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Abstract
A core assumption of how humans understand and infer the intentions and beliefs of others is the
existence of a functional self-other distinction. At least two neural systems have been proposed to
manage such a critical distinction. One system, part of the classic motor system, is specialized for
the preparation and execution of motor actions that are self realized and voluntary, while the other
appears primarily involved in capturing and understanding the actions of non-self or others. The
latter system, of which the mirror neuron system is part, is the canonical action 'resonance' system
in the brain that has evolved to share many of the same circuits involved in motor control.
Mirroring or 'shared circuit systems' are assumed to be involved in resonating, imitating, and/or
simulating the actions of others. A number of researchers have proposed that shared
representations of motor actions may form a foundational cornerstone for higher order social
processes, such as motor learning, action understanding, imitation, perspective taking,
understanding facial emotions, and empathy. However, mirroring systems that evolve from the
classic motor system present at least three problems: a development, a correspondence, and a
control problem. Developmentally, the question is how does a mirroring system arise? How do
humans acquire the ability to simulate through mapping observed onto executed actions? Are
mirror neurons innate and therefore genetically programmed? To what extent is learning
necessary? In terms of the correspondence problem, the question is how does the observer agent
know what the observed agent's resonance activation pattern is? How does the matching of motor
activation patterns occur? Finally, in terms of the control problem, the issue is how to efficiently
control a mirroring system when it is turned on automatically through observation? Or, as others
have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we
argue from an anatomical, physiological, modeling, and functional perspectives that a critical
component of the human mirror neuron system is sensorimotor cortex. Not only are
sensorimotor transformations necessary for computing the patterns of muscle activation and
kinematics during action observation but they provide potential answers to the development,
correspondence and control problems.
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Background
Human beings are social creatures to the extent that inter-
actions with members of their own species, and especially
the ability to understand and infer the intentions and
beliefs of others, has become of predominant importance
in their daily life. Whether for cooperation or non-coop-
eration, a core assumption of this viewpoint is that such
social interactions spring from a distinction between self
and others. It can be argued that at least two hierarchi-
cally-organized, overlapping and interacting neural sys-
tems have evolved and developed to manage self-other
distinctions and hence social interactions [1]. One system,
part of the classic motor system, is more specialized for
the preparation and execution of motor actions that are
self realized and voluntary, while the other appears to be
more involved in capturing and understanding, at a basic
and involuntary level, the actions of non-self or others.
For our purposes, actions are defined as sequences of
movements that together solve a motor problem [2] and
that involve at least four levels of behavioral complexity:
intention, kinematics, goal-object identity, and the physi-
cal consequences of the action [1]. Motor preparation and
execution circuitry includes, among others, the premotor
cortex, supplementary motor area, sensorimotor cortices,
and parts of the inferior parietal cortex. The second sys-
tem, of which the mirror neuron system (MNS) is part,
has been described as the canonical action 'resonance' sys-
tem in the brain – one that has evolved to utilize or share
many of the same circuits involved in motor control [3].
Mirroring or 'shared circuit' systems are assumed to be
important for resonating, imitating, and/or simulating the
actions of others. Although no consensus exists, a number
of researchers have proposed that shared representations
of motor actions, or the action understanding properties
of this system, may form a foundational cornerstone for
higher order social processes, including motor learning,
action understanding, imitation, perspective taking,
understanding facial emotions, and empathy [4-8]. This
means that adopting someone else's viewpoint or perspec-
tive at the very least requires that the other's actions be
understood; else no accurate prediction of their behavior
can be made.

However, a mirroring system that evolves and is adapted
from the classic motor system presents at least three major
problems: a development, a correspondence, and a con-
trol problem. In terms of the development problem the
question is whether humans acquire the ability to mirror
by mapping observed onto executed actions? That is, how
exactly does a mirroring system arise? Are mirror neurons
innate and therefore genetically programmed? Is learning
necessary? And, what role does sensorimotor cortex play?
A number of studies have indicated that imitation of facial
and hand gestures in both human and non-human pri-
mates suggest the existence of mirroring systems in

infancy [9-11]. Likewise, electroencephalography (EEG)
and near infrared spectroscopy studies in humans show
sensitivity to executed versus observed actions, as well as
between live and televised actions [12-16] suggesting the
existence of mirroring as early as 6–7 months of life. How-
ever, none of these studies directly answers the develop-
ment questions posed. On the other hand, computational
models of mirroring activity propose that sensorimotor
transformations, via Hebbian learning, can in fact medi-
ate such development.

In terms of the correspondence problem the question is
how does the observer agent determine what the observed
agent's activation pattern is in order to match it? Or, as
Brass and Heyes [17] stated the problem with respect to
imitation, "When we observe another person moving we
do not see the muscle activation underlying their move-
ment but rather the external consequences of that activa-
tion. So, how does the observer's motor system 'know'
which muscle activations will lead to the observed move-
ment?" Resonance becomes particularly difficult when the
observer and observed do not share the same embodi-
ment and affordances, that is, they do not share all "action
possibilities" latent in the environment. One partial solu-
tion to this problem, of course, exists in the implicit
nature of a mirroring system, i.e., a system that evokes
motor representations by movement observation. That is, if
motor actions already exist as part of the observer agent's
movement repertoire then observation of action, even
when partially triggered, can be sufficient to evoke the rep-
resentation. This solution clearly makes sensorimotor
transformations, as part of a mirroring system, necessary
for solving such a correspondence problem.

Finally, in terms of the control problem, the issue arises
because an efficient mirroring system ought to be turned
on only when needed. However, it has been shown
repeatedly that activation of internal motor representa-
tions via observation occurs automatically. Neuroimaging
studies, for example, show that simple passive observa-
tion is enough to generate motor activation. The question
then is how to control a system for efficiency when it is
turned on automatically? Or, as others have stated the
problem succinctly: "Why don't we imitate all the time?"
The existence of neural inhibitory and monitoring mech-
anisms as partial solutions to this control problem has
been acknowledged [3], although the specific anatomical
implementation of such mechanisms is unknown. Brass
and colleagues [18], for example, found that the fronto-
median cortex and the right temporo-parietal junction
were activated when an instructed movement had to be
executed during observation of an incongruent move-
ment. The implication being that high level areas are
involved in inhibition of imitative response tendencies.
Another solution centers on phasic changes in oscillatory
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EEG activity as inhibitory control mechanisms. This is
consistent with the role of sensorimotor cortex as a critical
region for mirroring based on its common output path
role in motor and simulation-based representations. More
specifically, we hypothesize that oscillatory activity, such
as mu rhythms in sensorimotor cortex, play a key role in
controlling mirroring processes.

Mirroring activity can be conceptualized as occurring in a
gradient. At one end of the spectrum, the mimicry of
another individual's postures, facial expressions, vocaliza-
tions, movements and mannerisms is often executed in
the absence of awareness, as occurs in the chameleon
effect, motor empathy, motor contagion, or emotional
contagion [19]. At the other end of the spectrum, it has
been suggested that simulation based on mapping of
observed actions onto one's own motor system necessi-
tates the interaction with semantic/cognitive circuits for
conscious action understanding to occur [20,21]. We con-
ceptualize this spectrum of action understanding as
reflecting four levels of behavioral complexity, i.e., inten-
tions, goals, patterns of muscle activation, and kinemat-
ics, as has been suggested by Hamilton and Grafton [1].
Furthermore, we argue that these levels of processing can
be mapped onto differences in activation in different
components within a 'core' and an 'extended' mirror neu-

ron system (see Figure 1). Although it remains to be defin-
itively shown, differential activation of the various
components of this mirroring system most likely result as
a function of the task, working memory, motivational
and/or attentional factors involved. In this paper, we
argue from an anatomical, physiological, modeling, and
functional perspectives that one critical component of an
'extended' mirror neuron system is sensorimotor cortex.
This region is necessary not only for computing the pat-
terns of muscle activation and kinematics during action
observation but provides potential answers to the devel-
opment, correspondence and control problems in mirror-
ing.

The 'core' MNS
The mirror neuron system has been widely defined as con-
sisting of three interrelated areas: ventral premotor area
(PMv) of the inferior frontal gyrus (area F5 in monkeys),
parietal frontal (PF) in the rostral cortical convexity of the
inferior parietal lobule (IPL), and the superior temporal
sulcus (STS) (see Figures 1, 2 and 3, as well as Table 1 for
a description of these areas). The mirror neuron circuit in
monkeys [4,22] begins in the rostral part of the superior
temporal sulcus, although no mirror neurons per se have
been reported in this area. Information is then thought to
flow to the parietal frontal area on the rostral cortical con-

Schematic of areas in the human brain that contain mirror neurons (inferior parietal lobule and inferior frontal gyrus) and make up the 'core'systemFigure 1
Schematic of areas in the human brain that contain mirror neurons (inferior parietal lobule and inferior fron-
tal gyrus) and make up the 'core'system. The 'extended' mirror neuron system involves additional brain areas, e.g., insula, 
middle temporal gyrus, and somatosensory cortex, which connect to the core system and perform transformations on the 
data critical for mirroring and simulation.
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vexity of the inferior parietal lobule. A subset of the cells
in this region has mirror properties: i.e., they discharge
both when the monkey executes as well as observes an
action. Parietal frontal area, in turn, sends projections to
area F5 of the ventral premotor area, where a subset of
cells (10–20%) exhibits mirror properties. Thus, the core
mirror neuron system would be defined as those areas
that contain mirror-like neurons, which at this point
includes primarily the rostral convexity of the inferior
parietal lobule or parietal frontal area and ventral premo-
tor area.

Single unit studies in the premotor cortex of macaque
monkeys indicate that neurons in area F5, particularly in
the caudal portion of the inferior frontal gyrus (IFG), are
indistinguishable from neighboring neurons in terms of
their motor properties and discharge in response to exe-
cuted and observed actions [23] (for a review see [4]). The
implication is that when a monkey observes an action,
particularly one that is in its motor repertoire, a subset of
neurons in this region 'mirrors' the activity and represents
the motor action in its own premotor cortex, revealing a
type of observation/execution matching system. This type
of observation/execution activity has been shown to be
selective for goal-directed, meaningful actions supporting
the idea that actions are organized with respect to distal
goals [24]. More recently, another subpopulation of neu-
rons in the same area of the monkey has been found that
discharges both when the animal performs a specific
action as well as when it sees or hears the same action per-
formed by another individual [25,26]. That is, these cells
represent in an individual's motor cortex not only the exe-
cution of an action (motor representation) but also the
'observation' of that action performed by others (visual
representation), as well as its auditory correlates (auditory
representation). In other words, auditory mirror neurons
allow for a mapping of specific heard actions onto the
motor programs for executing the same actions.

Individual human mirror neurons cannot be studied
directly except under unusual circumstances [27]. None-
theless, the evidence suggests that the motor related part
of Broca's region is located in the caudal portion of the
inferior frontal cortex, in what is Brodmann's area 44, and
there appears to be a homology between area F5 in the
monkey and area 44 in humans. Area 44 is involved in
interfacing external information about biological motion
and internal motor representation of hand/arm and
mouth actions [28,29]. Hence, the existence of an analo-
gous mirroring system in the homologous human brain
regions has been supported by indirect population-level
measures such as electroencephalography [12,30-34],
magnetoencephalography [35], transcranial magnetic
stimulation [36], positron emission tomography [37,38]
and functional magnetic resonance imaging [19,39,40].

Fadiga and colleagues [36], for example, found that motor
evoked potentials over motor cortex were enhanced in
response to transcranial magnetic stimulation when sub-
jects observed another individual performing an action
relative to when they detected the dimming of a light.
Iacoboni and colleagues [39] measured blood flow in
Brodmann's area 44 and found increases during the obser-
vation and performance of actions. Other studies have
reported activations with similar properties in the parietal
cortex [40,41], as well as the superior temporal sulcus
[42,43]. In general, the human mirror neuron system
appears active during the performance and observation of
the same action and is hypothesized to be necessary for
imitative learning [44], comprehending the actions of
others [24,45], understanding the goal of another's
actions [46], interpreting facial expressions [19,47], and
exhibiting empathy [19].

The 'extended' MNS
It has been shown that we activate our own motor, soma-
tosensory, and nociceptive representations while perceiv-
ing the actions of others, while at the same time activating
representations of our own emotional states as well as
facial expressions while witnessing others' emotions [48].
At minimum, this activation of shared representations for
action and emotion requires a variety of anatomical and
functional circuits that together might be called the
'extended' mirror neuron system. Undoubtedly, the core
mirror neuron areas, as described previously (see Figure
1), are anatomically connected with many other regions
that contribute significantly to the subsequent elabora-
tion of the information [49,50]. Those regions may them-
selves not contain mirror neurons per se, such as the
superior temporal sulcus, but the level of transformation
performed on the data would make them critical to the
outcome and part of an extended mirroring process.

The arguments as to why the superior temporal sulcus,
despite the lack of mirror neurons, is considered part of a
mirror neuron system are both anatomical and functional
[51]. It is an area that contains neurons that respond to
biologically relevant actions of the head, body, and eyes,
as well as to static pictures that merely imply biological
motion [52]. Furthermore, this area is reciprocally con-
nected to the parietal frontal area in the inferior parietal
lobule. However, the functional significance of the mirror
neuron system has to be understood in its connections to
many other neural systems [20]. Thus, the degree to which
brain areas in these other systems play a critical role in
action understanding or in any of the processes attributed
to the core mirror neuron system would define their inclu-
sion as part of an extended circuit.

The extant evidence supports inclusion of a number of
areas into an extended definition of the mirror neuron
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Anatomical view of a human brain showing areas involved with the mirror neuron systemFigure 2
Anatomical view of a human brain showing areas involved with the mirror neuron system.
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Anatomical view of a macaque monkey brain showing areas involved with the mirror neuron systemFigure 3
Anatomical view of a macaque monkey brain showing areas involved with the mirror neuron system.
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system. For example, the subjective sense of how one feels
is theorized to be based upon anterior insula representa-
tions of the body. This is assumed to provide a foundation
for emotions and perhaps even for self-awareness that
could allow for simulation of future actions, in order to

use the feelings generated by the simulation to guide deci-
sion making [53]. Singer and colleagues [54] found, in a
functional magnetic resonance imaging study, that empa-
thy for pain involves simulating the unpleasant, aversive
qualities of the pain (the motivational significance of

Table 1: Abbreviations and functional descriptions of anatomical areas

Abbreviation Name Function

AIP Anterior intraparietal visually guided grasping; comparable to monkey area F5

BA44 Brodmann's area 44 Broca's area; language production

BA46 Brodmann's area 46 rostral portion of the IFG; sustained attention and working memory

F2 Monkey area F2 integrates body position and motor acts

bF4 Monkey area F4 codes for peripersonal space; caudal part of PMv

F5 Monkey area F5 codes for distal movements; rostral part of PMv

F6 Monkey area F6 pre-SMA; learning of new motor sequences

IFG Inferior frontal gyrus action observation and imitation

Insula Insular cortex body representation and subjective emotional experience

IP Intraparietal sulcus guidance of limb and eye movement

IPL Inferior parietal lobule post-central sulcus/anterior border, intraparietal sulcus/superior border, and the lateral fissure/
anterior inferior border.

IT Inferotemporal cortex identification and categorization of objects

M1 Primary motor cortex patterns of muscle activation

MTG Middle temporal gyrus subserves language and semantic memory processing, visual perception, and multimodal sensory 
integration

PF Parietal frontal rostral convexity of IPL

PMd Dorsal premotor simultaneous encoding of multiple movement

PMv Ventral premotor monkey area F5; analogous to BA 44; pars opercularis of IFG

S1 Primary somatosensory kinematics

S2 Secondary somatosensory integrating across body parts; frontoparietal operculum and lateral convexity of IPL

SMA Supplementary motor planning motor actions

SMG Supramarginal gyrus spatial orientation and semantic representation

STS Superior temporal sulcus visual information entry area

VIP Ventral intraparietal comparable to monkey area F4
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pain) but not its precise somatic characteristics. In another
study, Saarela and Hari [55] used photos of facial expres-
sions from chronic pain sufferers which varied in the
intensity of depicted suffering. Not only were bilateral
anterior insula, left anterior cingulate, and left inferior
parietal lobe activated, but the amount of these activa-
tions correlated with subjects' estimates of the intensity of
observed pain. Clearly, the insula has an important role in
mirroring and should be considered part of the extended
mirroring system. Likewise, observation-evoked motor
activity, as well as mirror-type activity, has been reported
in dorsal premotor cortices [56,57], while the middle tem-
poral gyrus (MTG) and adjacent superior temporal sulcus
are often found to show augmented blood-oxygen level
dependent (BOLD) responses during action execution
and action observation [58,59]. Finally, and most relevant
to the argument in this paper, primary and secondary
motor and somatosensory cortices often contain voxels
active during both action execution and observation/lis-
tening [13,58,60,61].

Anatomical perspective
Sensorimotor cortex has been implicated in determining
the organization and representation of conceptual knowl-
edge of concrete objects and actions [47,62,63]. Behavio-
ral and functional magnetic resonance imaging studies
support the notion of mental representations grounded in
sensorimotor interactions with the real world [64,65].
Such representations are most likely involved in under-
standing and producing actions and emotions of conspe-
cifics via simulation of observed behavior [24,47,66,67].
In order to understand the role of sensorimotor cortex in
mirroring, simulation and in understanding the actions of
others, as well as to understand how sensorimotor cortex
solves the development, correspondence and control
problems, it is helpful to understand its anatomical and
functional properties, and more precisely the underlying
computations necessary for movement and movement
understanding.

M1 connections
A number of neurophysiological [13,68-70] and neu-
roimaging [71-73] studies have shown that mirror-like
activity occurs in several brain regions including the
human primary motor (M1) and somatosensory (S1) cor-
tices. Why should these sensorimotor cortices be active
during action observation? Since the majority of studies
have examined hand movements, sensorimotor activa-
tion may simply be a side effect of the strong reciprocal
connections between premotor cortex and sensorimotor
areas. Premotor cortex is typically subdivided into dorsal
(PMd) and ventral (PMv) regions (see Figure 2). Step-
niewska et al. [74,75], Greenlee et al., [76] and Dum and
Strick [77] have shown that the densest inputs from pre-
motor areas to the orofacial and digit representation in

primary motor cortex originate from dorsal and ventral
premotor areas. The ventral premotor area connects with
the digit and orofacial portions of primary motor cortex
and also has extensive connections with somatosensory
areas (S1, S2, 3a). Dorsal premotor area also connects
with proximal forelimb and trunk areas of primary motor
cortex [75] and is connected directly to spinal cord [78].

Dum and Strick [77] performed tracer studies in the
Cebus monkey and employed a number of techniques,
including electrophysiologically mapping the digit repre-
sentations, to check against their tracer results, and used
dual tracers to compare multiple inputs to the primary
motor cortex in the same animal. The results showed that
for digit representations, primary motor cortex receives
the strongest input from the ventral and dorsal premotor
areas. These areas in turn receive their strongest reciprocal
input from primary motor cortex, and it appears that the
same area in motor cortex projects to both ventral and
dorsal premotor areas. Furthermore, there is also a strong
amount of interconnection between the ventral and dor-
sal premotor areas as well. The argument made by Dum
and Strick [77] is that such areas form a densely intercon-
nected network concerned with the generation and con-
trol of hand movements. Hence, primary motor cortex is
active because premotor areas are active. However, Kilner
and Frith [51] offer an alternative explanation to this pas-
sive response activation. They suggest that premotor and
primary motor areas code executed action in different
coordinate systems. Premotor areas code targeted action
primarily in an extrinsic reference framework that encodes
the kinematic aspects of the action, that is, target and hand
are defined relative to each other in space. In contrast, pri-
mary motor neurons code the same action based on an
intrinsic framework of muscles and joint space that is related to
the shaping of hand and digits. Therefore, understanding
actions and inferring intentions require both the premo-
tor areas for a kinematic description and primary motor
cortex for a description of the patterns of muscle activity
necessary to execute the action.

In a recent study examining single-cell properties of pri-
mary motor cortex and dorsal premotor area neurons,
Tkach et al. [79] identified a set of cells that exhibited
observation- and execution-based activation, a major
characteristic of mirror neurons. However, their study did
not show whether these cells also responded to the inter-
action between subject and target object, a characteristic
of mirror neurons. In another study, Stefan et al. [80]
showed that primary motor cortex displays mirror-like
activity in response to movement observation, is capable
of forming motor memories, and is involved in motor
learning. In their study, transcranial magnetic stimulation
was used to show that observation of another individual
performing simple repetitive thumb movements gives rise
Page 8 of 16
(page number not for citation purposes)



Behavioral and Brain Functions 2008, 4:47 http://www.behavioralandbrainfunctions.com/content/4/1/47
to a kinematically specific memory trace of the observed
motions in this motor region.

S1 connections
In one of the first functional magnetic resonance imaging
studies to examine 'tactile empathy,' Keysers et al. [81]
showed that secondary somatosensory area (S2), in the
fronto-parietal operculum, extending onto the lateral con-
vexity of the inferior parietal lobule and presumably
involved in integrating information across body parts, is
activated both when the participants were touched and
when they observed someone or something else getting
touched by objects. This area receives somatosensory, vis-
ual, and polysensory inputs from primary somatosensory
cortex, and extrastriate visual areas, as well as from areas
in the posterior parietal lobe, suggesting that it may be
involved in integrating somatosensory information with
other sensory modalities [82]. Furthermore, this second-
ary somatosensory area has extensive reciprocal connec-
tions with ventral premotor areas, as well as with
prefrontal cortex (Brodmann's area 46). Curiously, Key-
sers et al. [81] did not show primary somatosensory cortex
activation to the observation of touch. In contrast, in a
more recent study [83], it was reported that the primary
somatosensory cortex was indeed activated in non-syn-
esthesia subjects by the mere observation of touch and
that this activation was somatotopically organized. Fur-
thermore, the mirror neuron system in these subjects
(including the premotor cortex, superior temporal sulcus,
and parietal cortex) was activated by the observation of
touch to another human more than to an object. Interest-
ingly, in a synesthesia subject these areas appeared to be
overactive, i.e., above the threshold for conscious tactile
perception.

It has also been suggested that somatosensory representa-
tions are critical for processing emotion [84]. Adolphs et
al. [85] provided a theoretical framework in which they
suggested that recognizing emotion in another person
engages both visual representations of the perceptual
properties of facial expressions and somatosensory repre-
sentations of the emotion that may simulate how one
would feel if making the shown facial expression. Specifi-
cally, they found that lesions in the right somatosensory
cortex, as well as in anterior supramarginal gyrus and to a
lesser extent in the insula, were associated with impaired
recognition of emotions from human facial expressions.
Individuals having only somatosensory lesions showed
impairment. They also reported a significant correlation
between impaired somatic sensation and impaired recog-
nition, but only in the right hemisphere and not shown in
relation to motor impairments. A study by Hagen et al.
[86] showed that posterior inferior frontal gyrus receives
extensive projections from secondary somatosensory
areas and responds to somatosensory stimulation. Infe-

rior frontal gyrus also has projections from primary som-
atosensory cortex, area 7b, and the ventral frontal
opercular region [82]. Monkey studies have suggested that
functionally this region may be important for working
memory for tactile stimuli [87].

Computational perspective
One computational view of mirror neuron functionality
places it in the context of auto-associative networks whose
links are strengthened via Hebbian synaptic plasticity. In
this view, neurons become capable of sharing representa-
tions primarily through an associative learning mecha-
nism. That is, these auto-associative or content
addressable memory architectures are established when
an agent acts. That is, associations naturally occur among
the motor, somatosensory, vestibular, auditory, visual,
and other inputs when a movement is executed. It is
hypothesized that linking the observation of movement
(visual input) to extant motor representations such that
later observed actions can retrieve these stored patterns
automatically can explain how the mirror neuron system
develops. This notion of associational learning is sup-
ported by recent evidence showing that it is possible to
manipulate the selectivity of the human mirror system,
and thereby make it operate as a countermirror system, by
giving participants training to perform one action while
observing another [88]. These results by Catmur and col-
leagues strongly argue that mirroring is not entirely innate
[9] nor unchangeable once the patterns are learned; but
most likely develop through sensorimotor associational
learning [89,90] as a product and a process of social inter-
action.

This idea is also supported by neuroimaging studies that
purport to show that mirror neuron activity varies as a
function of the observer's expertise. Calvo-Merino et al.
[91] showed that ballet and capoeira dancers observing
actions they were trained to perform showed greater activ-
ity in premotor and parietal areas. Similarly, Haslinger et
al. [92] showed similar effects for piano players observing
piano playing. It's also been shown that familiarity
(which presumably involves enhanced sensorimotor acti-
vation) activates premotor cortex more than non-familiar
actions [33].

Oztop and Arbib [49,50] have argued that mirroring
properties are an exaptation of a more basic neuronal
function, namely that of providing feedback for visually-
guided grasping movements. Although the evolution of
how such self-hand movements relate to objects to recog-
nize the manual action of others is unclear, Fagg and
Arbib [93] have suggested, based on various computa-
tional models, that dorsal stream information flowing
through the anterior intraparietal area is where the grasps
afforded by the object (i.e., those actions that are made
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possible by the object) are extracted, while area F5 selects
and drives the execution of the grasp. Prefrontal cortex,
which receives object recognition information from infer-
otemporal cortex (IT), biases F5 selection to choose the
appropriate possible actions for the task. Furthermore, a
variety of prefrontal areas, such as F6 (pre-SMA), Brod-
mann's area 46 (dorsolateral prefrontal cortex), and F2
(dorsal premotor cortex) are proposed to be involved in
biasing F5 to respond to task constraints, working mem-
ory, and instruction stimuli, respectively. Once the loca-
tion of the object is known, the information flows to the
motor programming area F4, which computes the reach.
The information about the reach and the grasp is fed into
primary motor cortex to control the hand and arm.

Although this computational framework of how actions
are organized with respect to distal goals is incomplete,
there is agreement that primary motor cortex computes
muscle activations given reach targets and limb postures
in the presence of noise [94,95]. Other computational
perspectives argue that mirroring systems involved in rec-
ognizing actions can be understood within a predictive
coding framework, or more formally, as equivalent to
Bayesian inference within a hierarchical structure [96].
This refers to a computational framework for inferring the
causes (intentions, goals, and motor commands) of sen-
sory inputs (observed kinematics) by minimizing predic-
tion error at all levels of a cortical hierarchy. Indeed, the
notion that muscle activity is a linear projection of pri-
mary motor cortex output has been called into question
[97-99]. Rather, primary motor cortex receives input from
ventral premotor area, which appears to code object loca-
tions in a hand-centered frame of reference. It then sends
its output to muscles via the spinal cord. This sensorimo-
tor common output path for both motor and mirroring-
based representations makes primary motor and primary
somatosensory areas strategic for inhibitory control and
monitoring mechanisms.

Physiological perspective
Mu rhythms
Although no mirror-type neurons (except see [79]) have
been reported in sensorimotor cortex, of particular impor-
tance is that studies using electroencephalography and
magnetoencephalography have indicated that power in
mu rhythm oscillations in this region, including alpha (8–
13 Hz) and beta (14–25 Hz) components, is modulated
by the observation and imagination of movement in the
same way that self movement produces such modulation
[100,101]. It has been known since the early 1950s that
planning and execution of movement, especially of the
hand, produces desynchronization or suppression of this
rhythm [102,103], while inhibition of motor behavior
enhances it or produces synchronization in animals
[104]. This has led to a taxonomy of mu rhythm proper-

ties [103]. Hari et al. [13] were the first to show an
involvement of primary motor cortex in the human mir-
ror neuron system by showing modulation of the beta (20
Hz) component of the mu rhythm during the observation
of hand actions. They have provided extensive magne-
toencephalography evidence that primary motor cortex is
activated both during the observation and execution of
motor tasks [105,106].

Mu rhythm properties
Using high-density, whole-head magnetoencephalogra-
phy recordings and surface Laplacian transformations, a
number of studies have shown that the alpha and beta mu
oscillations have their origin in sensorimotor cortex
[107]. However, the sources of the beta component
appear to be more anterior to those of the alpha compo-
nent, which originate in postcentral somatosensory cortex
[108]. Indeed, significant negative correlations between
both 10-Hz and 20-Hz mu rhythms and blood-oxygen
level dependent signals have been reported in frontal and
parietal cortices [109,110]. Caetano et al. [107] indicated
that the modulation of the alpha rhythm lasted approxi-
mately 600 ms longer during action versus observation or
listening conditions. They attribute this to a propriocep-
tive feedback signal during self movement and proposed
that such a signal may enable the mirroring system to
attribute agency to the correct source. It is also the case
that the difference in coding action in distinct coordinate
systems proposed by Kilner and Frith [43] maps well onto
the alpha and beta components of mu oscillation.

Furthermore, recent studies have shown that synchro-
nized mu rhythms in the hand area of motor cortex pro-
duces desynchronized mu rhythms in the foot or tongue
area [101,111] suggesting a lateral inhibitory network in
sensorimotor regions. Furthermore, the differential reac-
tivity of the mu oscillations to different contingencies sug-
gests the existence of distinct bands: one that is
somatotopically non-specific (8–10 Hz), one that is
somatotopically specific (10–13 Hz) [112], and one (14–
30 Hz) that may reflect corticomuscular processes
[113,114].

Relationship to mirroring
Until recently, mirror neurons had not been directly
reported in sensorimotor cortex creating a problem relat-
ing the changes in mu rhythms to activity in the mirror
neuron system. One explanation for the functional simi-
larities was that sensorimotor activity involved a down-
stream modulation, via cortico-cortical connections, from
premotor areas, including inferior frontal gyrus [12]. As
was argued previously, the inferior frontal gyrus and sen-
sorimotor cortex are reciprocally interconnected. How-
ever, this raises a potential problem. If sensorimotor
cortex is activated by premotor commands during the
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observation of actions, which are similar to the motor
commands generated during the behavior itself, then how
is it possible to differentiate between the two and avoid
movement when we observe actions? The most intuitive
explanation is that the motor activity we observe is being
actively gated by upstream and downstream areas. Indeed,
we would argue that changes in mu rhythm reflect such
signal gating. Hummel et al. [115] have shown that a sig-
nificant increase in 11–13 Hz oscillations over sensorim-
otor cortex occurs during inhibitory control of a memory
trace, while during retrieval of the trace there was a
decrease in such oscillations. Results from other human
electroencephalographic studies suggest that an increase
in power in the beta range is associated with inhibition of
the excitatory state of the motor cortex [116]. There is also
clinical evidence regarding the origin of this inhibition in
patients with frontal lobe damage that exhibit 'unwilled'
automatic movements [117]. These clinical studies sug-
gest that the prefrontal, anterior cingulate, and supple-
mentary motor cortices may contribute the necessary
inhibition to prevent triggering of movement commands
realized in activated motor and premotor cortical areas.

Measuring cortico-spinal excitability by using transcranial
magnetic stimulation during action observation has
proven to be an excellent way to explore how neural net-
works are involved in the mirror neuron system and hence
in social cognition. These studies have shown that the
observation of action affects motor corticospinal
[36,118], intracortical [119], or spinal excitability [120].
Furthermore, such stimulation appears to desynchronize
rhythms in the primary motor cortex [13,60,121] strongly
suggesting that mirror neurons from ventral premotor cor-
tex modulate activity in primary motor cortex.

Functional perspective
Numerous electroencephalography, magnetoencephalog-
raphy, and transcranial magnetic stimulation studies have
shown that changes in mu rhythm oscillations during
both execution and observation of actions reflects mirror-
ing properties. Mu suppression has been observed during
the observation of moving hands compared to the obser-
vation of bouncing balls [30], point-light biological
movements [32,122], complex social interactions [31],
and familiar versus unfamiliar actions [33] indicating that
mu rhythms in humans are not only sensitive to object-
directed movement but to general biological motion hav-
ing social significance. Mu rhythm suppression is typically
greater during the execution of object-directed hand
movement compared to simple hand movement. Like-
wise, it is greater during object-directed hand movement
observation than in simple hand position observation
[123,124]. These phenomenological properties resemble
what has been reported for monkey mirror neurons. Both
respond to execution and observation of object-directed

movement [23], as well as cognitive imagery. Their over-
lapping neural sources in sensorimotor frontoparietal net-
works further support the argument that they are related
and involved in linking perception to action, which may
be a critical component in the development of higher
level cognition.

Although mirror neurons are primarily thought to be
involved in perception and understanding of motor
actions [4], they may also play a critical role in higher
order cognitive processes such as imitation [44,50,125],
theory of mind [7,47,126], language [50,127,128] and
empathy [129]. A number of studies performed over the
past several decades suggest that children and adults with
autism spectrum disorder suffer from impairments that
closely parallel the functioning of the mirror neuron sys-
tem [130-133]. Indeed, the DSM-IV diagnostic criteria for
autism spectrum disorders include deficits in social and
communicative skills such as imitation, empathy, and
shared attention, as well as restricted interests and repeti-
tive patterns of behaviors. Elucidating their neuroetiology
has been a challenge because behavioral manifestations
vary both in severity as well as expression, such as Autism
(low-, medium, high-functioning), Asperger's Disorder,
or pervasive developmental disorder – not otherwise spec-
ified or PDD-NOS [134,135]. To date, no single explana-
tion has been able to account for the broad and varied
profile of these deficits [136]. However, a recent conver-
gence of evidence on autism spectrum disorders has
implicated the mirror neuron system. In fact, Williams et
al. [137,138] suggested that early failures of this system
could result in the cascade of developmental impairments
seen in autism.

Though recognized over 50 years ago, the cause of imita-
tion impairments in autism has yet to be identified, but
several hypotheses about its origin have been proposed.
One hypothesis suggests that this is a core deficit that
could impede early affective, social and communicative
development [139]. Specifically, it is suggested that imita-
tion deficits result from an inability to form and coordi-
nate social representations of self and others via amodal
or cross-modal representation processes – the type of
function ascribed to mirror neurons. Neuroimaging and
neurophysiological studies support this argument
[30,133,140]. However, the hypothesis has been chal-
lenged recently, especially the existence of mirroring-
based imitation deficits [141,142].

Nonetheless, the discovery of mirror neurons provides a
testable basis for some of the major deficits seen in autism
spectrum disorders. These specialized cells show increased
firing rates not only during execution of an action (motor
representation) but also during 'observation' of the corre-
sponding action performed by others (visual representa-
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tion) [4]. The mirror neuron system thus appears capable
of directly mimicking the action it perceives, or perform-
ing a simulation of the action without accompanying
motor execution. This type of observation/execution
matching system is hypothesized to provide a mechanism
for translating seeing into doing, an ability that may be
especially critical for imitation learning but also for the
development of empathy, and theory of mind. Therefore,
a number of strands of convergent evidence provide the
rationale for a non-invasive investigation of the mirror
neuron system in autism and for studying the effects of an
intervention strategy centered on mirroring function.
First, there is relatively direct evidence for mirror neuron
system involvement in autism spectrum disorders. Sec-
ond, many known impairments affect functional domains
potentially associated with the mirror neuron system,
such as imitation and theory of mind [137]. Third, there
is increasing evidence for an electrophysiological signa-
ture of mirroring activity. Finally, activity-dependent reor-
ganization is a neural property that can be effectively
recruited for the remediation of disordered behavior.

Conclusion
Theories of knowledge representation can be categorized
by whether or not they resort to 'embodied' versus 'disem-
bodied' explanations [143]. Embodied theories argue that
conceptual content and sensorimotor content are essen-
tially the same, whereas disembodied theories see senso-
rimotor explanations as necessary but not sufficient to
explain action concepts [62]. Embodied theories, there-
fore, argue for a central role of sensorimotor transforma-
tions in the representation of conceptual knowledge and
assume that simulation requires a reactivation of sensorim-
otor areas. These ideas have been put forth as motor theo-
ries of action recognition, suggesting that motor processes
are involved in the recognition of visually presented
actions [144]. Furthermore, it has been suggested that sen-
sorimotor processes characterize the "...semantic content
of concepts in terms of the way we function without bod-
ies in the world" and thus are intimately involved in lan-
guage, theory of mind, and conceptual processing [126].

The arguments we have made in this paper, based on ana-
tomical, physiological, modeling, and functional perspec-
tives, are consistent with embodied explanations. That is,
sensorimotor transformations are a critical component of
an extended mirroring system and necessary not only for
computing the patterns of muscle activation and kinemat-
ics during action observation but for simulation and
understanding. Furthermore, sensorimotor transforma-
tions and the anatomical connections of sensorimotor
cortex with core and extended mirror neuron system areas
provide potential answers to the development, corre-
spondence and control problems in mirroring. Nishitani
and Hari [60] have shown with magnetoencephalography

that activity in primary motor cortex during action obser-
vation occurs later than inferior frontal gyrus. This sug-
gests that sensorimotor contributions to the
understanding of the actions of others may be at the out-
put end of mirror neuron system processing. As a final
output path for motor and simulation-based representa-
tions, sensorimotor cortex allows for what is perhaps the
critical property of mirroring systems – evoking motor
representations through the observation of movement.
Thus, sensorimotor cortex offers a solution to some of the
more serious problems posed by mirroring systems
because it offers a common output path for motor control
and simulation-based transformations. These transforma-
tions can also become the foundational cornerstone for
higher order social processes, such as motor learning,
action understanding, imitation, perspective taking,
understanding facial emotions, and empathy [4,5]. Fur-
thermore, they help connect the neurophysiology of mu
rhythms to the process of mirroring.

Until recently, the sensorimotor cortex has not been con-
sidered part of a mirroring system primarily because no
evidence existed that neurons in these regions responded
to the passive observation of actions. However, a number
of studies reviewed above [13,79,145] have provided sup-
port for the idea that 'mirror-like' properties occur in sen-
sorimotor neurons to the observation of actions,
including changes in mean firing rate, sensitivity to pre-
ferred direction and to the presence of a target, as well as
oscillatory power modulation in specific frequency bands,
raising the prospect that these areas are indeed an integral
and necessary part of an extended mirroring system.

Sensorimotor learning, presumably mediated through
Hebbian synaptic plasticity and auto-associational mech-
anisms, appears to answer the questions regarding the
development of the mirror neuron system. This clearly
suggests that the mirror neuron system is neither entirely
innate nor inflexible and in fact may dynamically adjust
to changing inputs. This gives some basis to the notion
that dysfunctional mirroring systems, such as have been
reported in children and adults with autism spectrum dis-
orders, may be susceptible to therapeutic improvement
with the right type of input [33,146]. Our own conceptual
model of how mirroring develops has been particularly
influenced by the work of Kilner et al. [96], which can be
described as a probabilistic matching mechanism. These
authors argue that one problem in inferring the cause or
an intention of an action is that the problem is ill-posed
"because identical movements can be made when per-
forming different actions with different goals." The mirror
neuron system and other such systems solve this problem,
it is argued, by the use of predictive coding on the basis of
Bayesian inference. This means that the likely cause of an
observed action is inferred by minimizing the prediction
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error at all levels of the hierarchy involved during action-
observation. This type of model assumes that the areas
involved in action understanding are arranged hierarchi-
cally and that the connections between them are recipro-
cal. The developmental time course of such wiring quite
likely determines the types of mirroring processes that
come online, from mimicry to functional context-sensitiv-
ities during action observation.

Solutions to the correspondence problem have required
the existence of general representations of the body that
are shared between observer and observed agent. The dis-
covery of mirroring systems is consistent with that solu-
tion. That is, automatic activation of existing motor
representations in sensorimotor cortex constrains the
body representation mapping that occurs between
observer and observed agents even when these agents do
not share the same embodiment and affordances, i.e., all
"action possibilities" latent in the environment [17]. This
means that the system takes advantage of internal rather
than external observation and thus imitation or learning
occur from actions made by oneself or made by another
on oneself [147].

Finally, the solution to the control problem in mirroring
is grounded in the final common path architecture of sen-
sorimotor cortex for both motor and simulation-based
representations. This allows for shared access to inhibitory
control circuits. To that end, changes in oscillatory activity
in the mu band appear to reflect such control. Thus, the
weight of the evidence suggests that sensorimotor circuits
are part and parcel of the two hierarchically-organized,
overlapping and interacting neural systems that have
evolved and developed to manage self-other distinctions
and hence social interactions [1].
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