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Abstract

Introduction: Recently, a tool called the positron emission tomography (PET)‐

assisted reporting system (PARS) was developed and presented to classify lesions in

PET/computed tomography (CT) studies in patients with lung cancer or lymphoma.

The aim of this study was to validate PARS with an independent group of lung‐

cancer patients using manual lesion segmentations as a reference standard, as well

as to evaluate the association between PARS‐based measurements and overall

survival (OS).

Methods: This study retrospectively included 115 patients who had undergone

clinically indicated (18F)‐fluorodeoxyglucose (FDG) PET/CT due to suspected or

known lung cancer. The patients had a median age of 66 years (interquartile range

[IQR]: 61–72 years). Segmentations were made manually by visual inspection in a

consensus reading by two nuclear medicine specialists and used as a reference. The

research prototype PARS was used to automatically analyse all the PET/CT studies.

The PET foci classified as suspicious by PARS were compared with the manual

segmentations. No manual corrections were applied. Total lesion glycolysis (TLG)

was calculated based on the manual and PARS‐based lung‐tumour segmentations.

Associations between TLG and OS were investigated using Cox analysis.

Results: PARS showed sensitivities for lung tumours of 55.6% per lesion and 80.2%

per patient. Both manual and PARS TLG were significantly associated with OS.

Conclusion: Automatically calculated TLG by PARS contains prognostic information

comparable to manually measured TLG in patients with known or suspected lung

cancer. The low sensitivity at both the lesion and patient levels makes the present

version of PARS less useful to support clinical reading, reporting and staging.
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1 | INTRODUCTION

The clinical demand for medical imaging services is increasing rapidly

(Smith‐Bindman et al., 2008, 2019). One example is the use of positron

emission tomography with computed tomography (PET/CT) for the

characterization of lung lesions (Groheux et al., 2016). However, the

increased number of studies to be interpreted is not matched by an

increased supply of qualified radiologists and nuclear medicine special-

ists. In addition, manually reading these types of three‐dimensional

images is time‐consuming, and the reports usually lack quantification

and show poor reproducibility (Heye et al., 2013). Therefore, the true

clinical potential of the diagnostic images is not realized.

Artificial Intelligence (AI) offers new opportunities to support

radiologists and nuclear medicine specialists to increase output

without compromising quality (Rodriguez‐Ruiz et al., 2019). AI tools

could decrease reading times, improve reproducibility and reliably

quantify cancer‐related PET‐tracer activity (Hosny et al., 2018).

Recently, Sibille et al. presented an AI tool to classify fluorine 18

(18F)‐fluorodeoxyglucose (FDG) avid lesions in whole‐body PET/CT

studies for patients with lung cancer or lymphoma (Sibille et al., 2020).

The tool showed promising accuracy, but the authors pointed out that

further studies are required to develop the approach into a clinical tool

that supports clinical reading, automated reporting and staging. The

tool presented by Sibille et al. is incorporated in a research prototype

called the PET‐assisted reporting system (PARS), which is available for

research purposes. The same research group has been involved in two

studies evaluating PARS (Capobianco et al., 2021; Pinochet et al., 2021).

In addition, Weber et al. performed an independent evaluation of

PARS in patients with breast cancer in cases that had not been used

for the training of the system (Weber et al., 2021).

Bluemke et al. pointed out in an Editorial in Radiology that AI tools

need independent validation and should therefore be publicly available

so that performance claims can be verified (Bluemke et al., 2020).

Thus, the aim of this study was to compare the automatic performance

(sensitivity and specificity) of PARS in an independent group of

patients with known or suspected lung cancer using manual lesion

segmentations by two nuclear medicine specialists as a reference

standard. A second aim was to assess whether total lesion glycolysis

(TLG) calculated from PARS‐based segmentations of lung tumours

shows comparable prognostic value to manually measured TLG.

2 | METHODS

2.1 | Patients

This retrospective analysis included 115 consecutive patients who

underwent clinically indicated FDG PET/CT due to suspected lung

cancer (n = 63) or for the management of known lung cancer (n = 52)

between April 2008 and December 2010. We used this group of

patients in a previous study to train and evaluate an AI tool for the

detection of lung tumours (Borrelli et al., 2021). The patient group

consisted of 60 females and 55 males with a median age of 66 years

(IQR: 61–72 years). Clinical information and survival data were

collected from the local medical records and radiology information

system up until April 2021. A total of 84 patients died during the

follow‐up period, and the median survival time from the PET/CT study

was 2.3 years (IQR: 1.2–5.5 years). The group of 31 patients who were

still alive had a median follow‐up time from the PET/CT study of

11.9 years (IQR: 11.6–12.2 years). This study was approved by the

Regional Ethical Review Board at the University of Gothenburg, Sweden

(#295‐08) and was performed in accordance with the Declaration of

Helsinki. All patients provided written informed consent.

The patients were injected with 4MBq/kg (maximum of 400Mbq)

of FDG, fasted for at least 4–6 h before the injection, and had adequate

glucose levels before injection. The accumulation time was 60min.

PET/CT scans were obtained using an integrated PET/CT system

(Siemens Biograph 64 Truepoint). Images were acquired with 3min

per bed position from the base of the skull to the mid‐thigh. PET

images were reconstructed with a slice thickness of 3mm using an

iterative ordered subset expectation maximization 3D algorithm

(four iterations and eight subsets). The matrix size was 168 × 168,

and CT‐based attenuation and scatter corrections were applied.

A low‐dose CT scan (64‐slice helical, 120 kV, 30mAs, 512 × 512

matrix) was obtained for the same part of the patient as the PET scan.

The CT was reconstructed using a filtered back projection algorithm

with slice thickness and spacing matching the PET scan.

2.2 | Manual segmentations

Manual segmentations in the PET images were performed by two nuclear

medicine specialists with >6 years of PET/CT experience and used as a

reference. No clinical data, results from other imaging modalities or

survival data were available to the readers. The segmentations were

made manually by visual inspection in a consensus reading. A suspect

lesion was considered when there was a morphological lesion in the CT

that were FDG‐avid (SUVmax lesion > SUVmax blood pool). Each lesion

was classified as a lung tumour or lymph node. A cloud‐based annotation

tool (RECOMIA, https://www.recomia.org) was used to segment the

PET/CT studies (Trägårdh et al., 2020). TLG was calculated based on the

manual segmentations of lung tumours.

2.3 | Research prototype

The PARS research prototype (version 3.0, Siemens Medical

Solutions USA, Inc.) was used to automatically analyse all the PET/

CT studies. The analysis included segmentation of the liver as

reference region, segmentation of PET foci using a thresholding

algorithm and classification of anatomical location and suspiciousness

for all detected PET foci using a convolutional neural network. The

PET foci classified as suspicious (physiological uptake=FALSE) by

PARS were marked in red and physiological uptake in green. An

example of the PARS display is shown in Figure 1. The suspicious foci

by PARS were compared with the manual segmentations. No
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preprocessing of the PET/CT studies or manual corrections of the

PARS analysis were applied. TLG was calculated based on the

segmentations of lung tumours by PARS and manual segmentations.

2.4 | Statistical methods

Sensitivity, specificity, accuracy and positive predictive value were

calculated at the per‐patient and lesion levels. Associations between

TLG and overall survival (OS) were investigated using a univariate

Cox proportional hazards regression model. OS was calculated from

the date of the PET/CT study to the date of death or last follow‐up.

Hazard ratios (HRs) and 95% confidence intervals (CIs) were

estimated. The TLG measurements had a skewed distribution and

were log10 transformed after adding 1.0 to handle zeros.

Bland–Altman plot was used to compare PARS and manual TLG.

Bivariate proportional regression Cox analyses were performed to

evaluate the association between manual and PARS TLGs and OS. OS

curves were produced according to the Kaplan–Meier method. The

curves were produced after dividing the patients into three groups

based on whether their TLG values were higher or lower than the 1/3

and 2/3 quantiles. Only two groups were used for the smaller subsets

of patients with diagnosed and suspected cancer. The statistical

analysis was performed in R (version 4.0.3).

3 | RESULTS

PARS showed a per‐lesion sensitivity of 55.6% (79/142) for lung

tumours and 35.3% (63/185) for lymph nodes using the manual

segmentations by the two nuclear medicine specialists as the

reference standard (Table 1). The positive predictive value was high

for lung tumour lesions (94.0%) and low for lymph nodes (70.0%).

The per‐patient sensitivity and specificity for lung tumours were

80.2% (69/86) and 100% (29/29), respectively (Table 2). The sensitivity

and specificity for lymph nodes were 70.2% (40/57) and 81.0% (47/58),

respectively. The positive predictive value was 100% (69/69) for lung

tumours and 78.4% (40/51) for lymph nodes. The negative predictive

value was 63% (29/46) for lung tumours and 73.4% (47/64) for lymph

nodes. PARS did not detect any suspicious PET focus in 7 of the

17 false‐negative studies. In the remaining 10 studies, no lung tumour

was detected, but other suspicious PET foci classified as lymph nodes or

metastases in the bone, adrenal gland or small intestine were detected.

Manual and PARS segmentations of lung tumours were used to

compute TLG for each patient. Figure 2 shows a Bland–Altman plot

comparing PARS and manual TLG. The mean difference between

them was −22.6 with a standard deviation of 237. Both the manual

and PARS TLGs were significantly associated with OS in uni‐ and

bivariate proportional regression Cox analyses (Table 3).

F IGURE 1 Maximum intensity projections of
a patient with positron emission tomography
(PET) regions classified as suspicious by
PET‐assisted reporting system (PARS) in red
and physiological uptake in green

TABLE 1 Per‐lesion results of PARS

PARS positive PARS negative Total

Lung tumours

Manual positive 79 63 142

Manual negative 5 ‐

Total 84

Lymph nodes

Manual positive 63 122 185

Manual negative 27

Total 90

Abbreviation: PARS, PET‐assisted reporting system.

TABLE 2 Per‐patient results of PARS

PARS positive PARS negative Total

Lung tumours

Manual positive 69 17 86

Manual negative 0 29 29

Total 69 46 115

Lymph nodes

Manual positive 40 17 57

Manual negative 11 47 58

Total 51 64 115

Abbreviation: PARS, PET‐assisted reporting system.
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The patients were divided into three equally sized quantiles

based on their PARS TLG. The Kaplan–Meier curves in Figure 3 show

the survival probabilities for these groups. The median survival times

for the group with the highest, middle and lowest PARS TLG were 1.5

years, 4.2 years and not reached after 5 years of follow‐up. The

corresponding Kaplan–Meier curves for manual TLG showed median

survival times for the three groups of 1.4 years, 4.2 years and not

reached after 5 years of follow‐up.

In a separate analysis of the patients with known lung cancer at

the time of the PET/CT study (n = 52), patients with PARS TLG that

were greater than the median value had a shorter median survival

time (1.6 years) than the patients with values that were less than the

median (not reached after 5 years of follow‐up) (Figure 4). Identical

results were obtained using manual TLG. Performing the same

analysis for the patients with suspected lung cancer at the time of the

PET/CT study (n = 63) showed median survival times for the two

groups of 2.8 years and not reached after 5 years of follow‐up based

on PARS TLG. The corresponding results for manual TLG was 2.3

years and not reached after 5 years of follow‐up, respectively.

4 | DISCUSSION

This independent validation of the research prototype PARS showed a

per‐patient sensitivity of 80.2% and specificity of 100% for lung tumours.

These results are close to those presented in the original article by Sibille

et al. (sensitivity 87.1%; specificity 99.0%) (Sibille et al., 2020). We used

the same type of standard reference (manual segmentations by experts)

in our study group, which was more than twice as large as the test set of

Sibille et al. (n=115 vs. 59). One difference between the studies was that

we validated the complete analysis of PARS, that is, detection and

classification of PET foci, whereas Sibille et al. only presented results for

the classification of PET foci based on a convolutional neural network.

The detection part of PARS, which is based on a fixed thresholding

algorithm, was not included in that study. Sibille et al. pointed out that the

data that they used to train, validate and test PARS were from a single

site and may therefore not generalize well to sites with different imaging

protocols, cameras and patient characteristics. To our knowledge, this is

the first independent validation of PARS in lung cancer patients to

confirm the results of the original study.

Recently, two other validation studies of PARS have been

presented. Weber et al. (2021) applied PARS to PET/CT studies from

patients with breast cancer in cases that were not used in the training

of PARS. They found a per‐patient accuracy of PARS in detecting

lesions of 72%, which is close to the results for lymph nodes in our

study (75.7%). The accuracy for lung tumours was higher in our study,

which could at least partly be explained by PARS being trained on

studies from patients with lung cancer or lymphoma.

Capobianco et al. and Pinochet et al. validated PARS in patients with

lymphoma (Capobianco et al., 2021; Pinochet et al., 2021). They both

found lower PARS‐based total metabolic tumour volumes (TMTVs) than

the corresponding manual TMTVs. The differences between PARS and

F IGURE 2 Bland–Altman plot comparing
manual and PET‐assisted reporting system (PARS)
total lesion glycolysis (TLG)

TABLE 3 Association between TLG, age and overall survival

Variables HR (95% CI) p value

Univariate

Manual TLG 1.99 (1.54–2.57) <0.001

PARS TLG 1.90 (1.50–2.41) <0.001

Bivariate

Manual TLG 1.99 (1.53–2.58) <0.001

Age 1.01 (0.984–1.04) 0.42

PARS TLG 1.89 (1.49–2.40) <0.001

Age 1.01 (0.979–1.03) 0.65

Abbreviations: HR, hazard ratio; CI, confidence interval; PARS,
PET‐assisted reporting system; TLG, total lesion glycolysis.
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manual TLGs were smaller in our study for lung tumours, which could be

at least partly explained by lung tumours being easier to detect and

segment than other soft‐tissue tumours.

The road from a research prototype to a clinically accepted and

approved AI tool includes several steps of validations and adjustments.

Clinical validation of an AI tool should be based on test data with more

advanced reference methods than those used in the present study and

that of Sibilles et al. As an example, the process of qualifying the AI tool

for the calculation of the Bone Scan Index (BSI) included several studies

from the first presentation of the AI tool (Ulmert et al., 2012) to

preanalytical (Anand, Morris, Kaboteh, Reza, et al., 2016), analytical

(Anand, Morris, Kaboteh, Båth, et al., 2016), and clinical validations of

(a) (b)

F IGURE 3 Kaplan–Meier curves showing survival probabilities for patients divided into three similarly sized groups based on whether their
manual total lesion glycolysis (TLG) (left) and PET‐assisted reporting system (PARS) TLG (right) values are smaller or larger than the 1/3‐quantile
and the 2/3‐quantile (n = 115). The TLG ranges for the groups were 0−7, 7–103 and 103–3675 for the groups based on manual TLG and 0–0,
3–77 and 77–3795 for the groups based on PARS TLG.

(a) (b)

F IGURE 4 Kaplan–Meier curves showing survival probabilities for patients divided into two equally sized quantiles based on their
PET‐assisted reporting system (PARS) total lesion glycolysis (TLG). Patients with known lung cancer are shown to the left (n = 52) and suspected
lung cancer to the right (n = 63).
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the final version (Armstrong et al., 2018). The clinical validation was

based on 721 patients from a phase III clinical trial and showed the

association between BSI and OS.

The limitations of this study include the small number of patients

and the use of PET/CT studies from an older scanner. The results

from this scanner may not be representative of image quality

obtained for more recent and advanced scanners. The retrospective

design of the study allowed us to perform survival analysis but gave

us limited access to clinical information such as other biomarkers,

treatment and types of lung cancer.

In conclusion, this independent validation study of PARS shows

that automatically calculated TLG contains prognostic information

that is comparable to the manually measured TLG in patients with

known or suspected lung cancer. The low sensitivity at both the

lesion and patient levels makes the present version of PARS less

useful to support clinical reading, reporting and staging.
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