaphor and

its potential to illuminate sexually antagonistic interactions,

it has seeped into the study of sexual conflict rather than

being a central part of its development [67]. The application

of the RQ in sexual conflict has generally been rather

vague, partly because the RQ has never been clearly defined

for sexual conflict, and also because of conceptual confusion

more generally about what forms of dynamic evolutionary

change are defined by the RQ.

To understand the explanatory power of the RQ in sexual

conflict we can consider how applicable it is to either of the

major routes by which sexual conflict may be manifested.

Sexual conflict is commonly partitioned according to genetic

architecture [67]. Intralocus sexual conflict can occur if (i) alterna-

tive alleles of the same gene have differential effects on male

versus female fitness, or (ii) the expression of a single allele

has a different optimum level in males versus females—and

hence cannot simultaneously be optimized for both sexes.

We expect the potential for RQ dynamics to be limited under

intralocus sexual conflict because the underlying alleles

involved are not free to cycle through time and space.

In interlocus sexual conflict, the two sexes express different

genes that influence a single shared trait (e.g. the different

gene(s) in males and females that affect mating frequency)

[60,65]. There is abundant experimental evidence of traits

that function to increase male fitness at the expense of that of

their mates, and of counterselection to minimize costs that

these traits impose on females [65,70–72]. We envisage that a

core feature of interactions between males and females is the

coordination of a complex series of events in courtship and

mating required for successful reproduction. An efficient way

to initiate this is for females to use cues (such as the receipt of

seminal fluid molecules) from courting or mating males

to initiate reproductive processes such as oviposition/egg
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production only once a mating has occurred. However, it then

becomes possible for males to evolve to highjack or exploit

those pathways to cause females to invest more than is optimal

from the female point of view. For instance, sex peptide (a semi-

nal fluid protein) reduces the likelihood of female remating in

Drosophila melanogaster. The origin of the sex peptide receptor

pre-dates the evolution of sex peptide itself [73]. Sex peptide

appears to have hijacked the receptor’s ancestral function.

This is akin to sensory exploitation as envisaged under sexual

selection [74] and creates a two-locus sexual conflict system.

A suite of dynamic interactions are possible under interlo-

cus conflict [60,75–79]. While some of these involve evolution

to equilibrium, and in others only one sex is expected to evolve,

three are characteristic of the RQ (see electronic supplementary

material, box S2 for discussion of the evidence from sexual con-

flict in support of FRQ, ERQ and CRQ). The type of dynamic

expected to occur under interlocus sexual conflict depends

on mechanistic details such as dominance and the number of

loci involved [60,79]. This parallels thinking about the impor-

tance of the extent of gene-for-gene models versus other

mechanisms in interactions between hosts and parasites.

Improved understanding of the evolutionary dynamics of

sexual conflict clearly requires a deeper understanding of its

mechanistic underpinnings.

Theory suggests two other features of RQ dynamics under

sexual conflict. First, if traits under sexually antagonistic coevo-

lution are also subject to other components of natural selection

then the likelihood of RQ dynamics will be reduced [79]. This is

consistent with RQ theory, which stresses the importance of

low pleiotropy in interacting traits [80]. Second, more than

one mode of RQ dynamics may operate simultaneously, and,

as observed from host–parasite interactions, different modes

may also operate through time from the origin to maintenance

of a sexually antagonistic interaction [60,81].

Conflict within sexes arising from sexual selection can also

represent a potent opportunity for Red Queen dynamics. Intra-

sexual asymmetric competition displays ERQ dynamics in a

number of cases, as evidenced by highly elaborate traits.

Sperm competition associated with polyandry can drive the

evolution of extreme ejaculate sizes, and variation in sperm

morphology and size [82]. FRQ dynamics are also evidenced

in the evolution of alternate mating tactics, such as calling

and satellite male crickets [83]. Some of these traits show

frequency-dependent cycling. For example, the three male

mating types of the side-blotched lizard (Uta stansburiana)

cycle in frequency, owing to a non-transitive (i.e. ‘rock–paper–

scissors’) interaction [84].

A requirement for the RQ is that there is sufficient contin-

ued genetic variation fuelling ongoing sexual conflict. The

continued running of the RQ is supported by genomic evi-

dence. From sea urchins [85] to Drosophila [86,87], it is clear

that genes involved both explicitly and more peripherally in

reproduction often show rapid rates of evolution, often

owing to positive selection [88–90]. However, it should be

cautioned that only a fraction of these changes will be due

to RQ processes associated with sexual conflict. Sex-biased

genes are typically identified using whole-transcriptome pro-

filing, and this approach amalgamates several types of genes

into one class. For example, only some sex-biased genes have

a direct role in gamete production or fertilization, while many

others are related to other sexual dimorphisms [91]. The

uncertain role of the RQ is also a result of doubt over what

proportion of these genes is involved in interlocus conflict
versus how many of them simply reflect intralocus conflict

over optimal expression between males and females, or are

a product of sexual selection on one sex only. This mishmash

of different types of genes into studies of sex-biased genes

results from the fact that genome-wide expression and

sequence data are relatively cheap and easy to generate com-

pared with detailed tests of interactions, functionality and

fitness effects. To demonstrate a role for the RQ conclusively,

studies integrating functional genetics and sex-specific fitness

or phenotypic effects (e.g. [92]) are required.

(c) Red Queen and parent – offspring conflict
Trivers [93] recognized that where an individual reproduces

sexually, parental and offspring optima for resourcing diverge

whenever care has a cost to the parent. Divergence in parental

and offspring optima are a potential source of evolutionary

conflict where offspring can manipulate parental investment.

The divergence in the interests of individual offspring and

their resourcing parent is greatest where a parent changes

sexual partner. Polyandry both decreases relatedness of the

current sibling to future (half-) siblings (widening the gap

between parental and offspring optima for investment) and

produces sexual conflict over resourcing, as their partner’s

future offspring will be unrelated [94]. Candidate genes

involved in sexual conflict over resourcing can be ascertained

from transcriptome profiling, which allows genes with

parent-of-origin expression to be identified. The unusual

expression pattern of these genes is thought on some occasions

to be the result of interlocus sexual conflict between the mother

and father over resource allocation, played out through the

developing fetus [94], such as in the classic example of

human insulin-like growth factor 2 and its receptor. These

loci have been through countless rounds of adaptation and

counter-adaptation (ERQ), and mis-expression has severe

phenotypic consequences for offspring [95].

It has been suggested that vivipary provides the most prob-

able ground for the operation of RQ within parent–offspring

interactions. Crespi & Semeniuk [96] argued that placentation

in mammals created extended and more intimate parent–off-

spring interactions, thus intensifying conflicts. Provisioning

of seed in plants, orchestrated by both maternal plant and

seed genotype, is likewise a potent potential battleground

[97]. As expected from a conflict model, large seed sizes (typical

of over-exploitation of maternal plant by the seed) are dis-

proportionately observed where pollen comes from another

population, so long as this population is not selfing (which

would reduce conflict) [98]. Furthermore, genomic data are

consistent with RQ dynamics. Mammalian genes that show

parent-of-origin differences in expression evolve more rapidly

[99–101]. However, aside from the classic example of human

insulin-like growth factor 2, it is unclear what fraction of

imprinted genes is associated with parent–offspring conflicts.

Similar to the potential role of the RQ in driving accelerated

evolution of sex-biased genes, detailed gene-by-gene studies

of the interactions and functions of each gene identified in tran-

scriptome profiling are required to quantify the importance of

the RQ in the evolution of these genes.
4. Conclusions and prospects
For the past 40 years, Van Valen’s RQH [1] has transformed

our understanding of how biotic interactions can shape the
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evolution and diversity of species in nature. The RQH continues

to stimulate research on interspecific antagonistic coevolution,

notably host–parasite coevolution. The applicability of the

concept has even spilled over into medicine (electronic sup-

plementary material, box S3), whereby understanding the

relationship between the adaptive immune system and disease

evolution may aid in the treatment of infection and symptoms.

The RQ is probably a more dominant driver of evolutionary

change in nature than is presently recognized. Additional sys-

tems should now be used to test for the role of RQ coevolution

in maintaining trait variation and the ubiquity of sex. Further-

more, the genomic revolution has afforded researchers an

unprecedented, detailed and unbiased view of the RQ’s role

in shaping adaptation at the molecular level. Recapitulating

phenotypic patterns at the molecular level has revealed that

the RQ maintains high levels of within-population genetic

diversity (electronic supplementary material, box S1), imposes

multiple modes of selection on the genome and can drive rapid

evolutionary change. Development of the functional genetics

of interactions (within and between species) and comparative

analyses has also revealed that ‘fast-evolving genes’ are com-

monly those at the interface of biotic interactions. Exploring

patterns of molecular coevolution may serve to further uncover

the signature of the RQ.
Finally, the adoption of a broad definition of RQ dynamics

will offer a wider scope for the investigation of perpetual co-

evolution. For example, the previous lack of application to

intraspecific conflicts may have been owing to conceptual

uncertainty about RQ dynamic evolutionary changes. There

are numerous parallels between inter- and intraspecific coevo-

lutionary dynamics: the RQH may provide a new evolutionary

framework for studying intraspecific conflicts, which may

often be better described by ERQ and CRQ dynamics. In

addition, future work may also explore interspecific RQ coevo-

lution with more ecological realism. Virtually all organisms

live in diverse communities where any interaction has more

than two players, and the evolution occurs within a network.

If antagonists can switch to new victims in the community

and victims can be attacked by multiple enemies, evolutio-

nary changes may occur via ERQ, CRQ or mixed modes of

selection, indefinitely.
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