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Abstract
Primary immunodeficiency diseases refer to inborn errors of immunity (IEI) that affect 
the normal development and function of the immune system. The phenotypical and ge-
netic heterogeneity of IEI have made their diagnosis challenging. Hence, whole-exome 
sequencing (WES) was employed in this pilot study to identify the genetic etiology of 30 
pediatric patients clinically diagnosed with IEI. The potential causative variants identi-
fied by WES were validated using Sanger sequencing. Genetic diagnosis was attained 
in 46.7% (14 of 30) of the patients and categorized into autoinflammatory disorders 
(n = 3), diseases of immune dysregulation (n = 3), defects in intrinsic and innate immu-
nity (n = 3), predominantly antibody deficiencies (n = 2), combined immunodeficiencies 
with associated and syndromic features (n = 2) and immunodeficiencies affecting cellu-
lar and humoral immunity (n = 1). Of the 15 genetic variants identified, two were novel 
variants. Genetic findings differed from the provisional clinical diagnoses in seven cases 
(50.0%). This study showed that WES enhances the capacity to diagnose IEI, allowing 
more patients to receive appropriate therapy and disease management.
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INTRODUCTION

The term ‘inborn errors of immunity’ (IEI) was recently ad-
opted to describe primary immunodeficiencies caused by 
monogenic defects [1]. These conditions are characterized by 
increased susceptibility to recurrent infections, autoimmune 
disorders, autoinflammatory diseases, allergy and malignan-
cies [2]. To date, 430 genetic defects have been reported by 
the International Union of Immunological Societies (IUIS) 
[2]. The number of IEI-related genes is expected to rise with 
advances in next-generation sequencing (NGS) technology. 
Diagnosing IEI using laboratory screening of immunological 
parameters presents a challenge because of their phenotypical 
and genetic heterogeneity [3,4]. Hence, a definitive diagnosis 
of IEI requires genetic testing to identify the disease-causing 
mutation.

For large-scale sequencing, NGS is more cost-effective 
than Sanger sequencing [5]. While a targeted gene panel 
works for cases with a specific syndrome or typical clini-
cal features, whole-genome sequencing (WGS) and whole-
exome sequencing (WES) are more suitable for clinically 
ambiguous cases. The targeted gene panel excludes the ex-
ploration of genetic mutations outside the predetermined set 
of genes. With a wider genome coverage, WGS enables the 
detection of structural and deep-intronic variants. However, 
WGS is less practical for diagnostic testing due to its massive 
data output and high cost. Compared to WGS, data output 
from WES is more manageable, as it sequences approxi-
mately 2% of the genome that harbors approximately 85% 
of disease-causing mutations [6,7]. Taken together, WES is 
preferable for genetic diagnosis, given its relatively high di-
agnostic yield, lower cost and accessible pipelines for effi-
cient data analysis and interpretation.

Earlier studies showed a diagnostic yield of 21–40% when 
WES was used to diagnose IEI [3,8–12]. Definitive genetic 
diagnosis is crucial in providing patients with timely appro-
priate treatment to reduce morbidity and mortality. For in-
stance, severe combined immunodeficiency (SCID) patients 
detected early may receive hematopoietic stem cell transplant 
(HSCT) before opportunistic infections develop, hence im-
proving their survival [13]. Furthermore, counseling fol-
lowing genetic testing is necessary so that patients and their 
families are aware of the disease prognosis and the risk of its 
development in other family members.

A Malaysian epidemiological study, conducted between 
1987 and 2006, reported 52 IEI cases [14]. Despite lacking 
genetic diagnosis, this report raised awareness among health-
care providers and patients of IEI, once believed to be rare in 

the community. The estimated prevalence of 0.37 IEI cases 
per 100 000 population in Malaysia suggests under-reporting 
when compared to a prevalence of 1.1–7.5 per 100 000 pop-
ulation in other countries [15–20].

These factors argue the need for effective genetic testing 
to diagnose IEI. Thus, this is the first study, to our knowl-
edge, that aims to use WES to determine genetic diagnosis in 
patients suspected of IEI in Malaysia.

METHODS

Study population

Thirty patients with clinical suspicion of IEI were recruited 
by the referral center, Institute for Medical Research, from 
government hospitals across Malaysia between 2016 and 
2018. Patients aged 18 years and below were enrolled if 
they experienced at least one of these clinical features: 
(a) signs and symptoms suggestive of immune dysregu-
lation with or without an opportunistic infection and (b) 
prolonged or recurrent infection requiring long or repeated 
cycles of anti-microbial drugs. Patients with typical pres-
entation of X-linked agammaglobulinemia (XLA) and 
chronic granulomatous disease (CGD) were excluded from 
the study, as these are diagnosed using relevant assays; 
namely, Bruton’s tyrosine kinase (BTK) protein expres-
sion and neutrophil oxidative burst activity detection, re-
spectively. Peripheral venous blood with written informed 
consent was obtained from the patients and their parents. 
In addition, clinical history and relevant laboratory re-
sults were recorded. The study protocol was approved by 
the Medical Research and Ethics Committee, Ministry of 
Health Malaysia (KMM/NIHSEC/P16–837) and conducted 
according to the Declaration of Helsinki.

Laboratory testing

Lymphocyte subsets T, B and natural killer (NK) cell enumer-
ation were performed using the BD MultitestTM four-color T, 
B and NK cells (TBNK) reagent kit on a BD FACSCantoTM 
II (Becton Dickinson Biosciences, San Jose, California, 
USA). Serum immunoglobulin and complement levels of im-
munoglobulin (Ig)G, IgM, IgA, C3 and C4 were quantified 
using the SPAPLUS® immunoturbidimeter (The Binding 
Site, Birmingham, United Kingdom). Total IgE concentra-
tion was measured by a fluorescent enzyme immunoassay.
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Whole-exome sequencing and causative variant 
prioritization

Genomic DNA was extracted from peripheral blood mononu-
clear cells using the QIAamp DNA Blood Mini Kit (Qiagen, 
Hilden, Germany), following the manufacturer’s protocol. 
Paired-end sequencing of the enriched exomes was done on 
a HiSeq 4000 sequencer (Illumina, San Diego, California, 
USA) at ×100 coverage. The workflow for processing se-
quencing data and variant prioritization strategy have been 
previously described [21]. The variants were interpreted 
according to the American College of Medical Genetics 
and Genomics (ACMG) guidelines [22]. Correlation be-
tween clinical features and the potential causative variants 
in patients was assessed through a comprehensive literature 
search. Causative variants were validated by bidirectional 
Sanger sequencing. The disease inheritance was confirmed 
by sequencing the parents’ blood when available. Cases with 
positive findings were grouped according to their genetic de-
fects and disease-associated features, as in the 2017 IUIS IEI 
classification [23]. The diagnostic workflow is illustrated in 
Figure 1.

RESULTS

Cohort demographics

Of the 30 patients, 18 subjects were male, accounting for 
60.0% of the study population (Supporting information, 
Table S1). Most of the patients were Malay (n = 16), fol-
lowed by Chinese (n = 6) and Indian (n = 3). Four patients 
were indigenous Malaysians: Bajau (n = 2), Iban (n = 1) and 
Kadazan (n = 1). One patient in the cohort was a Malaysian 
Thai. The age of onset ranged from 1 month to 10 years, with 
a median of 1 year. All patients were from unrelated families 
with no parental consanguinity except P29, whose parents 
were third cousins.

Clinical and laboratory findings of 30 patients

Respiratory tract infection was the most common clini-
cal manifestation observed among the cohort (Figure 2a). 
Lower respiratory tract infections (LRTI) (n  =  32) had a 
higher occurrence than upper respiratory tract infections 

F I G U R E  1   Overview of the diagnostic workflow using whole-exome sequencing (WES) of 30 pediatric patients aged 18 years and below. 
Patients with clinical suspicion of X-linked agammaglobulinemia (XLA) and chronic granulomatous disease (CGD) were excluded based on their 
abnormal Bruton’s tyrosine kinase (BTK) protein expression and abnormal neutrophil oxidative burst, respectively. Patient clinical history was 
collected along with peripheral venous blood samples and written informed consent. Laboratory testing including lymphocyte subset enumeration 
and quantitation of serum immunoglobulins and complement were performed. Purified genomic DNA from patients was subjected to WES that 
utilized the Illumina paired-end sequencing approach. Bioinformatics processing of the sequencing data and variant filtering were performed 
following the workflows previously described [21]. Lastly, causative variants with functional impact relating to the clinical and immunological 
features of individual patient were validated using Sanger sequencing. Disease inheritance was confirmed by sequencing the parents’ DNA 
when available. For patients with negative findings, the exome data were reanalyzed based on the updated International Union of Immunological 
Societies (IUIS) gene list and latest published reports
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(URTI) (n = 10). Of all the LRTI cases, pneumonia (n = 18) 
was more common than bronchiectasis (n = 7), tuberculosis 
(n = 5) and bronchiolitis (n = 2), whereas with URTI, cough 
(n  =  8) occurred more frequently than tonsillitis (n  =  2). 
Apart from respiratory tract infections, fever (n  =  4) and 
hepatosplenomegaly (n  =  4) were noted in the cohort; 
among the 16 cases with abscess development, skin abscess 
(n  =  9) was the most common type (Figure 2b). Culture 
and sensitivity testing of patients’ blood, cerebrospinal fluid 
and abscess drainage fluid showed that nine patients had 
mycobacterial infections caused by Mycobacterium tuber-
culosis (n  =  8) and Mycobacterium bovis (n  =  1), while 
Staphylococcus aureus, commonly found in immunocom-
promised children, was detected in four patients (Figure 
2c). Viral and fungal infections were less frequent, in that 
one patient was diagnosed with Epstein–Barr virus (EBV) 
encephalitis and another with invasive pulmonary aspergil-
losis. Immune profile testing showed three patients with a 
universal depletion of lymphocyte subsets; nine patients had 
elevated IgE while one patient displayed low levels of IgG, 
IgM and IgA. The clinical and immunological phenotypes 
of all 30 patients are illustrated in Supporting information, 
Table S1.

Bioinformatic interpretation of 30 exomes

The exomes had an average guanine–cytosine (GC) con-
tent of 49.6%. WES generated a range of 47  192  790 to 
151 435 510 paired-end reads, with a median of 58 868 128 
reads for 30 samples. On average, 99.0% of the sequencing 
reads were properly aligned to the human reference genome 
GRCh38. On the whole, 655 728 single nucleotide variants 
(SNVs) and 16 604 short insertions or deletions (indels) were 
detected in all the targeted exons and splice sites (Supporting 
information, Table S2). Of the total SNVs, 51.6% were 
synonymous and 48.4% were non-synonymous. The non-
synonymous SNVs consisted mainly of missense substitu-
tions (98.8%), followed by stopgain (0.9%), startloss (0.2%) 
and stoploss (0.1%) mutations, while the indels comprised 
61.0% non-frameshift and 36.2% frameshift indels. Filtering 
against known IEI genes reduced the total variants to 10 974 
SNVs and 56 indels (Supporting information, Table S2). On 
average, 0.7% and 0.3% of the variants in an exome were 
non-synonymous SNVs and indels associated with IEI, re-
spectively. The number of variants was reduced further based 
on minor allele frequency and variant impact prediction to 15 
potentially causative variants in 14 patients.

F I G U R E  2   Clinical presentations and laboratory findings of 30 patients. (a) Inborn errors of immunity (IEI) patients were more likely to 
experience respiratory tract infections, particularly lower respiratory tract infections (LRTI), including pneumonia, bronchiectasis, tuberculosis and 
bronchiolitis. (b) Skin abscesses were more commonly seen than internal abscesses. (c) Most patients contracted infections caused by bacteria while 
only a minority had fungal and viral infections. Infections induced by Mycobacterium sp. and Staphylococcus sp. were common among the IEI 
patients
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Genetic diagnosis of 14 patients

We identified causative variants in 14 patients using WES, 
amounting to a diagnostic yield of 46.7%. The median duration 
from age of onset to recruitment for WES was 4 years (Figure 
3). Autoinflammatory disorders (n = 3), diseases of immune 
dysregulation (n = 3) and defects in intrinsic and innate im-
munity (n = 3) were the most common disease categories in 
our study cohort. Two categories, namely predominantly anti-
body deficiencies and combined immunodeficiencies with as-
sociated and syndromic features, were detected in two patients 
each. Only one patient was diagnosed with an immunodefi-
ciency affecting cellular and humoral immunity. WES find-
ings differed from the provisional clinical diagnosis in seven 
of the 14 cases (50.0%). Fifteen causative variants harbored in 
13 genes were identified: namely, SH2D1A, PIK3CD, NOD2, 
IL17F, STAT1-GOF, IL12RB1, STAT3-GOF, NFAT5, PNP, 
IL2RG, COPA, NLRC4-GOF, CD79A and STAT3-LOF. Of the 

identified genetic defects (n = 15), missense SNVs (n = 10) 
were the most common mutation, followed by SNVs resulting 
in premature termination (n = 2) (Figure 4a). In addition to 
exonic SNVs, WES detected two splice site mutations and a 
frameshift deletion. Most of the variants identified were auto-
somal dominant disorders (64.3%), while the rest were autoso-
mal recessive (21.4%) and X-linked (14.3%) (Figure 4b). P17 
was the only patient identified with a compound heterozygous 
mutation in IL12RB1 (Figure 4c). Novel mutations were found 
in P22 and P26. Familial segregation testing using Sanger se-
quencing was performed on six patients and their parent(s). 
Among these six cases, half (P13, P16 and P28) had sporadic 
mutations while the remainder (P3, P17 and P25) were famil-
ial. Unfortunately, five patients (P1, P3, P21, P22 and P26) 
succumbed to their illnesses in mid-study, giving a mortality 
rate of 16.7%. The provisional diagnosis, genetic findings and 
clinical outcomes of 14 patients with genetic mutations identi-
fied by WES are summarized in Table 1.

F I G U R E  3   Duration from the age of onset to age recruited for whole-exome sequencing (WES). A median duration of 4 years was observed 
from the onset of symptoms to the recruitment for WES
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DISCUSSION

The clinical variability and genetic heterogeneity make IEI 
diagnosis a challenge, often leading to a substantial delay 
in diagnosis. As Noh et al. [14] observed, diagnostic delay 
was the predominant cause for the high mortality and mor-
bidity rate in these patients. This becomes more significant 
when patients present atypically [26]. Currently, the targeted 
gene panel to diagnose IEI is widely available. However, 
as newer IEI-associated genes are discovered gene panels 
would have to be updated, incurring higher costs. Between 
WES and WGS, WES is more practical for clinical use be-
cause of its lower cost and smaller data output. The larger 
and more comprehensive genomic data generated by WGS 
may lead to diagnostic delay due to longer data-processing 
time. This study demonstrated a diagnostic yield of 46.7%, 
which is comparable to that obtained using WES in other 
populations [3,8–12].

We detected two novel variants in this cohort. A PNP mu-
tation was confirmed in P22 (combined immunodeficiencies 
with associated and syndromic features), but by that time the 
patient had already progressed to severe neuroregression and 
HSCT was no longer a beneficial option. She eventually suc-
cumbed to aspiration pneumonia. The other novel variant in 
our cohort was P26, who had a COPA mutation (autoinflam-
matory disorder). This patient had an underlying interrupted 
aortic arch and she died due to nosocomial sepsis before ge-
netic diagnosis was confirmed.

Establishing definitive genetic defects in suspected IEI 
cases is important for management and treatment of cases. 
P25, who has an IL2RG mutation, is currently being evalu-
ated for HSCT. In P28, the confirmation of a NLRC4 muta-
tion enabled her intermittent joint pains to be co-managed 
by a rheumatologist which resulted in better pain control. 
However, in cases where HSCT or gene therapy is not an 
option, successful molecular diagnosis is mainly important 

for family counseling, carrier detection and prognostication. 
For example, the parents of P17, whose child was initially 
suspected of Mendelian susceptibility to mycobacterial dis-
ease, had difficulty accepting his condition and blamed it on 
the bacille Calmette–Guérin (BCG) vaccination. This also 
resulted in poor compliance to antibiotic prophylaxis and 
frequent default from follow-up. Since the diagnosis of an 
IL12RB1 gene defect, treatment and follow-up compliance 
has improved. His younger brother was BCG-vaccinated 
only after testing confirmed that he did not have this genetic 
defect. In another case, P16, the identification of the genetic 
defect assisted the clinician in anticipating possible disease 
manifestations. He initially presented with a STAT1-LOF 
feature (BCG-lymphadenitis), but a later candidiasis infec-
tion and cytopenia were more consistent with a STAT1-GOF 
etiology. The confirmation of a STAT1 mutation prompted 
more aggressive anti-fungal therapy and oral fluconazole 
was added to his regimen. He is currently free of any serious 
infection.

Genetic diagnosis remains undetermined in the majority 
of our cohort. WES is limited in its ability to detect muta-
tions in pseudogenes and highly repetitive sequencing [27]. 
Interestingly, in a study of 32 patients with unknown genetic 
defects, WGS identified causative mutations in 53% of the 
cohort [28]. Therefore, WGS should be considered in those 
cases where WES fails to identify a genetic defect.

Our diagnostic approach has limitations. While our co-
hort comprises individuals from various ethnic groups in 
Malaysia, there is no database reflecting such ethnic diversity. 
Consequently, our analysis may be affected, as the combined 
allele frequency used is that of the gnomAD database derived 
from Caucasian data. Secondly, poor retrieval of parental DNA 
impeded the examination of inheritance pattern in our cohort. 
Thirdly, as we were unable to conduct in-vitro functional assays 
to demonstrate the pathogenicity of identified variants, we used 
in-silico tools to predict this in our cohort.

F I G U R E  4   Genetic variants uncovered by whole-exome sequencing (WES) in 14 patients. (a) Of the 15 variants identified, 10 were missense 
single nucleotide variants (SNVs), whereas two were stopgain SNVs. Two splice site mutations and a frameshift deletion were also detected by 
WES. (b) Most of the variants detected led to autosomal dominant disorders (64.3%). Familial segregation examined by Sanger sequencing of six 
patients showed three patients had de-novo mutations and the other three had familial mutations. (c) One compound heterozygous mutation induced 
by a missense SNV and a frameshift deletion was detected
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CONCLUSION

This is the first study, to our knowledge, to determine the 
genetic etiology of IEI in Malaysian pediatric patients using 
WES. A definitive diagnosis was achieved in 46.7% of the 
cohort, and also revealed a 50% discordance between the pro-
visional clinical diagnosis and this diagnosis. This illustrates 
the complexity of diagnosis in patients with heterogenous 
clinical features and argues for WES to be used in the diag-
nosis of IEI.
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