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Abstract
The	viability	of	wild	bee	populations	and	the	pollination	services	that	they	provide	are	
driven	by	the	availability	of	food	resources	during	their	activity	period	and	within	the	
surroundings	of	their	nesting	sites.	Changes	in	climate	and	land	use	influence	the	avail-
ability	of	these	resources	and	are	major	threats	to	declining	bee	populations.	Because	
wild	bees	may	be	vulnerable	to	interactions	between	these	threats,	spatially	explicit	
models	of	population	dynamics	that	capture	how	bee	populations	jointly	respond	to	
land	use	at	a	landscape	scale	and	weather	are	needed.	Here,	we	developed	a	spatially	
and	temporally	explicit	theoretical	model	of	wild	bee	populations	aiming	for	a	mid-
dle	ground	between	the	existing	mapping	of	visitation	rates	using	foraging	equations	
and	more	refined	agent-	based	modeling.	The	model	is	developed	for	Bombus	sp.	and	
captures	within-	season	colony	dynamics.	The	model	describes	mechanistically	forag-
ing	at	the	colony	level	and	temporal	population	dynamics	for	an	average	colony	at	the	
landscape	level.	Stages	in	population	dynamics	are	temperature-	dependent	triggered	
by	a	theoretical	generalized	seasonal	progression,	which	can	be	informed	by	growing	
degree	days.	The	purpose	of	the	LandscapePhenoBee	model	 is	to	evaluate	the	 im-
pact	of	system	changes	and	within-	season	variability	in	resources	on	bee	population	
sizes	and	crop	visitation	rates.	In	a	simulation	study,	we	used	the	model	to	evaluate	
the	impact	of	the	shortage	of	food	resources	in	the	landscape	arising	from	extreme	
drought	events	in	different	types	of	landscapes	(ranging	from	different	proportions	of	
semi-	natural	habitats	and	early	and	late	flowering	crops)	on	bumblebee	populations.

K E Y W O R D S
agricultural	landscape,	drought,	land-	use,	phenology,	pollination	services,	wild	bees

T A X O N O M Y  C L A S S I F I C A T I O N
Agroecology;	Biodiversity	ecology;	Conservation	ecology;	Ecosystem	ecology;	Ecosystem	
services	studies;	Landscape	ecology;	Population	ecology

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0003-3252-5402
https://orcid.org/0000-0002-2901-7602
https://orcid.org/0000-0003-2938-4725
https://orcid.org/0000-0002-2932-6253
http://creativecommons.org/licenses/by/4.0/
mailto:maria.blasi_romero@cec.lu.se


2 of 14  |     BLASI et AL.

1  |  INTRODUC TION

Bees	are	key	pollinators	in	many	natural	ecosystems	and	provide	pol-
lination	services	for	agricultural	crops	(Klein	et	al.,	2007).	However,	
domestic	and	wild	bees	are	threatened	by	consequences	of	climate	
change	 and	 land-	use	 change	 (IPBES,	 2016;	 Soroye	 et	 al.,	 2020; 
Vanbergen	&	the	Pollinators	 Initiative,	2013)	and	have	been	nega-
tively	affected	in	many	parts	of	the	world,	at	the	local	and	regional	
scale	(Biesmeijer	et	al.,	2006;	Potts	et	al.,	2010).	A	good	quantitative	
understanding	of	global	change	effects	on	pollinators	is	important	to	
understand	the	consequences	for	pollination	services	and	the	need	
for	 conservation.	 Pollinator	 models	 are	 increasingly	 used	 in	 eco-
system	service	mapping	and	impact	assessments	to	relate	land-	use	
patterns	to	the	population	size	of	pollinators	such	as	bees	(Becher	
et	 al.,	2018;	Gardner	et	 al.,	2021;	Koh	et	 al.,	 2016).	The	consider-
ation	of	variability	 in	weather	and	climate	has	received	 less	atten-
tion,	despite	its	importance	in	driving	demographic	rates,	population	
sizes	 (Selwood	 et	 al.,	 2015),	 and	 distributions	 (Aguirre-	Gutiérrez	
et	al.,	2017).	 Indeed,	 land	use	and	climate	change	have	 interactive	
effects	on	pollinators	(Oliver	et	al.,	2015;	Prestele	et	al.,	2021)	and	
thus	should	be	considered	jointly.

Climate	 change	 effects	 include	 gradual	 changes	 in	 annual	
means,	 altered	 seasonal	 variation,	 and	 increased	 frequency	 of	 ex-
treme	 events,	 such	 as	 heatwaves	 and	 extended	 drought	 periods	
(IPCC,	 2021).	 The	 phenologies	 of	 many	 ecological	 processes	 are	
moderated	 by	 temperature	 and	 thus	 sensitive	 to	 climate	 change.	
For	example,	plant	phenology	shifts	can	potentially	affect	 interac-
tions	 between	 pollinators	 and	 host	 plants,	 due	 to	 mismatches	 of	
flowering	 and	 pollinator	 foraging	 (when	 shifts	 are	 asynchronous)	
(Freimuth	et	al.,	2022;	Gérard	et	al.,	2020;	Memmott	et	al.,	2007; 
Scaven	&	Rafferty,	2013).	Under	drought	conditions,	floral	resources	
are	 reduced	 for	 pollinators,	 affecting	 pollinator	 survival	 (Phillips	
et	al.,	2018;	Wilson	Rankin	et	al.,	2020).

Bumblebees	(genus	Bombus)	contribute	critically	to	the	provision	
of	crop	pollination	(Table	S2	from	Kleijn	et	al.,	2015).	The	presence	of	
floral	(i.e.,	semi-	natural	habitats	(SNH)	and	flowering	crops)	and	nest-
ing	resources	(i.e.,	natural	and	SNH,	field	edges,	forests,	meadows,	
and	permanent	grasslands)	in	the	landscape	during	their	life	span	is	
key	 for	 their	colony	development.	This	 includes	among	others	 the	
ability	to	produce	large	foragers	(Persson	&	Smith,	2011),	to	produce	
males	and	new	queens	at	the	end	of	the	season	(Rundlöf	et	al.,	2014),	
and	to	survive	during	winter	(Persson	&	Smith,	2013).	Intensive	agri-
cultural	management	in	large	arable	fields	reduces	the	availability	of	
nesting	sites,	with	reduced	crop	diversity	(Aizen	et	al.,	2019)	being	
associated	with	the	dominance	of	individual	flowering	crops	which	
may	cause	bottlenecks	in	terms	of	foraging	resources	for	pollinators	
outside	of	the	flowering	period	of	these	crops.	Understanding	how	
spatial	and	temporal	variability	of	resources	driven	by	land	use	and	
climate	change	interact	at	the	landscape	level	and	affect	pollinator	
populations	is	crucial	to	help	ensure	that	crop	demands	and	pollina-
tor	supplies	are	well-	matched	(Settele	et	al.,	2016).	Bees	are	affected	
by	 climate	 change	 and	 there	 are	 adaptive	 limits	 of	 this	 pollinator	
group	to	track	climate	change	(Kerr	et	al.,	2015;	Potts	et	al.,	2010; 

Prestele	et	al.,	2021;	Sirois-	Delisle	&	Kerr,	2018).	While	the	availabil-
ity	of	habitats	rich	in	resources	for	bees,	such	as	SNH,	may	be	able	to	
offset	the	deleterious	effects	of	climate	change	on	bee	communities	
(Papanikolaou	et	al.,	2017),	the	interactions	between	the	effects	of	
land	use	and	climate	are	still	poorly	studied.

Spatially	 explicit	 models	 of	 pollinators	 produce	 bee	 visitation	
rates	from	proxies	of	bee	abundance	and	floral	resources	at	a	land-
scape	scale,	which	is	used	as	a	representation	for	the	supply	of	pol-
lination	(e.g.,	InVEST	pollination	module	using	Lonsdorf	et	al.,	2009).	
Visitation	 rates	 can	be	derived	 from	central	place	 foraging	 theory	
(Lonsdorf	et	al.,	2009;	Olsson	et	al.,	2015),	assuming	that	fitness	is	
entirely	dependent	on	the	distribution	of	floral	resources	around	the	
nest	as	derived	from	a	spatially	explicit	 land	use	map.	These	mod-
els	produce	indices	of	bee	visitation	rates	for	fixed	floral	resources	
dividing	the	flying	season	 into	two	 (Häussler	et	al.,	2017)	or	 three	
periods	(see	Gardner	et	al.	(2020)).	This	allows	for	a	limited	variabil-
ity	in	resources	or	visitation	rates	within	and	between	seasons,	and	
therefore	makes	it	difficult	to	study	more	fine-	scale	variability	in	flo-
ral	resources	driven	by	climate	(e.g.,	the	different	start	of	flowering).	
Interactions	between	pollinators	and	land	use,	and	thereby	changes	
in	nesting	and	floral	 resources,	 require	models	combining	foraging	
theory	with	population	dynamics.	For	these	models	to	be	sensitive	
to	variability	in	resources	in	the	landscape,	there	is	a	need	to	model	
interactions	 at	 relevant	 spatial	 and	 temporal	 scales	 and	 include	
changes	in	growing	conditions	due	to	climate	conditions	(Johansson	
&	Bolmgren,	2019).

To	 fill	 this	 gap,	 we	 developed	 a	 spatially	 and	 temporally	 ex-
plicit	 model	 for	 wild	 bees,	 referred	 to	 from	 now	 on	 as	 the	
LandscapePhenoBee	 model,	 that	 uses	 the	 foraging	 function	 of	
an	 existing	 pollination	model	 developed	by	Häussler	 et	 al.	 (2017).	
LandscapePhenoBee	can	be	used	to	explain	and	project	population	
dynamics	based	on	changes	in	colony	dynamics	driven	by	landscape	
components	and	weather-	induced	variability	in	resources.	The	land-
scape	 components	 consider	 variation	 in	 landscape-	scale	 land	 use	
covers	 both	 differences	 in	 composition	 (proportions	 of	 different	
habitat	types)	and	configuration	(e.g.,	field	sizes).	Weather-	induced	
variability	of	resources	entails	that	the	phenological	growth	of	plant	
resources	 is	 triggered	 by	 a	 generalized	 seasonal	 progression,	 but	
also	that	extreme	weather	events	(e.g.,	droughts),	can	influence	the	
growth	of	resources.	The	different	growth	development	of	different	
stages	at	the	colony	level	is	also	triggered	by	a	theoretical	general-
ized	seasonal	progression.

The	aim	of	this	study	 is	to	use	the	LandscapePhenoBee	model	
to	explore	the	effect	of	the	temporary,	drought-	induced	shortage	in	
food	resources	on	the	population	viability	of	bumblebees,	evaluated	
by	(1)	population	size	and	(2)	production	of	queens,	and	on	(3)	the	
pollination	 services	 provided	 by	 bumblebees	 in	 different	 types	 of	
landscapes,	ranging	from	simple	(landscapes	with	a	low	proportion	
of	SNH)	to	complex	(landscapes	with	a	high	proportion	of	SNH)	agri-
cultural	landscapes,	and	including	early	and	late	flowering	crops.	We	
expect	that	(1)	bumblebee	populations	to	be	more	severely	affected	
by	drought	in	less	complex	landscapes	since	the	distance	between	a	
nest	and	floral	resources	is	on	average	larger	in	a	simple	compared	
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to	complex	landscapes	and	(2)	the	presence	of	early	flowering	crops	
will	have	an	effect	on	the	colony	dynamics,	expecting	higher	produc-
tion	of	bumblebee	workers	with	landscapes	with	lots	of	early	flower-
ing	crops,	while	landscapes	with	more	late-	flowering	crops	will	have	
a	positive	effect	on	the	production	of	queens.	The	influence	of	the	
population	parameters	is	evaluated	by	sensitivity	analysis.

2  |  METHODS

2.1  |  Theoretical model description

The	 LandscapePhenoBee	 model	 is	 designed	 to	 simulate	 wild	 bee	
species	 that	 are	 central	 place	 foragers,	 for	 example,	 a	 bumblebee	
species.	We	 considered	 a	 fictive	 common	 early	 active	 bumblebee	
that	stands	for	several	species	that	are	known	to	be	important	crop	
visiting	 species,	 including	 Bombus terrestris, Bombus lucorum,	 and	
Bombus lapidarius	(Kleijn	et	al.,	2015).

The	 model	 consists	 of	 three	 parts:	 a	 phenological	 model,	 the	
foraging	 module,	 and	 the	 colony-	population	 dynamics	 module	
(Figure 1).	 The	 phenological	 model	 simulates	 the	 availability	 of	

weekly	floral	resources	through	the	season/year	(see	Section	2.1.2).	
The	foraging	module	builds	on	an	existing	bee	foraging	model	devel-
oped	by	Häussler	et	al.	(2017)	but	expresses	visitation	rates	with	a	
higher	time	resolution	(per	week,	 instead	of	two	time	periods)	and	
focuses	 on	 the	 colony	 and	 population	 dynamics	 at	 the	 landscape	
scale	within	the	year	(instead	of	as	in	Häussler	et	al.	between	years)	
(see	Table	S1	with	a	more	extended	comparison	between	the	two	
models).	The	population	dynamics	are	expressed	for	an	average	pop-
ulation	 in	the	 landscape,	which	 is	 informed	by	the	total	amount	of	
resources	gathered	by	nests	in	the	landscape.	The	model	produces	
the	development	of	 the	population	size	and	pollination	services	 in	
the	total	landscape	as	outputs.	Input	and	output	model	parameters	
are	described	in	the	Tables	S1	and	S2.

2.1.1  |  Spatially	explicit	resources	in	the	landscape

Spatial	variability	 in	nesting	and	floral	 resources	 is	 represented	by	
spatially	explicit	maps	with	a	resolution	of	10 × 10	m.	The	size	of	a	
landscape	(2010 × 2010 m)	was	considered	to	be	sufficiently	large	to	
account	for	bee	foraging	distance,	which	is	normally	about	1000 m	or	

F I G U R E  1 Representation	of	the	spatial–	temporal	explicit	model	developed	in	this	study	including	the	climate	and	landscape	inputs	
and	the	outputs	for	the	wild	bee	population	dynamics	and	the	ecosystem	service.	The	simulated	landscapes	include	four	different	types	of	
patches:	SNH,	early	flowering	crop,	late-	flowering	crop,	and	non-	bee	habitat	(habitat	that	does	not	provide	any	resources	for	bees)
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less	for	bumblebees	(Osborne	et	al.,	2008).	The	landscape	consists	
of	 three	 types	of	 habitat	 patches:	 early-		 and	 late-	flowering	 crops,	
and	SNH.	The	rest	of	 the	grid	consists	of	a	matrix	of	non-	suitable	
habitats	for	the	bees	(representing	for	example	non-	flowering	arable	
land,	or	sealed	urban	areas),	from	this	point	forward	referred	to	as	
non-	bee	habitat.	The	resolution,	landscape	size,	and	categorization	
of	habitats	can	be	altered.

Semi-	natural	habitats	are	the	only	habitats	(among	those	repre-
sented)	where	nesting	is	considered	possible.	The	nests	are	assigned	
randomly	in	the	landscape,	and	the	density	of	nests	in	the	landscape	
is	determined	by	the	nest	density	parameter.	The	nest	allocation	is	
fixed	for	a	given	season.	We	specified	that	each	SNH	cell	can	have	
either	no	nests	or	one	nest	(but	this	can	be	changed	if	the	model	runs	
in	a	different	resolution).	The	total	number	of	nests	in	a	landscape	is	
proportional	to	the	amount	of	SNH	in	the	landscape	(the	more	SNH	
in	the	landscape,	the	more	nests).

We	 created	 artificial	 landscapes	 (e.g.,	 Figure 1)	 with	 different	
proportions	and	configurations	of	four	land-	use	classes	(SNH,	early	
and	 late	flowering	crop,	and	non-	bee	habitat)	using	the	R	package	
landscapeR	 (Masante,	2016;	Thomas	et	al.,	2020).	The	number	and	
size	of	the	patches	of	SNH	were	used	to	randomly	create	landscapes	
with	different	proportions	of	SNH	between	5%	and	25%	which	was	
used	to	describe	spatial	heterogeneity	between	simple	and	complex	
landscapes	 (Holzschuh	 et	 al.,	 2016;	 Scheper	 et	 al.,	2014).	 The	 av-
erage	 size	 of	 crop	patches	was	 set	 to	500 m2,	 and	 the	proportion	
of	flowering	crops	was	set	such	that	these	constitute	together	with	
SNH,	60%	of	the	area	in	the	landscape.

Within	the	proportion	of	crops,	fields	of	early-		and	late-	flowering	
crops	(MFC)	were	randomly	assigned	to	achieve	a	certain	proportion	
of	early	versus	late.	Consequently,	the	presence	of	these	two	crops	
was	negatively	 correlated	 (the	more	 early-	flowering	 crop,	 the	 less	
late-	flowering	crop).

Temporal	variability	 in	 floral	 resources	 is	considered	by	mapping	
floral	resources	with	a	weekly	temporal	resolution	based	on	the	floral	
phenology	model	(see	Section	2.1.2).	The	floral	phenology	model	pro-
vides	the	start,	peak,	and	end	of	flowering	in	each	habitat	type	based	
on	simulated	growing	degree	days	(GDD)	such	that	for	each	week	t,	cell	
i	has	the	floral	resource	value	F(t,i)	(Figure 1,	and	see	Figure	S1).

2.1.2  |  Floral	phenological	model

The	influence	of	climate	on	population	dynamics	and	temporal	varia-
bility	in	the	availability	of	floral	resources	for	different	land	resources	
during	 the	 year	 is	 considered	 by	 linking	 the	 LandscapePhenoBee	
model	 to	a	 theoretical	generalized	seasonal	progression	 from	0	 to	
100,	mimicking	a	sigmoid	function	of	cumulative	GDD	for	northern	
hemisphere	context	(see	Figure	S4).	If	daily	observed	temperatures	
are	available,	the	model	allows	for	a	simple	calculation	of	GDD	and	
uses	it	as	model	input.	In	this	manuscript,	we	present	a	seasonal	pro-
gression	with	an	arbitrary	GDD.

We	 modeled	 the	 temporal	 dynamics	 in	 floral	 resources	 for	
each	 land	use	separately	as	a	function	of	the	generalized	seasonal	

progression	 following	 a	 sigmoid	 function	 product	 of	 a	 cumulative	
standard	normal	distribution	and	defined	for	day	y	at	time	t	as:

where Φ	 is	 the	 probability	 function	 for	 the	 normal	 distribution	
(Figure	S4).	For	each	 land	use	type	h,	 the	start	and	end	of	 floral	 re-
sources	are	given	by	a	theoretical	gddstart,h	and	gddend,h	The	floral	re-
sources	in	cell	i	at	time	t is

where zh(t)	is	a	standardized	value	between	0	and	1	of	the	day	of	the	
year	corresponding	to	time	t,	derived	by	the	following	expression

The	maximum	floral	resources	in	habitat	h,	fmax,h,	is	a	theoretical	
parameter	that	has	assigned	a	value	between	0	and	1	to	capture	how	
the	floral	resources	in	different	habitats	relate	to	each	other,	chosen	
to	 have	 the	 following	 relations:	 early	MFC > late	MFC > SNH.	 The	
reason	was	to	simulate	the	development	of	resources	that	these	dif-
ferent	habitats	provide	along	the	season,	a	peak	of	resources	early	in	
the	season	by	early	MFC,	a	lower	peak	of	resources	later	in	the	sea-
son	by	late	MFC,	and	lower	but	constant	floral	resources	provided	
by	SNH	(see	also	Figure 3a).

2.1.3  |  Bee	foraging

The	number	of	foraging	bees	from	the	nest	in	cell	i	at	time	t is X(t,i).	
The	 foraging	 bees	 are	 initially	 overwintering	 queens,	 that	 is,	X(t,i)	
is	 1,	 and	 later	workers	 are	 produced	by	 the	 queens.	 The	 foraging	
function	is	an	exponential	kernel	reweighted	by	the	floral	resources	
(Häussler	et	al.,	2017).	The	rate	at	which	each	cell	j	is	visited	by	forag-
ing	bees	from	cell	i	during	week	t is:

where F(t,j)	 is	 the	floral	value	of	cell	 j, d(i,j)	 is	 the	Euclidean	distance	
between	cells	i	and	j, γ	is	the	mean	dispersal	distance	when	foraging;	Ui 
is	the	set	of	cells	reachable	from	cell	i.	The	denominator	in	Equation 4 
weighs	the	attractiveness	of	cell	i	compared	to	the	total	attractiveness	
of	the	cells	in	the	landscape	and	by	foraging	distances.	In	this	way,	a	
cell	further	away	from	cell	j	compared	to	cell	i	but	with	higher	floral	re-
sources	compared	to	i	can	be	receiving	more	visits.	Thus,	the	resources	
collected	correspond	to	the	distance-	weighted	resource	values	from	
cells	in	which	bees	are	nesting.	The	spatial	layer	is	treated	as	a	toroid,	
that	is,	the	edges	are	connected	to	each	other	such	that	a	bee	moving	
beyond	the	boundary	of	the	spatial	layer	appears	at	the	opposing	edge.

(1)Φ

(
y(t) − 200

65

)
⋅ 100

(2)F(t, i) =
∑
h

(
1 − 4 ∗

(
zh(t)−0.5

)2)
∗ fmax,h

(3)zh(t)=
(
y(t)−gddstart,h

)
∕
(
gddend,h−gddstart,h

)

(4)VRt
i,j
= X(t, i)

F(t, j)e−d(i,j)∕�∑
u∈Ui

F(t, u)e−d(u,j)∕�
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Under	 the	 assumption	 that	 there	 is	 no	 depletion	 of	 floral	 re-
sources	in	the	landscape,	the	resources	collected	by	foragers	emerg-
ing	from	the	nest	in	cell	i	at	time	t is

where Ui	are	the	cells	within	reach	from	cell	i.
The	average	amount	of	resources	gathered	per	nest	in	the	land-

scape	at	time	t is

2.1.4  |  Bee	colony	and	population	dynamics

The	model	covers	the	active	period	of	bees	in	the	season	for	a	given	
year,	that	 is,	 from	the	emergence	of	queens	 in	the	spring	until	 the	
production	of	daughter	queens	at	the	end	of	the	summer.

Bee	population	dynamics	are	modeled	as	two	main	stages	within	
a	 season,	 corresponding	 to	 who	 is	 foraging:	 either	 overwintering	
queens	 (1)	or	workers	 (2)	 (see	Figure 2).	 In	 turn,	 these	 two	stages	
are	subdivided	into	stages	depending	on	what	is	being	reproduced:

Stage	A1:	Overwintered	queens	 are	 foraging,	 and	workers	 are	
not	yet	being	produced.

Stage	A2:	Overwintered	queens	are	 foraging,	 and	workers	 are	
produced.

Stage	B1:	Workers	are	foraging	and	being	produced.

Stage	B2:	Workers	are	foraging,	and	daughter	queens	are	being	
produced.

Stage	B3:	No	new	individuals	are	produced,	and	the	mortality	of	
workers	and	daughter	queens	increases.

Queens	 emerge	 when	 theoretical	 GDD	 reaches	 φ	 (Table	 S2,	
Figure	S4)	 and	 start	producing	workers	 after	2 weeks	 (from	A1	 to	
A2).	 The	number	of	 foragers	during	 stage	A1	and	A2	are	one	per	
nest,	that	is,	X(t,i)	=	1	if	there	is	a	nest	in	cell	i,	and	0	otherwise.

In	stage	A2,	the	average	number	of	workers	per	nest	at	time	t,	
W(t),	is	given	by:

where δt < 1	is	the	survival	of	the	workers	from	time	t−1	and	w(t)	is	the	
average	number	of	workers	produced	per	nest	at	time	t.	Growth	de-
pends	on	the	resources	gathered	during	the	two	previous	time	periods	
(t−1	and	t−2)	according	to	a	plateau	function:

where αt	is	the	maximum	number	of	workers	that	can	be	produced	per	
nest	at	time	t	and	βt	is	a	parameter	determining	for	which	amount	of	
resources	half	of	the	potential	number	of	workers	are	being	produced	
at	time	t.	Survival	rate	and	the	two	growth	parameters	are	constant	
values	δ,	α,	and	β,	respectively,	during	stages	A2–	B2.

Workers	take	over	the	foraging,	that	is,	there	is	a	transition	from	
stages	A2	to	B1,	when	a	theoretical	GDD	has	reached	μ	(where	μ > φ)	

(5)r(t, i) =
∑
j∈Ui

F(t, j)VRt
i,j

(6)R(t) =

∑N

i=1
r(t, i)

N

(7)W(t) = �tW(t − 1) + w(t)

(8)w(t) = �t

(
1 − exp

(
−

R(t − 1) + R(t − 2)

2�t

))

F I G U R E  2 Graphical	representation	
of	the	modeling	approach	between	
the	landscape	floral	resources	and	the	
link	with	population	dynamics.	Floral	
resources	in	the	landscape	in	time	(a),	
represented	by	early	flowering	crop	
(yellow),	late-	flowering	crop	(blue),	and	
SNH	(green);	the	accumulated	resources	in	
the	bee	colony	(b);	the	number	of	foragers	
(c);	and	(d)	the	bee	caste	produced	at	
the	colony	according	to	the	different	
stages	of	the	colony	through	the	season:	
A1,	Overwintered	queens	foraging,	
and	workers	not	yet	being	produced.	
A2,	Overwintered	queens	foraging	and	
workers	are	produced.	B1,	Workers	are	
foraging	and	being	produced.	B2,	Workers	
are	foraging	and	daughter	queens	are	
being	produced.	B3,	No	new	individuals	
are	produced,	and	workers	and	daughter	
queens	start	to	decay.	N	stands	for	nests	
(1	nest,	1	queen),	W′	are	workers	and	Q'	
are	daughter	queens

(a)

(b)

(c)

(d)
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(Table	 S2,	 Figure	 S4).	 During	 this	 period	 the	 number	 of	 foragers	
emerging	from	nest	i is X(t,i)	= pw W(t).

The	colonies	begin	production	of	daughter	queens,	 that	 is,	 the	
transition	from	B1	to	B2,	when	theoretical	GDD	reaches	ψ	 (where	
ψ > μ)	(Table	S2,	Figure	S4).	The	queen	produces	new	workers	and	
daughter	queens	(stage	B2),	with	the	proportions	ϵ:	(1	–		ϵ).	The	num-
ber	of	workers	in	the	landscape	at	the	time	t is

and	the	number	of	queens	at	the	time	t is

No	more	individuals	are	produced,	that	is,	w(t)	=	0	(stage	B3),	when	no	
resources	have	been	gathered	for	two	consecutive	time	periods.	This	
is	set	to	occur	when	both	R(t−1)	and	R(t−2)	are	close	to	zero.	During	this	
stage,	δt	is	set	to	decrease	with	time	resulting	in	a	declining	survival	at	
the	end	of	the	season.

2.1.5  |  Pollination	potential

Pollination	potential	at	time	t, Pt	is	a	function	of	the	total	visitation	
rate	per	floral	resource	in	crops	according	to

where κ	 is	a	parameter	adjusting	how	quickly	 the	visitation	rate	per	
crop	 floral	 resource	 reaches	 the	maximum	pollination	potential.	The	
total	 pollination	 potential	 is	 a	 score	PS =

∑
t

Pt	 that	 represents	 how	
much	the	crops	can	benefit	from	pollination	visits	during	a	season	at	
the	landscape	scale.	The	pollination	potential	is	calculated	for	the	crop	
habitats	of	the	landscape.

The	model	assumes	that	there	is	no	depletion	of	floral	resources—	
the	 effect	 that	 pollination	 might	 have	 on	 floral	 resources—	an	 as-
sumption	shared	by	other	pollinator	models	Lonsdorf	et	al.	 (2009),	
Olsson	 et	 al.	 (2015),	 and	Häussler	 et	 al.	 (2017)	 (but	 considered	 in	
BumblebeeHAVE	[Becher	et	al.,	2018]).	However,	the	model	controls	
for	resource	competition	by	defining	that	the	average	amount	of	flo-
ral	resources	collected	per	nest	depends	on	the	number	of	nests	in	
the	landscape.	Therefore,	population	growth	is	density-	dependent,	
such	that	for	a	fixed	amount	of	floral	resources	in	a	landscape	with	
more	nests,	there	are	fewer	resources	collected	by	the	colony,	and	a	
lower	number	of	workers	or	queens	can	be	produced.

2.1.6  | Model	outputs

The	model	outputs	for	the	population	dynamics	include	the	popula-
tion	size	approximated	by	the	maximum	number	of	workers	at	the	

peak	of	population	growth	 (MaxW),	 the	 total	number	of	daughter	
queens	produced	at	the	end	of	the	season	(TQ),	and	the	pollination	
potential	per	season	in	the	landscape	(PS)	(Table	S3).	MaxW	and	TQ	
are	summarized	at	the	nest	level,	which	is	done	by	aggregating	over	
nests	 in	the	 landscape	and	divided	by	the	number	of	nests	 (in	the	
landscape).

2.2  |  Model implementation

2.2.1  |  Drought

In	this	simulation	study,	we	introduced	a	drought	event	as	a	reduc-
tion	in	floral	resources	that	was	defined	by	a	fixed	starting	point	
early	 in	 the	 season	 and	 had	 a	 duration	 between	 1	 and	 4 weeks	
(see	Figure 3,	Figures	S2	and	S3).	The	reduction	of	floral	resources	
was	simulated	in	a	way	that	penalizes	the	growth	of	resources:	if	
in	normal	conditions	the	growth	is	positive,	the	growth	in	drought	
conditions	will	 be	 close	 to	 zero,	while	 if	 the	 growth	 is	 negative,	
under	drought	conditions	this	will	translate	in	a	50%	larger	reduc-
tion	 of	 growth.	Drought	 and	 no-	drought	 conditions	were	 evalu-
ated	as	a	case–	control	setup,	which	allowed	us	to	study	the	effect	
of	 drought	 by	 comparing	 the	 model	 results	 with	 and	 without	
drought	while	 the	rest	of	 the	model	design,	 including	the	gener-
ated	 landscape	and	distribution	of	 floral	 resources	 in	space,	was	
kept	constant	within	case–	control	pairs.	The	start	of	the	drought	
was	defined	by	an	arbitrary	GDD	above	5°C,	which	translates	into	
a	corresponding	day	of	the	year,	 following	the	other	events	trig-
gered	by	arbitrary	GDD	(see	Figure	S4).

2.2.2  |  Simulation	design

To	study	the	effect	of	 landscape	heterogeneity	on	the	impact	of	
drought	 on	 bee	 populations	 and	 their	 pollination,	 a	 simulation	
experiment	was	 constructed	 by	 varying	 the	 amount	 and	 size	 of	
patches	of	SNH,	 the	proportion	of	early	and	 late	 flowering	crop	
habitat,	and	the	duration	of	drought.	We	generated	a	simulation	
design	 for	 landscapes	using	 latin	hypercube	 sampling	of	 the	 fol-
lowing	 factors:	 SNH	 sizes	 within	 the	 range	 of	 5000–	15,000 m2,	
the	proportion	of	SNH	in	the	landscape	between	5%	and	25%,	and	
duration	 of	 drought	 between	 1	 and	 4 weeks.	 The	 proportion	 of	
SNH	in	the	landscape	would	determine	the	amount	of	MFC	in	the	
landscape,	and	the	proportion	of	early	and	later	MFC	was	defined	
as	described	in	Section	2.1.1.

We	applied	5	iterations	of	20	sampling	combinations,	generating	
100	unique	landscapes.	For	each	draw	of	design	variables	(iteration),	
a	 landscape	 and	 associated	 floral	 resources	 were	 generated	 (first	
without	and	then	with	drought	for	the	given	duration),	obtaining	a	
total	sample	size	of	200	simulations.	Landscape	heterogeneity	and	
the	 actual	 proportion	 of	 SNH	 were	 calculated	 from	 the	 artificial	
landscape.	The	model	and	simulation	have	been	 implemented	 in	R	
version	4.1.1	(R	Core	Team,	2021).

(9)W(t) = �tW(t − 1) + �w(t)

(10)Q(t) = �t Q(t − 1) + (1 − �)w(t)

(11)Pt =
�
i

F(t, i)

⎛
⎜⎜⎜⎝
1 − exp

⎛
⎜⎜⎜⎝
− �

∑
j∈Ui

VRt
j,i

F(t, i)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
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2.3  |  Analysis

2.3.1  |  Regression	analysis

Using	the	 lmer	function	in	the	R	package	lme4	(Bates	et	al.,	2014),	
we	fitted	separate	 linear	mixed	models	for	the	response	variables:	
maximum	 number	 of	workers	 per	 nest	 (MaxW),	 the	 total	 number	
of	daughter	queens	produced	per	nest	(TQ),	and	the	pollination	po-
tential	 (PS).	 In	 each	model,	we	 included	 the	 explanatory	 variables	
drought,	proportion	of	SNH,	and	the	proportion	of	early-	flowering	
crops	in	the	landscape	(including	a	linear	and	a	quadratic	term	[i.e.,	
second-	order	 polynomial]),	 as	 well	 as	 the	 interactions	 between	

landscape	 variables	 and	 drought	 as	 explanatory	 variables.	Models	
included	the	landscape	identification	number	as	a	random	factor	(to	
be	able	 to	evaluate	 the	case–	control	 setup	with	 the	drought).	We	
assessed	the	significance	of	the	main	effects	using	likelihood-	ratio	
tests	comparing	models	with	and	without	the	effect	(Table	S5).

2.3.2  |  Sensitivity	analysis

The	 influences	 of	 the	 population	 model	 parameters	 were	 evalu-
ated	 with	 respect	 to	 the	 estimated	 effects	 of	 SNH,	 early	 flower-
ing	 crop,	 and	 drought,	 on	 the	 three	 outcome	 quantities	 (MaxW,	

F I G U R E  3 One	example	of	graphical	
representation	of	the	model	simulation	for	
the	floral	resources	in	the	landscape	along	
the	season	(a);	the	resources	gathered	at	
the	colony	(b);	the	number	of	workers	and	
queens	(c);	and	the	pollination	potential	
(d).	All	graphs	include	also	the	simulations	
under	drought	conditions,	indicated	with	
a	dashed	line.	The	red	segments	in	the	
graph	indicate	when	the	drought	takes	
place 5 10 15 20
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TQ,	 and	 the	 PS).	 We,	 therefore,	 built	 a	 separate	 model	 for	 each	
outcome	 quantity	 and	 included	 the	 mentioned	 model	 predictors	
without	 interactions.	 We	 used	 a	 local	 sensitivity	 analysis,	 where	
parameters	 are	 varied	±10%	 around	 their	 nominal	 value	 one	 at	 a	
time,	keeping	all	the	other	parameters	fixed.	Sensitivity	was	quan-
tified	 by	 a	 score	 S,	 defined	 as	 the	 slope	 parameter	 in	 a	 linear	 re-
gression	of	the	percent	change	in	the	parameter	values	against	the	
effect	sizes,	divided	by	the	estimated	effect	size	for	the	nominal	pa-
rameter	value.

The	parameters	fmax,h	were	not	used	in	the	sensitivity	analysis	
because	these	characterize	the	 input	to	the	population	model	and	
are	therefore	not	parameters	of	the	population	model	as	such,	which	
was	the	target	of	 the	sensitivity	analysis	 in	the	study.	The	nesting	
density	parameter	was	included	in	the	sensitivity	parameter	because	
it	 is	used	to	derive	the	 initial	population	size	and	can	therefore	be	
seen	as	a	parameter	of	the	population	model.

3  |  RESULTS

3.1  |  Regression analysis

All	 three	output	quantities	were	 significantly	affected	by	 the	pro-
portions	of	SNH	and	MFC	and	if	there	is	a	drought	or	not	(p-	values	
for	all	LR	statistics	were	<.01,	see	Table	S8).	The	drought	had	a	nega-
tive	impact	on	all	output	quantities.	The	negative	effect	of	drought	
on	 the	 number	 of	 workers	 and	 queens	 produced	was	 reduced	 at	
higher	levels	of	SNH	(Table 1,	Figure 4).	The	proportion	of	SNH	had	
a	positive	 linear	effect	on	pollination	potential	and	queen	produc-
tion	under	both	drought	and	no	drought	conditions,	but	on	popula-
tion	size	only	during	drought	conditions	(Table 1,	Figure 4a–	c).	The	
proportion	of	early-	flowering	crops	(by	design	negatively	correlated	
with	 the	proportion	of	 the	 late-	flowering	crops)	had	a	positive	ef-
fect	on	population	size	(Figure 4d),	and	a	negative	effect	on	queen	
production	and	pollination	potential	 (Figure 4e,	f).	The	 relationship	
between	the	proportion	of	early-	flowering	crops	and	pollination	po-
tential	was	best	described	by	a	quadratic	model.	Under	drought	con-
ditions,	 the	number	of	queens	produced	was	 reduced	when	 there	
were	a	lot	of	early-	flowering	crops,	and	thus	a	lower	cover	of	late-	
flowering	crops	(number	of	queens	ranging	from	33	to	46	between	
the	 landscapes).	 The	 maximum	 number	 of	 workers	 produced	 per	
week	was	less	variable	under	no	drought	conditions	(numbers	rang-
ing	 from	46	 to	54,	 affecting	 the	average	 total	number	of	workers	
produced	by	the	colony—	550–	670)	compared	to	drought	conditions	
(numbers	ranging	from	14	to	52,	affecting	the	average	total	number	
of	workers	produced	by	the	colony—	186–	638).	To	give	an	example	
of	how	the	initial	conditions	relate	to	model	outputs,	in	a	landscape	
with	10%	of	SNH,	there	were	assigned	randomly	49	nests	given	the	
parameter	nest	density,	therefore	49	colonies	with	one	bumblebee	
queen	in	each.	Based	on	these	initial	nesting	conditions,	the	popu-
lation	model	calculated	that	each	colony	produced	on	average	585	
workers	during	all	seasons,	with	a	maximum	number	of	49	workers	
produced	per	week.	However,	in	the	same	landscape	under	drought	TA
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conditions,	there	were	produced	219.97	workers,	with	a	maximum	
number	of	16.47	per	week.

3.2  |  Sensitivity analysis

The	sensitivity	analysis	showed	that	the	parameter	survival	rate	(δ)	
had	the	highest	influence	on	the	three	output	quantities	(Figure	S5)	
as	well	as	estimated	effects	from	%SNH	and	%	Early	flowering	crop	
and	 Drought	 (Figure	 S6).	 The	 parameter,	 temperature-	dependent	
timing	for	the	start	of	queen	production	(ψ),	and	the	two	growth	rate	
parameters	(α	and	β)	also	had	a	high	influence	on	the	model	outcome.	
The	nesting	density	and	proportion	of	workers	foraging	(pw)	had	a	
minor	influence.	The	parameters,	arbitrary	GDD,	for	workers	to	start	
foraging	(μ),	the	proportion	of	workers	produced	compared	to	new	
queens	(ε),	and	arbitrary	GDD	for	queen	emergence	(φ),	had	the	least	
influence	on	the	estimates	of	the	effects	of	SNH	and	early	flowering	
crop	and	drought	on	all	 three	output	quantities.	See	Tables	S4–	S7 
and	Figures	S5–	S9	for	the	results	of	the	sensitivity	analysis).

4  |  DISCUSSION

The	LandscapePhenoBee	model	simulates	mechanistic	assumptions	
at	 the	 bumblebee	 colony	 level	 and	 allows	 to	 scale	 up	 population	
dynamics	 at	 the	 landscape	 level.	 The	 LandscapePhenoBee	model	
simulates	bee	populations	considering	the	impact	of	spatial	hetero-
geneity	and	resource	variability	in	time	by	combining	a	module	for	
spatially	explicit	 foraging	with	a	model	of	population	dynamics	for	
an	average	colony	in	the	landscape.	The	model	was	developed	to	be	
relatively	simple	with	a	few	parameters,	allowing	the	possibility	to	
estimate	the	parameters	given	observed	data	on	population	growth,	
focal	 land	 use,	 and	 temperature	 if	 available.	 The	model	 is	 param-
eterized	to	reproduce	a	theoretical	representation	of	the	bumblebee	
cycle	 colony	 pattern	 that	 has	 been	 previously	 observed	 and	 de-
scribed	(Becher	et	al.,	2018;	Benton,	2006;	Crone	&	Williams,	2016; 
Duchateau	&	Velthuis,	1988;	Goulson,	2003).	 To	demonstrate	 the	
potential	of	the	LandscapePhenoBee	to	describe	the	impact	of	cli-
mate	extreme	events,	 in	 this	case	drought,	on	pollination	services	
and	 population	 dynamics	 in	 different	 types	 of	 landscapes,	 we	

F I G U R E  4 Predicted	values	(marginal	effects)	for	each	model	terms'	interactions.	The	interactions	are	the	effect	of	drought	and	the	
amount	of	semi-	natural	habitats	(SNH)	(a–	c),	and	the	effect	of	drought	and	early-	flowering	crop	(d–	f)	in	the	landscape	for	the	maximum	
number	of	workers	produced	per	week	(MaxW)	(a,	d),	the	number	of	daughter	queens	(TQ)	(b,	e),	and	the	pollination	potential	(PS)	(c,	f)
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mimicked	drought	events	by	simulating	shortage	in	food	resources	in	
a	floral	phenology	model	part	of	LandscapePhenoBee.	From	model	
simulations,	we	found	that	the	population	size	(the	maximum	num-
ber	of	workers	produced	at	the	peak	of	growth),	population	viability	
(queen	daughters),	and	ecosystem	services	(pollination	potential	 in	
flowering	crops)	increased	with	the	amount	of	SNH	in	the	landscape	
(Figure 4).	The	model	simulations	showed	that	the	populations	at	the	
landscape	level	did	not	crash,	nor	did	they	reach	the	highest	num-
bers	all	the	time,	showing	that	the	model	can	capture	variability	in	
the	output.

4.1  |  Sensitivity analysis

From	the	sensitivity	analysis,	we	found	that	population	dynamic	pa-
rameters	 related	 to	survival,	growth,	and	 the	 time	 for	 the	start	of	
queen	production	were	the	most	influential.	It	is	not	surprising	that	
the	effect	of	10%	around	the	survival	parameter	can	have	a	strong	
effect	on	the	model	results,	but	this	was	a	result	of	treating	all	the	
parameters	the	same	way	for	the	sensitivity	analysis	(varying	±10%	
of	 their	 nominal	 value).	 All	 population	 parameters	 are	 considered	
constant	 during	 a	major	 part	 of	 the	 season,	 except	 at	 the	 end,	 as	
the	survival	decreases	and	translate	into	increased	mortality	at	the	
colony.

Further	 model	 development,	 allowing	 for	 changes	 in	 survival	
along	the	season,	could	be	useful	to	explore	different	scenarios	of	
worker	mortality	during	colony	growth.	This	would	for	example	allow	
exploring	threats	to	workers	during	their	active	time,	such	as	effects	
of	pesticides	(Gill	et	al.,	2012),	parasites,	or	predation	(Goulson	et	al.,	
2018),	affecting	their	contribution	to	resource	return	to	the	colony	
and	consequent	development	(Kerr	et	al.,	2019).

4.2  |  SNH and nesting opportunities

SNH	provide	 both	 nesting	 habitats	 and	 a	 continuous	 provision	 of	
food	resources	throughout	the	whole	season.	As	per	the	design	of	
our	study,	the	number	of	nests	increases	with	the	amount	of	SNH.	
Therefore,	 the	 SNH	 determines	 the	 initial	 colony	 conditions	 for	
bumblebee	 population	 growth	 in	 the	 landscape.	 After	 that	 initial	
stage,	flower	resources	will	influence	population	growth.	Estimating	
the	location	and	the	number	of	bumblebee	nests	in	a	landscape	re-
mains	a	challenge	in	pollination	ecology,	since	nests	cannot	be	easily	
surveyed	(Knight	et	al.,	2005).	We	did	not	simulate	a	specific	bum-
blebee	 species,	 but	 a	 fictive	 common	 bumblebee	 that	 stands	 for	
several	 species	 including	B. terrestris, B. lucorum,	 and	B. lapidarius,	
and	our	initial	conditions	generated	between	35	and	110	nests	per	
potential	 nesting	 habitat	 area	 (corresponding	 to	 different	 nesting	
densities	between	82	and	170 per	km2).	The	density	of	nests	varies	
a	lot	between	landscapes,	partly	due	to	the	amount	of	SNH,	which	
makes	it	difficult	to	assess	the	differences	between	our	results	and	
those	found	in	empirical	studies,	as	well	as	how	the	nest	densities	
are	 calculated.	 For	 example,	Knight	 et	 al.	 (2005)	 estimated	29	 for	

B. terrestris	and	117/km2	for	B. lapidarius,	or	25	nests	per	km2	that	
Timberlake	et	al.	(2021)	estimated	for	B. terrestris.

4.3  |  Effects of SNH and impacts of drought

From	 the	model	 outputs,	 the	negative	 impact	 of	 drought	was	 the	
highest	 in	 landscapes	with	a	 low	proportion	of	SNH,	affecting	the	
constant	food	resources	in	the	season.	According	to	previous	stud-
ies,	SNH	present	an	important	role	in	maintaining	bee	populations	in	
the	presence	of	drought.	While	we	are	not	aware	of	any	published	
empirical	 studies	 of	 droughts	 on	 bumblebees	 in	 contrasting	 land-
scapes,	the	pattern	observed	in	the	model	output	is	similar	to	what	
has	been	observed	in	assessing	drought	and	short-	term	temperature	
increases	in	taxa	of	flower-	visiting	insects,	since	Oliver	et	al.	(2013)	
showed	that	quantity	and	low	degree	of	fragmentation	of	habitats	
reduce	sensitivity	to	drought	in	butterflies.	Oliver	et	al.	(2013,	2015)	
also	assessed	recovery	from	drought	but	included	many	other	factors	
involved,	such	as	inter-	patch	dynamics	between	generations,	which	
are	not	directly	comparable	to	our	results.	Papanikolaou	et	al.	(2017)	
showed,	 using	 long-	term	 monitoring	 data	 from	 Germany,	 that	 a	
higher	amount	of	SNH	can	mitigate	 the	negative	effects	of	 short-	
term	increases	in	temperature	on	wild	bee	species	richness.	It	is	un-
clear	whether	the	patterns	found	were	due	to	the	disproportionate	
importance	of	food	resources	in	SNH	under	drought	conditions,	or	
whether	 these	 habitats	 provide	 cooler	microhabitats.	We	 did	 not	
consider	differences	in	microclimates	between	habitats,	which	may	
be	relevant	in	explaining	interactive	effects	on	bees	between	land-	
use	and	climate	extremes	(as	discussed	in	Papanikolaou	et	al.,	2017).

Additionally,	drought	periods	were	implemented	as	a	reduction	
in	all	floral	resources	in	the	landscape,	and	further	model	develop-
ments	could	consider	drought	resistance	between	different	land-	use	
types,	 allowing	 for	 example	 to	 explore	 different	 drought-	resistant	
crop	varieties.

4.4  |  Effects of MFC and impacts of drought

Our	 simulation	 results	 show	 that	 the	 impact	 of	 short	 periods	 of	
drought	early	in	the	season	is	not	severe	on	population	size	but	has	
negative	impacts	on	both	queen	production	and	pollination	poten-
tial.	This	can	be	explained	as	short	drought	periods	have	an	interme-
diate	decrease	 in	food	resources	 (Figures	S2	and	S3)	and	bees	are	
able	to	compensate	for	the	lack	of	food	resources	in	space	and	time	
(maintaining	the	population	size,	i.e.,	number	of	workers).	However,	
although	population	size	can	still	reach	a	high	number	under	drought	
conditions,	the	colonies	may	have	missed	the	peak	of	early	flowering	
or	the	peak	is	reduced,	translating	to	a	loss	of	resources	available	to	
produce	queens.

The	production	of	queens	was	higher	in	landscapes	where	there	
was	 a	 high	 enough	proportion	of	 late-	flowering	 crops.	Where	 the	
ratio	of	early-	flowering	crops	to	late-	flowering	crops	was	too	high,	
the	production	of	queens	decreased	(Figure 4e).
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In	 our	 model	 simulations,	 the	 more	 SNH,	 the	 more	 nests	 in	
the	landscape,	and	the	higher	chance	that	a	nest	is	close	to	floral	
resources	in	crops,	which	can	explain	the	positive	effect	on	polli-
nation	potential	results.	Pollination	services	from	bees	have	been	
previously	measured	as	visits	per	unit	area	(Lonsdorf	et	al.,	2009),	
visits	per	flower	(Rader	et	al.,	2012),	improved	crop	yield	(Ricketts	
et	 al.,	 2016)	 or	 assumed	 as	 a	 direct	 proxy	 of	 species	 richness	
(Perennes	et	al.,	2021).	The	pollination	score	used	in	this	work	ap-
proximates	 improved	 crop	 yield	 framed	 as	 pollination	 potential,	
describing	how	much	 crop	 flower	 resources	 can	be	benefited	by	
bee	visits	and	calculated	based	on	visits	per	flower.	Consequently,	
given	the	same	number	of	foragers,	when	there	are	many	flowers	
in	the	landscape,	the	crop	flower	become	less	efficiently	pollinated.	
This	can	explain	why	we	see	from	our	model	simulations	that	pol-
lination	potential	is	highly	variable	and,	in	the	absence	of	drought,	
pollination	 potential	 decreases	 with	 an	 increasing	 proportion	 of	
early	 flowering	crops	 (Figure 4f).	On	the	other	hand,	 in	 the	pres-
ence	 of	 drought,	 the	 reduction	 of	 pollination	 services	 is	 steeper	
with	increasing	early	MFC	because	that	drought	might	have	on	the	
number	of	workers	 in	 the	 landscape	 (Figure 4d,f).	 The	effects	of	
drought	in	a	plant-	pollinator	interaction	system	affect	both	the	crop	
and	the	pollinator,	hence	it	is	difficult	to	distinguish	the	drought	ef-
fects	on	pollination.	This	is	also	the	case	in	empirical	studies.	Plant	
crops	under	drought	stress	have	reduced	photosynthesis	and	thus	
decreased	growth	and	produce	 lower	 reward	 and	visual	 cues	 for	
pollinators	 (Descamps	et	 al.,	2020;	Rering	et	 al.,	2020),	 affecting	
the	nutritional	quality	and	availability	of	floral	resources	for	bees	
and	having	an	impact	on	their	survival	(Wilson	Rankin	et	al.,	2020).	
Simultaneously,	 drought	 can	 induce	 changes	 in	 floral	 traits	 and	
morphology	 important	 for	 interactions	 with	 bumblebees	 (e.g.,	
number	of	flowers,	size	of	the	flower,	petal	length	and	width,	and	
depth	of	the	nectar	tube),	and	flowers	might	be	seen	as	less	attrac-
tive	to	forage	on	(or	difficult	to	handle	if	they	have	a	reduced	size),	
affecting	 the	bumblebee	behavior	and	 resulting	 in	a	 reduction	 in	
the	flower	visits,	as	experimental	setups	found	(Höfer	et	al.,	2021; 
Kuppler	et	al.,	2021).

4.5  |  The use of temperature sums in the model

GDD	is	the	accumulation	of	temperature	above	a	certain	base	tem-
perature	for	each	calendar	day,	making	it	a	good	indicator	to	account	
for	both	spatial	and	temporal	variation	in	temperature,	including	the	
lower	developmental	threshold	in	which	plant	growth	development	
and	flowering	are	possible.	Since	bees	are	sensitive	to	temperature	
change	(Martinet	et	al.,	2020;	Pawlikowski	et	al.,	2020),	GDD	has	a	
great	potential	to	predict	insect	phenology,	that	is,	the	development	
of	insects	(Cayton	et	al.,	2015).

In	 this	 study,	we	 have	 used	 a	 theoretical	 generalized	 seasonal	
progression,	to	represent	a	theoretical	GDD	value	to	mark	the	start	
and	 end	 of	 flowering	 for	 the	 flowering	 period,	 spring	 bee	 emer-
gence,	 and	 worker	 foraging.	 A	 choice	 of	 the	 model	 was	 to	 also	

use	an	arbitrary	GDD	to	trigger	the	 initiation	of	the	production	of	
daughter	 queens.	 While	 the	 emergence	 of	 spring	 queens	 is	 trig-
gered	by	 temperature	 (Alford,	 1969;	Goodwin,	1995),	 the	produc-
tion	of	 new	queens	 is	 a	 complex	 combination	of	 factors	 involving	
resources	 in	 the	 landscape,	 temperature,	and	health	of	 the	colony	
(Goulson,	2003).	There	are	several	approaches	to	model	the	switch	
point	 including	 time	 (Crone	 &	Williams,	 2016),	 and	 assessing	 the	
daily	ratio	of	larvae-	worker	below	a	certain	threshold	(e.g.,	3	used	in	
BumblebeeHAVE	(Becher	et	al.,	2018)).	By	adding	GDD	in	our	model	
as	a	switching	point,	we	could	add	variability	to	the	time	of	queen	
production,	by	shifting	the	day	of	production,	instead	of	a	fixed	day	
in	time	as	in	Crone	and	Williams	(2016).	We	acknowledge	that	using	
temperature	as	a	unique	switching	condition	to	produce	new	queens	
is	not	perfect,	and	some	studies	do	not	find	temperature	as	the	main	
reason	 for	 switching	 point	 (Holland	&	Bourke,	2015;	 Vogt,	 1986).	
However,	 there	 is	 a	 lack	 of	 experimental	 studies	 that	 control	 for	
different	 temperatures,	 or	 field	 data	 and	modeling	 to	 construct	 a	
better	understanding	of	how	bumblebees	or	other	social	insect	pol-
linators	respond	to	changes	in	temperatures	(but	see	Zaragoza-	Trello	
et	 al.,	2021).	 Additional	 carefully	 controlled	 experimental	 studies,	
for	example	with	variable	temperature	regimes,	in	combination	with	
data	from	the	field	and	modeling,	should	help	construct	a	fuller	un-
derstanding	of	how	major	social	 insect	pollinators	are	 likely	 to	 re-
spond	to	climate	change.

An	additional	aspect	worth	mentioning	 is	 that	we	did	not	con-
sider	in	our	model	the	production	of	males,	and	the	complex	colony	
dynamics	of	queen-	worker	conflict	derived	from	the	switching	point	
of	producing	reproductives	in	the	colony	(Goulson,	2003).	Given	the	
nature	of	the	model	to	produce	a	representation	of	the	bumblebee	
colony	cycle	pattern,	 the	number	of	daughter	queens	was	 slightly	
higher	 in	 landscapes	that	had	more	 late-	flowering	crops,	as	shown	
in	empirical	studies	(Rundlöf	et	al.,	2014).	Results	from	the	simula-
tion	indicate	that	landscapes	with	more	late-	flowering	crops	would	
increase	the	number	of	workers,	and	therefore	bring	more	resources	
to	the	colony	and	produce	more	queens.

5  |  CONCLUSIONS

Climate	 and	 land-	use	 changes	 are	 two	 drivers	 of	 bee	 popula-
tion	 decline	 that	 should	 be	 considered	 in	 combination.	 The	
LandscapePhenoBee	 is	 a	 new	 mechanistic	 pollination	 model	 that	
can	 account	 for	 landscape	 heterogeneity	 and	 temporal	 variability	
in	resources	to	bees	yet	keeping	the	model	relatively	simple	with	a	
few	parameters.	By	 introducing	climate-	induced	temporal	variabil-
ity	of	food	resources,	this	model	contributes	to	the	methodology	of	
studying	and	predicting	the	impact	of	important	drivers	and	extreme	
events	on	wild	bees.	As	an	example,	 the	 theoretical	model	 shows	
the	ability	to	qualitatively	reproduce	patterns	observed	in	the	very	
limited	 number	 of	 studies	 combining	 landscape-	scale	 availability	
of	 resources	 and	drought	 (Oliver	 et	 al.,	2013,	2015;	 Papanikolaou	
et	al.,	2017).
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