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Abstract

Cryo-electron tomography (cryo-ET) provides 3D visualization of subcellular components

in the near-native state and at sub-molecular resolutions in single cells, demonstrating an

increasingly important role in structural biology in situ. However, systematic recognition

and recovery of macromolecular structures in cryo-ET data remain challenging as a result

of low signal-to-noise ratio (SNR), small sizes of macromolecules, and high complexity of

the cellular environment. Subtomogram structural classification is an essential step for

such task. Although acquisition of large amounts of subtomograms is no longer an obsta-

cle due to advances in automation of data collection, obtaining the same number of struc-

tural labels is both computation and labor intensive. On the other hand, existing deep

learning based supervised classification approaches are highly demanding on labeled

data and have limited ability to learn about new structures rapidly from data containing

very few labels of such new structures. In this work, we propose a novel approach for sub-

tomogram classification based on few-shot learning. With our approach, classification of

unseen structures in the training data can be conducted given few labeled samples in test

data through instance embedding. Experiments were performed on both simulated and

real datasets. Our experimental results show that we can make inference on new struc-

tures given only five labeled samples for each class with a competitive accuracy (> 0.86 on

the simulated dataset with SNR = 0.1), or even one sample with an accuracy of 0.7644.

The results on real datasets are also promising with accuracy > 0.9 on both conditions and

even up to 1 on one of the real datasets. Our approach achieves significant improvement

compared with the baseline method and has strong capabilities of generalizing to other

cellular components.
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Author summary

Cryo-electron tomography has been widely used in structral biology to provide a three-

dimensional perspective on intracellular structures at sub-molecular resolutions and

near-native states in single cells. Identifying the macromolecules contained in cryo-elec-

tron tomograms is an essential step for further analysis of the structure and function of

these macromolecules. Recent studies have shown that supervised learning excels in the

classification of macromolecules in subvolumes of tomograms (called subtomograms).
However, since most structures in cells are unknown to us, labeling macromolecules in

subtomograms is time-consuming, labor-intensive, and hard to implement, which brings

difficulties to supervised learning. We proposed a computational method to distinguish

the macromolecules in subtomograms with few labeled data. We trained our model on

some well-annotated structures and apply the model to classify new structures with few

labeled examples. We conducted experiments on both simulated datasets and real data-

sets, and our results suggest that our method could achieve competitive classification

accuracy on new structures with no more than five samples for each class. Our method

can help to quickly and accurately detect newly-discovered structures from cryo-electron

tomograms with few examples, accelerating subsequent research on the structures, and

thus possibly promoting further interpretation of cellular functions.

This is a PLOS Computational Biology Methods paper.

Introduction

Most biological processes in cells are orchestrated by intricate networks of molecular assem-

blies and their interactions. Analysis of the structural features and spatial distribution of these

assemblies in situ is an indispensable step in deciphering cellular functions. As a powerful tech-

nique to extract 3D visulization of cellular macromolecular structures in a near-native state

and at a sub-molecular resolution in single cells, cryo-ET has been gaining a more prominent

part in structural biology in situ, and successful applications of cryo-ET to the study of consid-

erable important macromolecular structures has been proposed [1]. In principle, cryo-ET cap-

tures the near-native structure and spatial organization of all macromolecules under the field

of view, potentially providing unprecedented insights on the cellular functions that these mac-

romolecules involve. However, low signal-to-noise ratio (SNR) and the complicated intracellu-

lar environment remain an immense obstacle to the systematic analysis of macromolecular

structures in cryo-ET images. Structural discrimination of macromolecules is particularly diffi-

cult, because of the generally small sizes (only slightly larger than the nanometer resolution of

cryo-ET), different conformations and assemblies compositions depending on the functions

executed. In the general image-processing workflow, subvolumes (also referred to as subtomo-
grams) of three-dimensional cryo-ET images will be extracted, each potentially containing one

macromolecule. Then subtomogram classification is conducted to divide all subtomograms

into more homogenenous subsets that may contain the same structures [2]. Therefore, effec-

tive algorithms for subtomogram classification is urgently needed.

Early works focused on identification of different macromolecules in cellular cryo-ET

images through template matching. Though successfully applied to the detection of some iso-

lated assemblies [3–5], this kind of method is significantly influenced by tomogram-specific

parameters as well as the target-specific parameters [6], and is limited to the detection of

known particles. For the recovery of novel structures in cryo-electron tomograms, reference-
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free approaches for subtomogram averaging, classification and pattern mining have been

developed, including methods based on maximum likelihood [7], methods using rotation

invariant subtomogram features [8], methods that rely on iterative successive alignment and

classification steps [9], and methods using Fourier space constrained fast volumetric matching

[10]. These methods work in an unsupervised clustering way and do not rely on the labeled

training data of structural classification. However, these approaches suffer from certain limita-

tions in terms of scalibility, consideration of missing wedge effect and discrimination ability

under low SNR. The template-free structural pattern mining method proposed by Xu et al [11]

is one of the representatives of unsupervised methods in recent years to identify unknown

structural densities in cryo-tomograms. It is able to extract structural patterns, but the patterns

are not automated classified as specific structures unless manual comparison and identifica-

tion. Moreover, the method is still in the traditional way instead of learning-based methods,

leading to somewhat lack in performance.

As discussed in SHREC’19 Track [12], “learning-based methods are increasingly more pop-

ular with cryo-ET researchers. Not without a reason: the learning-based methods show better

performance”. With the development of imaging technology and automatic data acquisition,

the scale of cellular cryo-ET data expanded significantly and thus deep-learning based methods

have gained improving attention in annotating cryo-ET data. Chen et al. developed a segmen-

tation method based on convolutional neural network (CNN) [13] to automatically identify

subcellular structural features. And Li et al. proposed an algorithm for automatic identification

and localization of cellular components in cryo-tomograms through Faster RCNN [14]. Deep

learning-based subtomogram classification also becomes a new crave to allow high-throughput

macromolecules structure identification [15–17]. Although the supervised classification based

on convolutional neural network (CNN) model exhibits superior performance in feature

extraction and has significant improvement of speed and robustness to noise and missing

wedge effect [15], by design it does not directly identify unseen structures not included in the

training data. Moreover, it is not feasible to obtain a large amount of annotated data for train-

ing given the reality that the native structures of most of macromolecules are unknown [18],

indicating a shortage of these high-throughput classification methods for detecting such

unknown structures.

To tackle this problem, we propose a few-shot learning based method, which is able to con-

duct subtomogram classification on unseen structures with few (or even one) labeled subto-

mograms from each kind of these structures, while retaining the superior abilities of the CNN

model. Few-shot learning is proposed to address the problem of recognizing new categories

with very little labeled data provided. In the few-shot learning problems, there is usually a

training set including considerable labeled data to provide prior knowledge and a test set con-

sist of instances from new categories that do not appear in the training set. The test set can be

divided into two subsets: a support set with a few labeled samples from each category, and a

query set with unlabeled samples from the same categories with the support set. The task is to

make predictions about unlabeled samples in the query set based on the few labeled samples in

the support set and the knowledge learned from the training set. An M-way N-shot classifica-

tion task in few-shot learning means taking M categories with N labeled samples for each cate-

gory as the support set, and that is the sampling strategy during training as well, in which way

the training set is randomly subsampled as mini-batches called episodes. Each episode contains

a support set (M categories with N labeled samples for each category) and a query set (the

same M categories with unlabeled samples) so as to conform to the expected few-shot classifi-

cation task [19].

The basic idea of few-shot learning is to learn from samples of seen classes with ample labels

in the training data, and gain the ability to make inferences on samples from unseen classes
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with only few labeled examples provided. Thus, when a novel structure is discovered, it can be

distinguished from a large amount of unlabeled subtomograms given only a small number of

labeled samples of the structure, as long as we pre-trained the model on subtomograms of

some well-studied structures whose labels may be relatively easy to obtain. That means we can

rapidly detect newly-discovered macromolecular structures, analyze the characteristics such as

spatial organization, and accelerate downstream research.

One main category of few-shot learning approaches focused on learning an embedding for

each instance that maintain necessary features of the data and thus simple classifiers such as

nearest neighbor classifier can be applied in the embedding space. Following this idea, one of

the major components in our approach evolve from prototypical network (ProtoNet) [20]. In

the embedding space learned from ProtoNet, a prototype for each class will be calculated, and

the nearest prototype to each sample should be the one of the class that the sample belongs to.

However, the embedding obtained through this method is a universal embedding learned

from all training data, independent of downstream classification tasks. In other words, this is a

task-agnostic embedding. In order to extract useful information from the classification tasks

we are facing and make the embedding more targeted, we add a transformation step with self

attention mechanism inspired by [21] and obtain a task-specific embedding. We believe that

neither task-agnostic nor task-specific features alone are sufficient to support the classification

task. Therefore, we innovatively combine both kinds of features through combination of both

embedding space and propose a ProtoNet-CE (ProtoNet with Combined Embedding) method

as shown in Fig 1. Moreover, in order to adapt to the property of cryo-ET data, we also imple-

mented a 3D extension and proposed a mixture training strategy.

We conducted experiments on simulated datasets with different SNRs as well as on real

datasets, and our model achieved high accuracy on both (5-way 5-shot classification

accuracy > 0.86 on the simulated dataset with SNR = 0.1 and 3-way 1-shot classification

accuracy > 0.9 on the real datasets). Comparison with the baseline method also shows signifi-

cant improvement, demonstrating the superiority of our approach.

Our main contributions are summarized as follows:

1. Our work tackles the problem of making predictions on unseen structures with limited

labeled subtomograms, enabling newly-discovered structures to be quickly discriminated

and studied through large-scale cryo-ET data.

2. We tailor the structure of ProtoNet and propose a ProtoNet3D model for cryo-ET data. To

the best of our knowledge, this is the first work to apply few-shot learning to subtomogram

classification.

3. We propose a novel few-shot learning based subtomogram classification method that com-

bines task-agnostic embedding and task-specific embedding called ProtoNet-CE. And our

ProtoNet-CE model achieves even higher accuracy on subtomogram classification than

ProtoNet, which is one of the state-of-the-art few-shot learning methods.

4. We also propose a mixture training strategy to attenuate the effect of noise in cryo-ET data,

which performs well on simulated datasets.

Materials and methods

Datasets

Simulated datasets. The simulated datasets we used are acquired from previous work in

[15], containing simulated subtomograms of 22 macromolecular complexes from the Protein
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Data Bank [22]. Different noise were added to achieve different SNR levels and the particles

are randomly rotated and translated. In this paper, we chose three SNR levels that are similar

to the real subtomograms including 0.03, 0.05 and 0.1 to make three simulated datasets. And

for each dataset, we randomly selected 100 subtomograms for each complex and 100 subtomo-

grams containing no macromolecule as the 23rd class. An example of the simulated dataset is

shown in Fig 2.

Fig 1. The flowchart of our method. Suppose we have a support set with three classes and three labeled samples of each class. Firstly, each support sample is mapped

into a task-agnostic embedding space through a 3D encoder and the prototype of each class is calculated. Then a task-specific embedding space is generated through a

transformer to focus more on the current classification task, with another set of prototypes calculated. The query sample x is mapped to both embedding spaces

respectively and the distances between x and prototypes in both embedding spaces are combined as the classification criteria using a nearest neighbor classifier.

https://doi.org/10.1371/journal.pcbi.1008227.g001

Fig 2. An example of the simulated dataset. (a) Atomic structure of ferritin (PDB ID: 1LB3). (b) Examples of simulated subtomograms

containing ferritin macromolecule (PDB ID: 1LB3), represented by several slices of one subtomogram (40 × 40 × 40) in the simulated dataset

with SNR = 0.1, 0.05 and 0.03.

https://doi.org/10.1371/journal.pcbi.1008227.g002
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Real datasets. Two real datasets were utilized in this paper. One is the 7-class single parti-

cle dataset by Noble et al [23], with SNR = 0.5 and missing wedge angle of 30 degrees (tilt

angle range -60 to +60 degrees). The other is a 6-class dataset extracted from rat neuron tomo-

grams with SNR = 0.01 and tilt angle range -50 to 70 degrees generated by Guo et al [17].

Again, 100 subtomograms are randomly selected for each class (if there were less than 100

samples for some class, all samples of that class will be selected).

Methods

Instance embedding based on ProtoNet3D. ProtoNet is based on a basic assumption

that there exists an embedding space where samples of each category cluster around a proto-

type. Thus, in this embedding space, we can find the nearest prototype and also the category

for each sample through a nearest neighbor classifier [20]. Because the input data are 3D gray

scale images, we design a ProtoNet3D model by replacing the 2D filters with 3D filters in the

ProtoNet model. The model is described as follows.

Suppose there is a support set S with N samples (i.e. subtomograms) xi, and each sample has

a corresponding class label yi (i.e. macromolecule structural class), where i = 1, 2, . . ., N and

yi 2 {1, 2. . .., K}. An embedding function fϕ with learnable parameters ϕ maps each sample to

the embedding space. Thus, a prototype ck for each class k can be calculated in the embedding

space as

ck ¼
1

jSkj

X

ðxi ;yiÞ2Sk

f�ðxiÞ: ð1Þ

Where Sk = {(xi, yi)|yi = k} is the support set of class k. The prototype ck is actually the center

of the embedded samples fϕ(xi) of class k in the support set. And the probability that a query

sample x is categorized to class k is defined as a softmax function performed on the distances

between x and all the prototypes as shown in Eq 2.

p�ðy ¼ kjxÞ ¼
expð� dðf�ðxÞ; ckÞÞP
k0expð� dðf�ðxÞ; ck0 ÞÞ

: ð2Þ

Where d(z, z0) = kz − z0k2 denotes the squared Euclidean distance between z and z0. For each

episode in the training process, NC classes are sampled with NS support samples and NQ query

samples (as the query set Qk) for each class. The loss for each episode is calculated as:

Jð�Þ ¼
1

NCNQ

X

k

X

ðx;yÞ2Qk

� logp�ðy ¼ kjxÞ: ð3Þ

The larger the probability of each query sample x catergorized into the right class k, the

smaller the loss of this episode. And the goal of the training process is to minimize the loss

function J(ϕ) so as to learn the best embedding for the few-shot classification task [20]. The

parameters of the embedding function fϕ is updated according to the loss function in each epi-

sode so as to achieve the goal.

Embedding adaptation via transformer. The embedding described above is simply

learned from all training samples, regardless of the classification task in the test set. Inspired by

FEAT [21], we add an adaptation step to extract task-specific features via a transformer. For

each episode, we define Q0 = Csupport [ Xquery, where Csupport denotes the set of the prototypes

calculated with the support samples in this episode, and Xquery denotes the query set in this epi-

sode, and set Q0 = K0 = V0. The transformer works with three sets: the set of query points Q,
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the set of keys K, and the set of values V defined as:

Q ¼WT
Q½f�ðxqÞ; 8xq 2 Q0� 2 Rd�jQ0 j;

K ¼WT
K ½f�ðxkÞ; 8xk 2 K0� 2 Rd�jK0 j;

V ¼WT
V ½f�ðxvÞ; 8xv 2 V0� 2 Rd�jV0j:

ð4Þ

Where WQ, WK and WV are learnable weight matrices and d denotes the dimension of the

points after mapping. The task-agnostic embedding fϕ(xq) is mapped again to a new embed-

ding space through those learnable matrices. The similarity between xq with each xk will be cal-

culated in this new embedding space as attention and used as the weight for the corresponding

xv with a softmax function:

aq;k ¼ softmax
f�ðxqÞ

TWQK
ffiffiffi
d
p

" #

k

: ð5Þ

Then the weighted average of the xvs will be added to the original embedding and the modi-

fied embedding is

f �
�
ðxqÞ ¼ f�ðxqÞ þ

X

k

aq;kV:;k: ð6Þ

The training process of the transformer is similar to that of the ProtoNet described above,

with the embedding function fϕ changed into f �
�

. The weight matrices WQ,WK and WV are

updated through episodes to minimize the loss function. Thus, the features extracted by the

transformer will focus more on the categories in the classification task instead of the whole

training set.

Combination of the two embeddings. In order to consider the task-specific features

together with the task-agnostic features, we decide to combine the distances calculated in both

embedding spaces above as the final classification criteria. Therefore, the probability in Eq 2 is

transformed into

p�
�
ðy ¼ kjxÞ ¼

expð� ðdk þ d�kÞÞP
k0expð� ðdk0 þ d�k0 ÞÞ

: ð7Þ

Where dk = d(fϕ(x), ck) and d�k ¼ dðf �
�
ðxÞ; c�kÞ (c�k ¼ f �

�
ðckÞ). And the loss function in Eq 3 is also

changed with the new probability

J�ð�Þ ¼
1

NCNQ

X

k

X

ðx;yÞ2Qk

� logp�
�
ðy ¼ kjxÞ: ð8Þ

Remark 1 The combination we used in the algorithm is the addition of the two distances
because we considered that addition is one of the most commonly used operation in deep learning
and is intuitive in the concept of combining two distances. Moreover, it is also easy to implement.
Other operations like multiplication or weighted average also have the potential to complete the
combination, but they are relatively complicated to optimize. So we chose the easiest addition for
experiment. Other operations can be explored in our future work.

Implementation details. The original embedding function fϕ is implemented through a

convolutional neural network, and we proposed a 3D variant of the original ProtoNet for few-

shot subtomogram classification denoted as ProtoNet3D. It contains four ConvBlock modules,

where a 3D convolutional layer with 64 parallel 3 × 3 × 3 filters is combined with a Batch
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Normalization layer, a ReLu activation layer, and a 2 × 2 × 2 3D max pooling layer. The parallel

3D filters are designed to extract different features from subtomograms and the max pooling

layer is for feature selection and dimension reduction. The ConvBlocks are followed by a Flat-

ten layer which ensures the features are integrated into a one-dimensional embedding.

The transformer is implemented with an attention block concatenating three fully con-

nected layers as the learnable weight matrices described in Section 2.3, followed by a softmax

layer and several matrix multiplication operations. Then another fully connected layer is

designed to obtain the weighted average of the outputs of the attention block which is then

added to the original embedding. The detailed architectures of our model are shown in Fig 3.

In the training process, the encoder and the transformer are trained respectively. We first

train the encoder as described in Section 2.2, and then train the transformer using the loss cal-

culated through the new embedding function f �
�

while the parameters of the encoder are fixed.

The distances in both embedding spaces are combined only in the test process. For each data-

set, an episode in the training process contains the same size of support set and query set as

in the test process described in Section Results. For example, for the 5-way 5-shot results in

Table 1, a training episode contains 5 classes with 5 support samples and 15 query samples

for each class. In the test process, each query sample will be mapped into the two embedding

spaces with embedding function fϕ and f �
�

respectively, and the distances of the sample to the

prototypes calculated through the support set will be obtained in the two spaces. The structural

Fig 3. Architectures of our ProtoNet-CE network. Details of the 3D encoder and the transformer.

https://doi.org/10.1371/journal.pcbi.1008227.g003

Table 1. The classification accuracy of the simulated datasets. 5-shot is short for 5-way 5-shot and 1-shot is short for 5-way 1-shot. The suffix (mix) means that the

model is trained on a dataset with mixed SNR.

Methods SNR = 0.1 SNR = 0.05 SNR = 0.03

5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

ProtoNet-CE 0.8612±0.0165 0.7644±0.0216 0.7868±0.0194 0.7040±0.0214 0.6932±0.0212 0.5696±0.0205

ProtoNet3D 0.8432±0.0198 0.7480±0.0203 0.7567±0.0200 0.6901±0.0236 0.6631±0.0177 0.5287±0.0192

ProtoNet-CE(mix) 0.8580±0.0185 0.8163±0.0193 0.8017±0.0196 0.7360±0.0213 0.7512±0.0198 0.6576±0.0224

ProtoNet3D (mix) 0.8616±0.0169 0.7689±0.0253 0.7972±0.0201 0.6808±0.0236 0.7545±0.0213 0.6304±0.0212

Baseline (fine-tune) 0.7658±0.0172 0.5894±0.0215 0.7181±0.0232 0.4349±0.0225 0.6039±0.0184 0.4039±0.0201

https://doi.org/10.1371/journal.pcbi.1008227.t001
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label of the sample will be predicted by comparison of the combined distances through a near-

est neighbor classifier.

The network in our model as well as the code for training and test was implemented

through PyTorch. The models were trained using optimizer Adam (Adaptive Moment Estima-

tion) [24] with β1 = 0.9, β2 = 0.999 and learning rate of 1 × 10−4. The baseline method in our

experiments is finetuning, where a fully connected (FC) layer is added to the encoder and the

model is trained on the training set and then fine-tuned with the support set. The finetuning

process is similar to training process, but keeping the parameters of the encoder unchanged.

The parameters of the fully connected layer are adjusted according to the loss calculated

through the predicted results of samples in the support set with optimizer Adam.

Remark 2 Empirically, we take the same number of classes (NC) in each episode in the train-
ing set and the test set to simplify the experiments. Setting larger NC for the training set than the
test set may further improve the accuracy, while take longer time to converge during the training
procedure.

Results

Classification results on simulated datasets

The 23 classes for the simulated datasets were randomly split into a training set of 10 classes, a

validation set of 5 classes and a test set of 8 classes. The splits remain consistent between differ-

ent SNR levels. Models were first trained on the training set, and then evaluated on the valida-

tion set. The model with best performance on the validation set was finally chosen for the test

set. During the test period, the model were tested with randomly sampled NC classes with NS

support samples and NQ query samples for each class from the test set for 100 times respec-

tively to obtain the mean classification accuracy. The NQ was set to 15 in our experiments on

simulated data. Details of the accuracy and other metrics of the classification results are pro-

vided in S1 File. We have also calculated the macro average precision as an additional reference

as reported in Table A in S1 File. The experiments were conducted respectively with the base-

line method, the ProtoNet3D model, and the ProtoNet-CE method. The results are shown in

Table 1.

Compared to the baseline method, our model (either the ProtoNet3D or the ProtoNet-CE)

demonstrates superior classification performance. The privilege of our model is especially pro-

nounced for the 1-shot case, where the baseline method may suffer severe overfitting. And the

accuracy in the case of 5-way 5-shot is competitive even compared with the result of a CNN

model trained on 500 subtomograms for each class as in [15] (about 0.66 for SNR of 0.03 and

0.77 for SNR of 0.05), considering our minimal demand for labeled data. Moreover, our Proto-

Net-CE model also outperforms the simple ProtoNet3D model with at least one percentage

mean accuracy on all datasets, which may be explained by the comprehensive consideration of

task-agnostic and task-specific features in the two embedding space. We have further demon-

strated the advantages of combination of the two embeddings in Table 2 with ablation study.

Experiments were conducted using only the task-agnostic embedding distance d, only the

Table 2. The classification accuracy of the simulated datasets with different embedding distance used.

Distance SNR = 0.1 SNR = 0.05 SNR = 0.03

5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

d+d� 0.8612 0.7644 0.7868 0.7040 0.6932 0.5696

d 0.8432 0.7480 0.7567 0.6901 0.6631 0.5287

d� 0.8428 0.7884 0.7648 0.6500 0.6736 0.5524

https://doi.org/10.1371/journal.pcbi.1008227.t002
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task-specific embedding distance d�, and the combined distance d + d� for classification

respectively. The results show that the prediction accuracy with combined distance is higher in

most cases than using d or d� alone, indicating that the combined distance is better.

Remark 3 The computational efficiency: making prediction on a 40 × 40 × 40 subtomogram
takes about 0.2s on CPU with our method.

Mix training strategy

It is also noticed that the accuracy is significantly reduced as the SNR decreases, which indi-

cates that our model is seriously disturbed by noise. Therefore, we hope to make our model

eliminate the interference of noise and extract the noise-independent features to discriminate

different macromolecular complexes. We proposed a mix training strategy to address the

problem. The model was trained on a mixed dataset where each class includes 100 samples

with SNR = 0.1, 0.05, and 0.03 respectively (300 samples in total). And the test set contains sub-

tomograms with only one SNR level as usual.

For the ProtoNet3D model, the results shown in Table 1 exhibit a shift in the classification

accuracy with SNR of 0.03 when trained on the mixed dataset. And there is also a slight

increase in the 5-way 5-shot case for the dataset with SNR of 0.05. We may also conclude that

this training strategy is helpful from the evidence that the difference between the accuracy of

the test sets with SNR = 0.05 and 0.03 is reduced (0.0936 to 0.0427 in 5-way 5-shot, and 0.1614

to 0.0504 in 5-way 1-shot), showing less effect of noise on the classification performance.

To rule out the impact of sample size, we have also conducted experiments with 34,33 and

33 samples with SNR = 0.1, 0.05, and 0.03, respectively. The results in Table 3 demonstrate

that the mix training also works with the same sample size. The classification accuracy of Pro-

toNet3D(Mix34) on the dataset with SNR = 0.03 obviously increases than ProtoNet3D(Single).

However, in the case of SNR = 0.1 and SNR = 0.05, the accuracy increases just slightly or even

decreases (in 1-shot case). We speculate that in ProtoNet3D(mix), samples with higher SNR

than the test set play a relatively more important role in improving accuracy, while samples

with lower SNR may also provide some effective information for learning. Moreover, training

with 100 samples with SNR = 0.1, 0.05, 0.03 respectively leads to higher accuracy because of

taking full use of all the data available.

We have also applied the mix training strategy to the ProtoNet-CE model for further

improvements on the performance. And the results indicate that the accuracy in 1-shot

case significantly improved while in 5-shot case the accuracy is also close to the highest ones

among all the methods.

Classification results on real datasets

Due to the smaller number of categories in the real datasets, we removed the validation set and

randomly divided them into training and test sets (Noble: 4 classes for training and 3 for test-

ing, Guo: 3 classes for training and 3 for testing). Therefore, the best model for the test set was

Table 3. The classification accuracy of the simulated datasets with different settings of mix training strategy on ProtoNet3D. Single means the model trained on the

dataset with single SNR. Mix100 means the model trained on the dataset with 100 samples for each SNR level. And Mix34 means the model trained on the dataset with

34,33 and 33 samples with SNR = 0.1, 0.05, and 0.03, respectively.

Methods SNR = 0.1 SNR = 0.05 SNR = 0.03

5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

Single 0.8432±0.0198 0.7480±0.0203 0.7567±0.0200 0.6901±0.0236 0.6631±0.0177 0.5287±0.0192

Mix100 0.8616±0.0169 0.7689±0.0253 0.7972±0.0201 0.6808±0.0236 0.7545±0.0213 0.6304±0.0212

Mix34 0.8483±0.0168 0.7356±0.0224 0.7793±0.0185 0.6529±0.0235 0.7007±0.0197 0.5915±0.0240

https://doi.org/10.1371/journal.pcbi.1008227.t003

PLOS COMPUTATIONAL BIOLOGY Few-shot macromolecule classification in cryo-ET

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008227 November 11, 2020 10 / 15

https://doi.org/10.1371/journal.pcbi.1008227.t003
https://doi.org/10.1371/journal.pcbi.1008227


chosen according to the performance on the training set directly. The classification accuracy is

calculated through 100 episodes each with randomly sampled NC classes and NQ samples for

each class. The NC here was set to 3 and NQ was still 15. The results for both datasets are shown

in Table 4. The ProtoNet3D model itself already achieved significantly higher accuracy than

the baseline method for both datasets and even achieves 100 percent accuracy with Noble data-

set because of fewer categories to recognize and more obvious distinction between categories.

As for our combined model, the results show that ProtoNet-CE improves the accuracy on the

Guo dataset from 0.9227 to 0.9406 (5-shot) and 0.8407 to 0.9153 (1-shot) compared to Proto-

Net3D, and maintain 100% accuracy on the Noble dataset as ProtoNet3D.

In order to prove the efficacy of our classification, we have conducted subtomogram aver-

aging for the classification results of both simulated and real datasets and the averaged subto-

mograms are shown in Fig 4. The resolution of these averaged subtomograms as well as the

resolution of the original subtomograms before classification is calculated on the common

structure proteasome (3DY4, double capped proteasome and T20S proteasome) in these three

datasets. The results indicate that in all the three datasets, the averaged subtomograms show

improved resolution compared with the corresponding original subtomograms. We have also

analyzed the classification performance on different structural classes in S1 File and provided

examples of classified subtomograms from the classes with highest/lowest classification accu-

racy in the three datasets. The results indicate that the structures with relatively clear outlines

and larger difference between other structures in the test set are more likely to obtain a higher

classification accuracy. As further proof of the superiority of our method, examples of subto-

mograms that are correctly classified by our method but wrongly classified by the baseline

method are shown in Fig B in S1 File. Our method outperforms the baseline method especially

on the subtomograms with relatively indistinct structures.

Discussion

In recent years, cryo-ET has emerged as a major tool for the analysis of the structural and spa-

tial organization of macromolecules inside single cells in situ. However, accurate and efficient

classification of unknown macromolecular strucures in cryo-ET is a major challenge due to

structural complexity and imaging limits. In this paper, we proposed a few-shot learning based

method of subtomogram classification, which achieved high accuracy with limited supervised

information provided. To the best of our knowledge, this is the first work to apply few-shot

learning to subtomogram classification. We have tailored one of the state-of-the-art few-shot

learning networks, ProtoNet, to adapt it to the subtomogram data, and presented the Proto-

Net3D model. As a further improvement, we proposed a novel ProtoNet-CE model which

integrated task-agnostic and task-specific embedding spaces to make more accurate classifica-

tion. To address the issue that high level of noise in subtomograms may reduce classification

Table 4. The classification accuracy of the real datasets of subtomograms.

Dataset Methods 3-way 5-shot 3-way 1-shot

Guo ProtoNet3D 0.9227±0.0076 0.8407±0.0153

Guo ProtoNet-CE 0.9406±0.0066 0.9153±0.0146

Guo Baseline (fine-tune) 0.8000±0.0135 0.5849±0.0152

Noble ProtoNet3D 1.0000±0.0000 1.0000±0.0000

Noble ProtoNet-CE 1.0000±0.0000 1.0000±0.0000

Noble Baseline (fine-tune) 0.8702±0.0208 0.7965±0.0236

https://doi.org/10.1371/journal.pcbi.1008227.t004
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Fig 4. The results of subtomogram averaging. (a) Averaged subtomograms after classification. (b) Examples of original subtomograms

(before classification) compared to averaged subtomograms (shown in 2D slices).

https://doi.org/10.1371/journal.pcbi.1008227.g004

PLOS COMPUTATIONAL BIOLOGY Few-shot macromolecule classification in cryo-ET

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008227 November 11, 2020 12 / 15

https://doi.org/10.1371/journal.pcbi.1008227.g004
https://doi.org/10.1371/journal.pcbi.1008227


accuracy, we proposed a training strategy that train the model on datasets with mixed SNR,

and verified the effectiveness through experiments.

Our algorithm has shown excellent capability of generalizing to new classes with only a few

samples labeled. It is practically very useful in rapidly recognizing newly discovered structures

from numerous unlabeled subtomograms given few labeled samples and thus facilitating the

follow-up research on those structures. Compared with the unsupervised methods, our

method can directly identify each subtomogram with the specific class of macromolecular

structures of interest, and can obtain significantly better detection accuracy on these specific

classes. Compared to other supervised methods, our method needs much less annotated data

and can make accurate predictions about unseen structures in the training data. Although our

method could not totally solve the problem of fully automatically discover novel structures

from subtomograms, our work represents an important step towards automatic and systematic

in situ structural analysis of macromolecules in single cells captured by cryo-ET.

There are some other related issues that might be with practical significance while we could

not address in this paper due to the limitation of data and time. We hope to leave them for

future work to explore as soon as conditions permit.

• The effect of missing edge angles and increment angles on the program’s performance,

which is hard to evaluate with the current datasets because each dataset has different config-

urations. If more datasets with the same conditions except missing edge angles and incre-

ment angles are available in the future, we could explore this issue in our future work.

• The performance of this method on bacterial tomograms. Relevant experiments are difficult

to conduct for now in total lack of labels of the subtomograms in those bacterial tomograms.

By collecting the necessary annotation data, we may make this attempt in our future work.

• The ability of this method to deal with the same macromolecular complex exhibiting many

different coexisting conformations. Theoretically, our method can make correct classifica-

tion on different coexisting conformations of the same macromolecular complex with minor

structural differences. However, if the difference between different conformations is too

large, the sample might be too far away from the prototype in the embedding space and can-

not be correctly characterized. The performance might be influenced by both the similarity

of the conformations and the differences between these conformations and other structures

to be identified. The actual results need to be verified by further experiments.

Supporting information

S1 File. Supplementary document. Details about the metrics used to evaluate the classifica-

tion performance, and additional results with tables and representative figures.

(PDF)
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