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A viral metagenomic analysis of five surface and two bottom water (878 meters

below surface, mbs, and 3,357 mbs) samples from Prydz Bay, was conducted

during February–March 2015. The results demonstrated that most of the DNA

viruses were dsDNA viruses (79.73–94.06%, except at PBI1, 37.51%). Of these,

Caudovirales (Siphoviridae, Myoviridae, and Podoviridae) phages were most abundant in

surface seawater (67.67–71.99%), while nucleocytoplasmic large DNA viruses (NCLDVs)

(Phycodnaviridae, Mimiviridae, and Pandoraviridae accounted for >30% of dsDNA

viruses) were most abundant in the bottom water (3,357 mbs). Of the ssDNA viruses,

Microviridae was the dominant family in PBI2, PBI3, PBOs, and PBI4b (57.09–87.55%),

while Inoviridae (58.16%) was the dominant family in PBI1. Cellulophaga phages (phi38:1

and phi10:1) and Flavobacterium phage 11b, infecting the possible host strains affiliated

with the family Flavobacteriaceae of the phylum Bacteroidetes, were abundant in

surface water dsDNA viromes. The long contig (PBI2_1_C) from the viral metagenomes

were most similar to the genome architectures of Cellulophaga phage phi10:1 and

Flavobacterium phage 11b from the Arctic Ocean. Comparative analysis showed that

the surface viral community of Prydz Bay could be clearly separated from other marine

and freshwater environments. The deep sea viral community was similar to the deep sea

viral metagenome at A Long-term Oligotrophic Habitat Assessment Station (ALOHA, at

22◦45′N, 158◦00′W). The multivariable analysis indicated that nutrients probably played

an important role in shaping the local viral community structure. This study revealed the

preliminary characteristics of the viral community in Prydz Bay, from both the surface

and the deep sea. It provided evidence of the relationships between the virome and the

environment in Prydz Bay and provided the first data from the deep sea viral community

of the Southern Ocean.
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INTRODUCTION

Viruses are the most abundant and genetically diverse acellular
biological entities in the ocean and play significant roles
in microbial mortality, fluctuations in microbial community
structure, and the horizontal gene transfer of genetic diversity
between host cells (Wommack and Colwell, 2000; Breitbart
et al., 2002; Weinbauer, 2004; Suttle, 2005, 2007). Although new
culture-independent methods, such as metagenomics and single-
cell genomics, have advanced the understanding of bacterial
and archaeal diversity (Sharon and Banfield, 2013; Lasken and
McLean, 2014), the diversity and variability of natural viral
communities is still not well documented, mostly because of the
lack of universal gene markers for viral communities and the
relatively recent development and application of new culture-
independent methods based on high-throughput sequencing to
investigate viral diversity in different environments (Brum et al.,
2015; Aylward et al., 2017).

Since the first marine viral metagenomic research in 2002
(Breitbart et al., 2002), metagenomics has become as a powerful
tool to better understand viral diversity and variability and it
can also be used to directly resolve complicated, uncultured
environmental viral genomes (Angly et al., 2006; Culley et al.,
2006; Hurwitz and Sullivan, 2013). Recently, viral metagenomic
surveys in the Tara Ocean expeditions identified a total of
15,222 epipelagic and mesopelagic dsDNA viral populations,
representing 867 viral clusters (approximately at genus-level
groups) (Brum et al., 2015; Roux et al., 2016a). Virome
information has now been recovered frommany different marine
environments through metagenomics (Breitbart et al., 2002;
Angly et al., 2006; Steward and Preston, 2011; Williamson et al.,
2012; Hurwitz and Sullivan, 2013; Brum et al., 2015).

The Southern Ocean, which connects the Pacific Ocean,
the Indian Ocean and the Atlantic Ocean, plays an important
role in global marine ecosystems and climate change and acts
as a global biological and chemical transport channel (Evans
and Brussaard, 2012; Wu et al., 2016). However, there are still
very few reports on viral diversity in the Southern Ocean.
Currently, there have only been two Southern Ocean viral
DNA and RNA metagenomic studies and these are from the
coastal waters of the Palmer Long-Term Ecological Research
(PAL-LTER) Station B and Western Antarctic Peninsula (WAP)
(Brum et al., 2016; Miranda et al., 2016). Temperate viruses
were found to dominate the DNA viruses of the PAL-LTER
site and there was a switch from lysogeny to lytic replication
as the bacterial production increased. The WAP DNA viral
assemblages were genetically distinct from those of lower-latitude
assemblages, primarily driven by the temperate viral dominance
(Brum et al., 2016). It was found that RNA viruses contributed up
to 65% of the total virioplankton (8–65%) and this is consistent
with the hypothesis that RNA viruses influence diatom bloom
dynamics in WAP coastal waters (Miranda et al., 2016). These
analyses revealed the diversity and seasonal variations of the
dsDNA and RNA viral communities in WAP coastal waters,
respectively. However, our knowledge of the marine pelagic
viral community, viral diversity and their correlations with
environmental factors within the Southern Ocean is still quite

limited, especially in the deep sea (>1,000 meters below surface,
mbs).

Prydz Bay is the third largest embayment along the Antarctic
margin and is located in the IndianOcean section of the Southern
Ocean, between 66◦E and 79◦E adjacent to the Amery Ice Shelf.
On the continental shelf the water depth is mostly between 400
and 600m and increases to the north to depths >3,000m (Roden
et al., 2013; Liang et al., 2016). There have been numerous marine
microbial ecology studies in Prydz Bay (Waters et al., 2000;
Pearce et al., 2007, 2010; Thomson et al., 2010), however, there
are still few studies on the marine viral ecology (Paterson and
Laybourn-Parry, 2012; Liang et al., 2016). There have still been
no metagenomics studies of the viral community structure and
diversity in Prydz Bay. We present here a viral metagenomic
dataset, including five surface and two bottom seawater samples
from Prydz Bay, including both double-stranded DNA (dsDNA),
and single-stranded DNA (ssDNA). This study will provide the
first data on the viral diversity, community structure, novel
viruses and the relationship between viral communities and their
environment in Prydz Bay, Antarctic.

MATERIALS AND METHODS

Sampling and Environmental Factors
Seven viral metagenomic seawater samples were collected from
five stations in Prydz Bay and the adjacent Southern Ocean,
during the 31st Chinese Antarctic Scientific Expedition from
February 4th to March 2nd, 2015. The five stations were located
in three different environments. Only surface samples were
collected from stations PBI1, PBI2, and PBI3, which were located
in inner Prydz Bay. Both surface and bottom samples were
collected from station PBI4 (PBI4s and PBI4b), which was located
near the western edge of Amery Ice Shelf, and from station
PBO (PBOs and PBOb), which was located in the open Southern
Ocean (Figure 1).

Seawater samples (300 L) were collected using Niskin bottles
mounted on a rosette frame which also held the SBE-9 plus
CTD sensors (SBE 911; Sea-Bird Electronics) for temperature,
salinity, dissolved oxygen (DO), chlorophyll a, and depth. One
hundred milliliter sub-samples were taken from each site to
determine nutrient concentrations; these were filtered through
GF/F filters (Whatman). The filtrates were poisoned by adding
saturated mercuric chloride (ca. 1.5 × 10−3 v/v) and then stored
at 4◦C until analysis within 2 weeks. Nutrient concentrations
(SiO4-Si, PO4-P, NH4-N, NO2-N, and NO3-N) were measured
with an onboard nutrient auto-analyzer (SKALAR SAN plus,
Netherlands). The detailed site information is presented in
Table 1.

Preparation of Viral Concentrates and DNA
Extraction
The seawater samples (300 L) were immediately filtered using a
300mm diameter cellulose membrane with a 3µm pore size and
then filtered through a 0.22µm membrane, to remove the large
organisms, such as zooplankton, phytoplankton, and bacteria.
The free viruses in the filtrate were concentrated to a volume of
500ml by the large-scale Tangential Flow Filtration (membrane
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FIGURE 1 | Sampling stations and summer water currents (Revised from Roden et al., 2013) in the Prydz Bay, Antarctic. The direction of the current (arrow and solid

line), location of each sampling site (red point), and Antarctic scientific investigation station (blue block) were shown in the map. Different colors represent as deep gray

(land), light gray—light blue—deep blue (the depth from shallow sea to deep sea). SACCF, Southern Antarctic Circumpolar Current Front; ASC, the Antarctic slope

current.

package with a total surface area of 0.5 m2: Pellicon R© 2 Cassette,
Biomax R© 50 kDa; polyethersulfone) and then were concentrated
further to 10ml in plastic micro-tube by small-scale Tangential
Flow Filtration (membrane package with a total surface area of 50
cm2: Pellicon R© XL Cassette, Biomax R© 50 kDa; polyethersulfone)
(Sun et al., 2014). After each sample concentration, the filtration
membrane cassettes were cleaned by flushing with sufficient
deionized water, followed by circulation cleaning with 0.1N
NaOH for at least 30min. The viral concentrates were flash-
frozen in liquid nitrogen and then stored at −80◦C until
processed (Brussaard, 2004; Winter et al., 2014). Though the
recovery efficiency of each viral concentrates was not checked, the
recovery efficiency averaged from 27 at the deep ocean samples to
41% at the estuary samples using the Tangential Flow Filtration
with polyethersulfone membranes (Cai et al., 2015).

The viral concentrates were unfrozen and re-filtrated
through 0.22µm filters to remove any remaining cellular
microorganisms, then precipitated using polyethylene glycol
(PEG-8000) (10% w/v) and NaCl (0.6% w/v) followed by
incubation at 4◦C in the dark for 24 h. The mixed samples were
centrifuged at 10,500 × g for 40min at 4◦C and suspended in

300 µl SM buffer. One hundred microliter (1M) KCl solution
was added followed by incubation on ice for 30min (Colombet
et al., 2007). Though the recovery efficiency of viruses for the
PEG precipitation of each sample was not measured in this study,
the reported recovery efficiency averaged 55% (range 28–81%)
(Colombet et al., 2007). Centrifugation at 12,000× g for 10min at
4◦C was used to obtain concentrated and purified free virus-like
particles (VLPs). The VLPs were treated with proteinase K and
10% SDS at 56◦C for 1 h. The viral DNA was extracted using the
phenol/chloroform/isoamylol method and stored at−80◦C until
sequencing (Thurber et al., 2009).

Virome Libraries Construction and
Sequencing
The viral DNA was amplified with QIAGEN R© REPLI-g
Mini Kit (phi-29 DNA polymerase), which used the whole-
genome multiple displacement amplification (MDA) method,
for 16 h in a thermal cycler, using multiple 50 µl reactions
containing 100–200 ng of the isolated DNA as a template
(Angly et al., 2006; Yilmaz et al., 2010). Library construction
and sequencing were implemented by Novogene Bioinformatics
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TABLE 1 | Main environmental factors of seven viral metagenomic samples in the Prydz Bay.

Sample

name

Sample

Depth (mbs)

Temperature

(◦C)

Salinity

(PSU)

DO

(µmol/L)

Chla

(mg/L)

PO4-P

(µmol/L)

NO2-N

(µmol/L)

SiO3-Si

(µmol/L)

NO3-N

(µmol/L)

NH4-N

(µmol/L)

PBI1 5 −1.26 32.21 384.43 19.72 0.24 0.54 1.86 3.13 2.24

PBI2 5 0.94 32.89 368.99 7.45 0.16 0.10 1.36 3.50 1.49

PBI3 5 −0.34 32.63 381.31 19.16 0.21 0.56 6.27 9.82 0.60

PBI4s 5 −0.81 33.37 307.79 3.37 0.63 0.50 21.76 8.02 5.36

PBOs 5 0.20 33.40 344.39 0.08 1.01 0.26 52.76 23.74 0.37

PBI4b 878 −1.88 34.54 209.30 0.04 1.97 0.18 59.11 29.86 0.63

PBOb 3,357 −0.12 34.66 223.98 0.04 2.34 0.26 110.54 34.25 0.41

mbs, meters below surface; Chla, chlorophyll a; DO, dissolved oxygen; PO4-P, phosphate; SiO3-Si, silicate; NO2-N, nitrite; NO3-N, nitrate; NH4-N, ammonium.

Technology Co. Ltd (Beijing, China). Sequencing libraries were
generated using NEBNext R© UltraTM DNA Library Prep Kit
for Illumina, following the manufacturer’s instructions. Briefly,
an ultrasonic processor was used for carrying qualified DNA
fragmentation (Insert Size: 250 bp), DNA fragments were then
end-polished, A-tailed, ligated with sequencing adapters and
PCR amplified. Finally, PCR products were purified (AMPure
XP system) and the library’s insert size was verified by Agilent
2100 Bioanalyzer and quantified using real-time PCR. High-
throughput sequencing was performed by the Illumina HiSeq
4000 platform (Paired-End Sequencing, 2× 150 bp).

Metagenomic and Genomic Analyses
High-quality reads were selected from raw reads giving 47–
94 million (clean data rate >0.90) 150 bp paired-end reads.
The paired-end reads were filtered by adopting the following
conditions: (1) contained more than 10% N; (2) were of a
low quality (40% reads length, Q ≤5); (3) with the adapter.
Quality-filtered reads were assembled using Velvet (version
1.2.10) (Zerbino and Birney, 2008; Zerbino et al., 2009). After
assembling, the contigs with lengths <300 bp were filtered out. A
summary of the seven viromes is shown in Table 2. To determine
the relative abundance of viral contigs, the quality-filtered reads
from each metagenome were mapped back to the assembled
contigs with Bowtie2 (version 2.1.0) (Langmead and Salzberg,
2012) and SAMtools (version: 1.1) (Li et al., 2009). The average
abundance was calculated as DNA-reads per kilobase of the
transcript (gene) per million reads mapped (DNA-RPKM; equal
to the number of reads mapped to the contig and normalized by
the contig length and per million mappable reads) (Calusinska
et al., 2016).

The assembled contigs were uploaded to the MetaVir2
server (Roux et al., 2014) (http://metavir-meb.univ-bpclermont.
fr, project ID 8183, 8184, 8185, 8186, 8187, 8188, and 8189).

Taxonomic annotation: open reading frames (ORFs) were
first predicted for each contig through MetaGeneAnnotator
(Noguchi et al., 2008) and then compared to the RefSeq complete
viral genomes protein sequence database from NCBI (release of
2017-01-11) using BLASTp (threshold of 50 on the BLAST bit
score). Contigs with multiple ORFs were taxonomically assigned
according to the lowest common ancestor (LCA) affiliation.

Genome reconstruction: circular contigs and linear contigs
larger than 30 kb obtained from the assembly were examined
further. Putative ORFs within contigs selected for further
analysis were searched against the NCBI non-redundant
protein database using BLASTp (E <10−3). Comparisons
with 40 other publicly available viromes (the details of
the selected viromes are shown in Table S3) were based
on k-mer frequency bias (tetranucleotides) (Willner et al.,
2009). The non-normalized taxonomic composition data
based on contigs best BLAST hit (threshold of 50 on the
BLAST bit score) of PBOb (Project ID 8183) and ALOHA
station deep abyss (Project ID 3816) were downloaded from
MetaVir2 server and further for these two samples’ comparison
analysis.

Functional analysis of dsDNA viral communities was
performed with Meta Genome Rapid Annotation using
Subsystem Technology (MG-RAST) server (Meyer et al.,
2008) (http://metagenomics.anl.gov/, MG-RAST ID 4747904.3,
4747905.3, 4747906.3, 4747909.3, 4747910.3, 4747911.3, and
4749478.3). The affiliated dsDNA virus contigs processed by
MG-RAST were compared to the SEED Subsystems database
using a maximum E-value of 10−5, a minimum identity of 60%,
and a minimum alignment length of 15. A flowchart depicting
the use of contigs was shown in Figure S1.

Statistical Analysis
dsDNA viral communities cluster analysis and statistical analysis
were performed using PRIMER v5 (PRIMER E, Ltd, UK)
(Relative abundance of virus in each sample represent the
biont number). Canonical correspondence analysis (CCA) and
redundancy analysis (RDA) were performed in R v. 3.5.1 (R
Development Core Team) using CCA and RDA functions from
the “vegan” package v2.5-2 (Oksanen et al., 2018) to investigate
the relationships between viral species and environmental
variables. A matrix of the total viral species (1,225 species )
underwent factor analysis. A total of 10 environmental variables
were used to assess the variation of viral species, including
depth, salinity, temperature, DO, Chla, NO3-N, NO2-N, NH4-
N, PO4-P, and, SiO3-Si. All variables were logarithmically
(base 10) transformed before CCA to reduce the influence of
extreme values on ordination scores and to normalize data
distribution.

Frontiers in Microbiology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2981

http://metavir-meb.univ-bpclermont.fr
http://metavir-meb.univ-bpclermont.fr
http://metagenomics.anl.gov/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Gong et al. Viral Metagenomes in Prydz Bay Antarctic

TABLE 2 | Data summary of seven viral metagenomic samples in the Prydz Bay.

Sample

name

Total length

(kbp)

GC

content

(%)

Longest

(bp)

N50 Average

length

(bp)

Number of

contigs

(>300 bp)

Affiliated

contigs

Affiliated

dsDNA viruses

contigs

Affiliated

ssDNA viruses

contigs

Reads

mapped

PBI1 7,201,486 54.22 130,439 443 506 14,184 2,037 1,393 544 25,558,846

(34.31%)

PBI2 15,913,696 47.95 64,194 472 521 30,482 4,547 4,024 260 11,947,719

(25.54%)

PBI3 26,757,818 55.46 95,664 620 591 45,162 5,827 5,458 130 23,780,237

(29.88%)

PBI4s 895,331 50.75 20,377 420 460 1,938 256 235 3 2,188,596

(04.63%)

PBOs 10,755,196 53.93 40,732 444 479 22,366 2,315 2,053 131 17,433,201

(18.60%)

PBI4b 11,628,812 56.79 71,333 518 540 21,491 2,245 1,919 217 18,379,075

(31.99%)

PBOb 1,172,928 46.46 10,477 433 465 2,512 270 215 38 2,889,990

(04.84%)

Affiliated contigs: contigs were assigned to be of viral origin based on LCA affiliation via MetaVir2. Reads mapped: number of reads mapped back to the assembled contigs (% of reads

used for the assembly).

Accession Number
All the viral reads data in this study were submitted to NCBI
Sequence Read Achieve (SRA). The SRA accession number:
SRP085759 (study).

RESULTS

Environmental Factors
The main environmental factors against which the seven viral
metagenomic samples were correlated are shown in Table 1.
Water temperature ranged from −1.88◦C at 878 mbs to 0.94◦C
at the surface (PBI2). Chlorophyll a concentration in the surface
samples (3.37–19.72mg L−1) were naturally higher than in the
bottom waters (0.04mg L−1) except in PBOs (0.08mg L−1). The
salinity in the bottom samples (34.54–34.66) were a little higher
than that at the surface (32.21–33.40) (P < 0.002). The DO in
the bottom samples (209.30–223.98 µmol L−1) was lower than
those at the surface (307.79–384.43 µmol L−1) (P < 0.002). The
concentrations of PO4-P, SiO3-Si, and NO3-N in the adjacent
Southern Ocean (PBOs and PBOb) and PBI4b were higher than
that in other samples in the inner bay (P < 0.05).

The PBI4s and PBOb samples had some site-specific
characteristics. PBI4s, which was apparently influenced by glacial
meltwater, had high NH4-N but lowDO and Chla concentrations
compared to other surface samples. PBOb had the highest PO4-P,
SiO3-Si, and NO3-N concentrations.

According to the cluster analysis of environmental factors, two
major groups were identified, group I (PBI1, PBI2, PBI3) and
group II (PBOs, PBI4b, PBOb, and PB14s). PBI4s was separated
from the other three samples within group II (Figure S2).

Metavirome Production and Contig
Assembly
The assembled contigs data were analyzed using MetaVir2 and
the statistical data of each sample can be seen in Table 2. A

comparison of the ratio of affiliated contigs to unaffiliated contigs
is shown in Figure S3. The number of contigs (>300 bp) varied
from 1,938 at PBI4s to 45,162 at PBI3, with the average length
being between 460 and 591 bp. Only 4.63–34.31% of the reads
could be mapped back to the assembled contigs. PBI4s and PBOb
had lower assembled contigs (1,938 and 2,512, respectively),
affiliated contigs (256 and 270, respectively) and the ratios of
mapped reads (4.63 and 4.84%, respectively) than other samples
(ranging from 14,184 to 45,162, 2,037 to 5,827 and 18.60 to
34.31%, respectively) in Prydz Bay.

Taxonomic Composition of Prydz Bay
dsDNA and ssDNA Viral Communities
Most of the contigs of the viral metagenomic data (85.08–
89.65%) were unaffiliated; the majority of the affiliated contigs
were affiliated to dsDNA viral contigs (68.38–93.67%, Figure S3).
The most abundant viral groups [relative abundance after
normalization (DNA-RPKM)] were dsDNA viruses (79.73–
94.06%), except in PBI1 where they accounted for 37.51%
(Figure S4). The order Caudovirales contained the most
abundant dsDNA viruses in the surface samples and the bottom
sample (PBI4b), which was collected from the edge of the Amery
Ice Shelf (ranging from 67.67% at PBI2 to 71.99% at PBOs).
Within the Caudovirales, Siphoviridae (29.34–34.78%) was more
abundant than Myoviridae (17.60–21.30%) and Podoviridae
(10.37–18.58%) (Figure 2). Interestingly, Cellulophaga phages
and Flavobacterium phage 11b (NC_006356.2) were abundant
in the surface dsDNA viromes. Cellulophaga phage phi38:1
(NC_021796.1) was most abundant and second most abundant
in PBI2 (3.95%) and PBI3 (3.37%), respectively. Cellulophaga
phage phi10:1 (NC_021802.1) was dominant in PBOs (6.44%).
Flavobacterium phage 11b was abundant in PBOs (3.61%) and
PBI2 (1.36%) (Table S1). Although both PBI4b and PBOb were
collected from the bottom, there was a significant difference in
the viral community structure between these two samples. The
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viral community in PBI4b was similar to the surface samples,
but PBOb was clearly different from all other samples (Figure 2).
In PBOb, while the proportion of Caudovirales (28.47%) was
lower than in the other samples, the Phycodnaviridae (18.74%),
Mimiviridae (7.84%), and Pandoraviridae (4.28%) families, which
belong to the nucleocytoplasmic large DNA viruses (NCLDVs)
and known to contain giant viruses infecting eukaryotes (Claverie
et al., 2009), were muchmore abundant than in the other samples
(Figure 2). Within the Phycodnaviridae, Chrysochromulina
ericina virus (CeV, classified within genus Prymnesiovirus,
6.78%),Aureococcus anophagefferens virus (AaV, classified within
genus Phaeovirus, 4.99%), Ostreococcus lucimarinus virus 2
(OlV2, classified within genus Prasinovirus, 2.23%), Emiliania
huxleyi virus 86 (EhV86, classified within genus Coccolithovirus,
1.75%), and Phaeocystis globosa virus (PgV, classified within
genus Prymnesiovirus, 0.84%) were dominant in PBOb. Within
the Mimiviridae, Acanthamoeba polyphaga moumouvirus
(ApMoV, 3.27%), Acanthamoeba polyphaga mimivirus (ApMiV,

2.66%), and Cafeteria roenbergensis virus BV-PW1 (CrV, 1.71%)
were dominant in PBOb.

Regarding the main host classifications, Cellulophaga phages
(around 4.93%), Pseudomonas phages (around 3.20%), and
Vibrio phages (around 3.24%) were responsible for the high
percentage in the surface samples. In the bottom samples,
however, Acanthamoeba polyphaga viruses (5.93% for PBOb and
2.46% for PB4b) and Pandoravirus (4.28% for PBOb), which
are giant viruses belonging to NCLDVs, comprised the largest
proportion of the dsDNA viral community (Tables S1, S2).

The taxonomic composition of the ssDNA viral communities
(PBI4s and PBOb are not shown here because of the limited
number of affiliated ssDNA virus contigs, Table 2) was mostly
comprised of the Microviridae, Inoviridae, Geminiviridae and
Circoviridae families (Figure 3). Microviridae was the dominant
ssDNA virus family in PBI2 (67.89%), PBI3 (73.59%), PBOs
(57.09%), and PBI4b (87.55%). However, the majority of
ssDNA viruses were Inoviridae (58.16%) in PBI1. Furthermore,

FIGURE 2 | Taxonomic composition of annotated dsDNA viromes in the Prydz Bay, Antarctic. The pie charts show a global representation of dsDNA viral groups for

all seven samples from the Prydz Bay. Different colors refer to different viral groups showed in the legend on the bottom.
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FIGURE 3 | Taxonomic composition of annotated ssDNA viromes in the Prydz Bay, Antarctic. The pie charts show a global representation of ssDNA viral groups for

five samples (except PBI4s and PBOb) from the Prydz Bay. Different colors refer to different viral groups showed in the legend on the bottom.

according to the taxonomic ranking by species, the most
abundant viral species amongst all samples was the marine
gokushovirus (19.27–46.68%).

Functional Annotation of dsDNA Viral
Communities in Prydz Bay
The predicted protein features for dsDNA viral contigs and
their functional distribution are presented in Figures 4A,B. For
dsDNA viral contigs, 59.21–77.63% of the predicted proteins
could be functionally annotated (Figure 4A). Five highly
represented (>5%) functional categories were classified in PBI1,
PBI2, PBI3, PBOs, and PBI4b, including “Clustering-based
subsystems” (unknown function) (15.06–17.41%), “Phages,
Prophages, Transposable elements, and Plasmids” (7.97–
15.59%), followed by “DNA Metabolism” (7.51–11.36%),
“Protein Metabolism” (7.72–9.83%), and “Miscellaneous” (6.12–
7.91%). PBOb had the highest proportion (26.45%) of functional
categories of “Phages, Prophages, Transposable elements, and
Plasmids” amongst all samples (Figure 4B).

Genome Reconstruction
Reconstruction of dsDNA viral genomes from metagenomic
sequences of each individual library was undertaken. 138,135
contigs, ranging from 301 to 130,439 bp, were uploaded to
the MetaVir2 server for annotation and comparison with other
publicly available viral genomes. The 52 long contigs, including
five circular contigs, were reconstructed from the seven viral

metagenomic samples, which ranged from 30 to 130.4 kb. The
main characteristics of the 23 linear contigs longer than 40 kb
and the five circular contigs are presented in Table 3. Among
these long contigs, eighteen were assigned to Caudovirales
and eight showed similarity to NCLDVs (Mimiviridae and
Phycodnaviridae).

An in-depth analysis was conducted on the two selected long
contigs (PBI2_1_C and PBI4b_7_L) as well as for those that
were identified as marine phages infecting Bacteroidetes bacteria.
These two long contigs were 34,336 bp (PBI2_1_C) and 40,544
bp (PBI4b_1_L), with a G + C content of 35.30 and 35.00%,
respectively. Circular contig PBI2_1_C contained 58 ORFs and
represents a putative Siphoviridae phage. This is because 23 ORFs
of PBI2_1_C showed a similarity to Flavobacterium phage 11b
(NC_006356.2) and Cellulophaga phage phi10:1 (NC_021802.1)
(Figure 5A), which are both marine members of the Siphoviridae
family (Borriss et al., 2007; Holmfeldt et al., 2013). Most genes
in PBI2_1_C with assigned function (fourteen of eighteen)
encoded proteins related to viral structural and packaging. The
terminase large subunit (TerL) gene showed a 40% amino
acid similarity to the corresponding protein of Flavobacterium
phage Fpv5 (NC_031921.1) and the major capsid protein (MCP)
gene showed a 57% amino acid similarity to the gene of
Flavobacterium phage 11b (NC_006356.2).

Linear contig PBI4b_7_L from the bottom sample probably
also came from a member of the Siphoviridae family. Sixty-two
ORFs were predicted within PBI4b_7_L, and no partially ORFs
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FIGURE 4 | Functional analysis of annotated dsDNA viromes in the Prydz Bay, Antarctic. (A) Total predicted protein features of annotated dsDNA viromes and (B) the

different subsystems categories of annotated protein features. Different colors refer to different functions showed in the legend on the right side.

were detected at either end (Figure 5B). On the basis of the
analysis of TerL, this phage could be classified as being related
to the Persicivirga phage P12024L (NC_018272.1) (Kang et al.,
2012); the structural ORFs were similar to Cellulophaga phage
phi19:1 (NC_021799.1) (Holmfeldt et al., 2013) and Polaribacter
phage P12002S (NC_028763.1) (Kang et al., 2015). All the
matched phages’ host bacterial strains belonged to the marine
phylum Bacteroidetes.

Relationship Between Viral Community
Structure and Environmental Factors
Multivariate regression analysis was used to determine the best
predictor variables to explain the variation of the dsDNA viral
community structure in the surface and deep sea of the Prydz
Bay (Figure 6). The first CCA axis explained 28% of the total
variability in the dsDNA viral community and the first two axes

explained 50% of the total variability. The CCA showed that
there were three clear groups of dsDNA viromes and the viromes
of PBOb and PBI4s were clearly differentiated from the other
samples. Most of surface dsDNA viromes (PBI1, PBI2, PBI3, and
PBOs) were closely related to the concentrations of Chla and DO.
The dsDNA viromes of PBI4s were related to NH4-N, while the
dsDNA viromes of PBOb were most closely related to the water
depth and nutrient concentrations (Figure 6). The RDA results
were similar to the results of the CCA (Figure S5).

Comparison With the Published Aquatic
Viromes
In order to compare the Prydz Bay viromes with previously
published data sets, 39 aquatic viromes and one soil virome
of different environments: seawater (20), freshwater (15),
hypersaline (3), estuarine water (1), and Antarctic hyperarid
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TABLE 3 | Analysis of selected contigs in the Prydz Bay viromes.

Contig ID Length

(bp)/type

No of ORF

identified

No of ORF

affiliated

Contig best BLAST hit affiliation Terminase large subunit (TerL) affiliation

PBI1_1_L 130,439/linear 126 24 Myoviridae; Bacillus phage 0305phi8-36 N/a

PBI1_2_L 51,889/linear 53 6 Mimiviridae; Cafeteria roenbergensis virus

BV-PW1

N/a

PBI1_3_L 48,832/linear 53 12 Podoviridae; Streptococcus phage 315.1 N/a

PBI1_4_L 43,547/linear 46 5 Myoviridae; Bacillus virus G N/a

PBI1_5_L 43,488/linear 33 10 Siphoviridae; Streptomyces phage Izzy N/a

PBI2_1_L 64,194/linear 86 33 Siphoviridae; Vibrio phage VpKK5 Siphoviridae; Streptomyces phage mu1/6

PBI2_2_L 63,085/linear 65 13 Mimiviridae; Megavirus chiliensis N/a

PBI2_3_L 45,901/linear 69 20 Siphoviridae; Burkholderia virus phi6442 Siphoviridae; Burkholderia virus phi6442

PBI2_4_L 45,864/linear 77 29 Podoviridae; Bordetella virus BPP1 N/a

PBI2_5_L 41,659/linear 53 6 Phycodnaviridae; Aureococcus

anophagefferens virus

N/a

PBI2_6_L 40,234/linear 73 19 Unclassified dsDNA phages; Sulfitobacter

phage NYA-2014a

Unclassified dsDNA phages; Sulfitobacter

phage NYA-2014a

PBI3_1_L 95,664/linear 88 19 Myoviridae; Bacillus virus G N/a

PBI3_2_L 83,424/linear 83 16 Mimiviridae; Acanthamoeba polyphaga

mimivirus

N/a

PBI3_3_L 50,110/linear 59 8 Phycodnaviridae; Aureococcus

anophagefferens virus

N/a

PBI3_4_L 46,251/linear 58 30 Podoviridae; Enterobacteria phage Min27 Myoviridae; Clostridium phage phiCD505

PBI3_5_L 43,879/linear 54 10 Phycodnaviridae; Chrysochromulina ericina

virus

N/a

PBI4b_1_L 71,333/linear 68 10 Mimiviridae; Acanthamoeba polyphaga

mimivirus

N/a

PBI4b_2_L 70,252/linear 67 14 Myoviridae; Bacillus virus G N/a

PBI4b_3_L 68,047/linear 70 14 Podoviridae; Streptococcus phage 315.1 N/a

PBI4b_4_L 56,330/linear 69 13 Phycodnaviridae; Chrysochromulina ericina

virus

N/a

PBI4b_5_L 51,529/linear 55 9 Myoviridae; Escherichia phage PBECO 4 N/a

PBI4b_6_L 42,027/linear 36 5 Myoviridae; Bacillus phage 0305phi8-36 N/a

PBI4b_7_L 40,544/linear 62 22 Podoviridae; Edwardsiella phage KF-1 Unclassified dsDNA phages; Persicivirga phage

P12024L

PBI2_1_C 34,336/circular 58 25 Siphoviridae; Flavobacterium phage 11b Unclassified phages; Flavobacterium phage

Fpv5

PBI2_2_C 33,525/circular 40 27 Unclassified dsDNA phages; Marinomonas

phage P12026

Unclassified dsDNA phages; Marinomonas

phage P12026

PBI2_3_C 40,537/circular 63 23 Podoviridae; Edwardsiella phage KF-1 Unclassified dsDNA phages; Persicivirga phage

P12024L

PBI3_1_C 41,598/circular 83 19 Siphoviridae; Idiomarinaceae phage Phi1M2-2 Siphoviridae; Idiomarinaceae phage Phi1M2-2

PBOs_1_C 40,652/circular 66 23 Podoviridae; Burkholderia virus Bcep22 Podoviridae; Vibrio phage PVA1

Contigs longer than 40 kb or circular contigs are presented. N/a, no terminase large subunit (TerL) gene found.

desert soil (1) were selected. The details of the selected viromes
are shown in Table S3.

Overall, the viromes appear to be clustered depending on
the different sampling environments (Figure 7). The viromes
could be classified into Prydz Bay viromes, marine viromes,
freshwater viromes, polar freshwater viromes, and hypersaline
viromes. Generally, the Prydz Bay viromes were closely related
to the Arctic Ocean virome (Arctic Vir–2002; Arctic Ocean)
(Angly et al., 2006), the Arctic freshwater viromes (Arctic
contigs, Arctic lakes in Spitsbergen) (Cárcer et al., 2015)
and the Antarctic desert soil virome (Antarctic open soil
contigs; Miers Valley, Ross Dependency in eastern Antarctica)
(Zablocki et al., 2014). However, the Prydz Bay viromes

were quite different from the Antarctic freshwater virome
(Antarctic Lake Summer; the ultra-oligotrophic freshwater
lake Limnopolar in the WAP) (López-Bueno et al., 2009).
Interestingly, the PBOb sample is quite similar to a deep
sea virome from Station ALOHA (ALOHA station deep
abyss), which is located in the North Pacific Gyre (22◦45′N,
158◦00′W).

DISCUSSION

Although marine viruses are recognized as the most abundant
entities in the sea and play important roles in the marine
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FIGURE 5 | Genome analysis of putative complete viral genomes identified from the viral metagenomes in the Prydz Bay, Antarctic. (A) Comparisons of putative

phage PBI2_1_C with Cellulophaga phage phi10:1 (NC_021802.1) and Flavobacterium phage 11b (NC_006356.2). (B) Genome map of putative phage PBI4b_7_L.

Arrows represent predicted ORFs. The color code for predicted gene function is provided at the bottom of the figure. Homologous ORFs are connected by blue lines.

%-id (aa) = amino acid identity.

ecosystems (Suttle, 2005), our knowledge about viral diversity,
community structure and biogeography remains elusive,
especially in the Southern Ocean. Currently, only the surface
RNA and DNA viromes from the coastal waters of Palmer
Station, Antarctic Peninsula, have been identified through
metagenomic analysis (Brum et al., 2016; Miranda et al., 2016).
Here, the first overview of the Prydz Bay viromes (including
both surface and deep sea samples) is presented, showing that
dsDNA viruses dominated the DNA viromes and Caudovirales
and NCLDVs dominated the dsDNA viral population of the
surface and bottom waters, respectively.

Diversity of DNA Viromes in Prydz Bay
In this study, with the exception of the PBI1 sample, the
taxonomic analysis of affiliated DNA viromes showed that most
viruses were classified as dsDNA viruses (Table 2, Figure S4),
even when the viral DNA pool was randomly amplified using the
MDA, which is known to increase the amplification of ssDNA
molecules (Kim and Bae, 2011;Marine et al., 2014). It is suspected
that ssDNA viruses were not generally abundant in Prydz Bay. In
this study, as the DNA content obtained from the samples was
quite limited, the DNase/RNase pretreatment of viral samples
wasn’t applied, which could bring in the viral and prophage
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DNA in the prokaryotic cells during the viral filtration and
concentration (Steward and Preston, 2011; Winter et al., 2014).
The viral concentrates were flash-frozen in liquid nitrogen and
then stored at −80◦C until processed (Brussaard, 2004; Winter
et al., 2014). This viral storage approach is a typical protocol
and verified as the best choice for viral conservation (Brussaard,
2004).

For dsDNA viruses, Caudovirales, which includes the families
Myoviridae, Siphoviridae, and Podoviridae, was the dominant
group (67.67–71.99%) in the surface waters of Prydz Bay
(Figure 2). This result is similar to the findings of other marine
viral metagenomic studies, such as Monterey Bay (65%), the
Indian Ocean (95.3%), the Baltic Sea and the Antarctic Peninsula
region of the Southern Ocean (∼80%) (Steward and Preston,
2011;Williamson et al., 2012; Brum et al., 2016; Allen et al., 2017).
Caudovirales were reported to infect a wide range of microbial
hosts, including Proteobacteria and Bacteroidetes, which are
dominant bacterial phyla in marine environments. Interestingly,
Cellulophaga phages (phi38:1 and phi10:1) and Flavobacterium
phage 11b, infecting the host strains Cellulophaga baltica, and
Flavobacterium hibernum, respectively, were abundant in the
surface dsDNA viromes of Prydz Bay. Bacteroidetes bacteria were
abundant and active members of bacterial communities in Prydz
Bay but are also present in other environments, such as Antarctic
soil, surface, and deep ocean waters, etc. (Kirchman et al., 2005;
Aislabie et al., 2006; González et al., 2007). These bacteria are
thought to be important, as they are responsive to marine
phytoplankton blooms and involved in degrading biopolymers,
killing phytoplankton and recycling of phytoplankton-derived
organic matter (Fernández-Gomez et al., 2013; Holmfeldt et al.,
2013). In Prydz Bay, diatom and dinoflagellate blooms are often
associated with the melting of the sea ice and a temperature rise
(Zhang et al., 2014). In this study, the seawater samples were
collected at the end time of the main summer phytoplankton
bloom. Therefore, it is hypothesized that Bacteroides abundance
increased during the phytoplankton bloom, which released
organic matter into the surface waters and fueled the growth
of Bacteroides (Fernández-Gomez et al., 2013; Holmfeldt et al.,
2013). Subsequently, Bacteroidetes phages also became abundant
in the dsDNA viromes of the Prydz Bay surface waters.

Interestingly, NCLDVs (Phycodnaviridae, Mimiviridae, and
Pandoraviridae), were more abundant in the deep samples
(18.74, 7.84, and 4.28% for PBOb and 8.80, 3.92, and
0.98% for PBI4b, respectively) than in the surface samples
(3.54–8.66, 1.37–4.08, and 0.17–1.20%, respectively) (Figure 2).
Within Phycodnaviridae, Prymnesiovirus (CeV and PgV contain
large genomes of 510 and 560 kb, respectively), Phaeovirus
(AaV), Prasinovirus (OlV2), and Coccolithovirus (EhV86) were
dominant in PBOb. This study, however, did not provide the data
to explain the high proportion of Phycodnaviridae in the deep sea
as compared with that of that in the aphotic zone. However, based
on other studies, possible explanations might include the long
survival times and higher sedimentation rate of NCLDVs, sinking
of the senescent algal bloom to the deep sea and subsequent
release of high abundances of Phycodnaviridae (Danovaro et al.,
2005; Borin et al., 2008; Corinaldesi et al., 2014; Antunes et al.,
2015). In the present study, Pandoraviridae and Mimiviridae of

FIGURE 6 | Canonical correspondence analysis of the relationship between

the relative viral abundance of viral species and environmental factors. DO,

dissolved oxygen; Chla, chlorophyll a; NO3-N, nitrate; NH4-N, ammonium.

NCLDVs were widespread in Prydz Bay. However, PBOb had the
highest proportion of Pandoraviridae (4.28%) and Mimiviridae
(including ApMoV and ApMiV infecting A. polyphaga, 5.93%)
and there was also a relatively high proportion of Pandoraviridae
and Mimiviridae in PBI4b (2.46%); these were higher than in
the surface seawater (Tables S1, S2). Both Pandoraviridae and
Acanthamoeba polyphaga viruses, which are giant viruses within
NCLDVs, infect amoebae and are also known as “ancient virus”
(Yutin and Koonin, 2012; Legendre et al., 2014). In this study,
the viral metagenomic samples were collected according to the
traditional viral concentration methods, which combined the
0.22µm pore size filtration and the tangential-flow filtration,
which is not specifically considered for NCLDVs (Hurwitz and
Sullivan, 2013;Winter et al., 2014). The proportion of NCLDVs in
the viral metagenomic samples might have been underestimated
by the using of the 0.22µm pore size filtration.

In PBI4b, the most abundant viral species was Psychrobacter
phage Psymv2 (NC_023734.1) (4.02%). This is a temperate
bacteriophage from the Antarctic Dry Valleys (78◦05′S, 163◦45′E,
Miers Valley in the McMurdo Dry Valleys, South Victoria Land,
Antarctica) soil isolate Psychrobacter sp. MV2 (Meiring et al.,
2012). The host bacteria strains of this phage include some
members of the genus Psychrobacter, which have been isolated
from a wide range of habitats, including surface and deep sea
waters, deep sea sediments and soil, especially from the Antarctic
region, and are also widespread in cold Antarctic environments
(Romanenko et al., 2002; Zhang et al., 2007; Meiring et al., 2012).
Data presented here suggest that the Prydz Bay seawater and the
McMurdo Dry Valleys of eastern Antarctic soil might contain
similar viruses and that there are also a large number of cold-
adapted Psychrobacter bacteria in the bottomwaters of Prydz Bay.
In the future, it will be necessary to analyze the host community
structure simultaneously to verify the speculated relationship
between the virus and the viral potential host cells.

Of the ssDNA viruses, marine gokushovirus (19.27–46.68%)
were ubiquitous in Prydz Bay. Gokushoviruses belong to the
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FIGURE 7 | Comparison between DNA viromes in the Prydz Bay and other environmental DNA viromes based on k-mer frequency bias (tetranucleotides). Forty

environmental DNA viromes available on MetaVir2 were selected from different kinds of environments, including seawater (20), freshwater (15), hypersaline (3),

estuarine water (1), and Antarctic hyperarid desert soil (1). The number represented the project ID. The details of the selected viromes are shown in Table S3. Different

colors refer to different environments showed in the legend on the top left.

subfamily Gokushovirinae, within the Microviridae, which are
well represented in sequences found in metagenomic databases
(Labonté and Suttle, 2013). These metagenomic studies indicate
that Gokushoviruses are genetically diverse and widespread
members of marine ssDNA viral communities; they are also
ubiquitous in the Prydz Bay.

It should be noted that the viral diversity and community
structure found in Prydz Bay was determined from the affiliated
contigs, which only represented a small fraction of the possible
viral contigs (10.35–14.92%, Figure S3). The unaffiliated contigs
contain a high proportion of unknown genes, which are most
likely linked to environmentally-specific viruses from the Prydz
Bay ecosystem. These findings support the hypothesis that much
of the global marine viral diversity remains uncharacterized.
Similar results have been reported from other published aquatic
DNA viromes (Breitbart et al., 2002; Steward and Preston,
2011; Williamson et al., 2012; Winter et al., 2014; Brum et al.,
2016; Cai et al., 2016; Roux et al., 2016b; Skvortsov et al.,
2016). Because there are too many uncultured viral species in
the marine environments, the reference genome database for
viral metagenomic analysis is still far from complete and an
extraordinary amount of uncharacterized viral “dark matter”
still exists in seawater. Although metagenomic approaches have

allowed the assembly of long contigs and the complete analysis
of predicted proteins instead of short reads, most ORFs are still
unknown. In future, the incorporation of robust viral genomic
information from viral isolates and metagenomic data into the
viral taxonomy will be a major contribution to research on viral
diversity and will lead to a better understanding of the ecology,
history, and impact of global viromes (Simmonds et al., 2017).

Novel Assembled Genomes
Two novel genomes (PBI2_1_C in circular and PBI4b_7_L in
linear) were assembled and selected for detailed analysis from
the DNA viral metagenomic libraries; these will contribute to our
knowledge of the marine Bacteroidetes phage genomes (Miranda
et al., 2016). The genomic structural and TerL phylogenetic
analysis of PBI2_1_C showed the highest relationship with
the viral isolates (Flavobacterium phage 11b and Cellulophaga
phage phi10:1) from the Cellulophaga and Flavobacterium host
cells, which belong to the phylum Bacteroidetes. Flavobacterium
phage 11b and Cellulophaga phage phi10:1. These were originally
isolated from Arctic sea-ice and the strait of Öresund, between
Sweden and Denmark (Holmfeldt et al., 2013), and had a
high genome similarity to each other. Flavobacterium phage
11b belongs to the tail dsDNA phage family Siphoviridae.
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FIGURE 8 | Comparison of viral taxonomic compositions between PBOb and deep sea sample of ALOHA station. The non-normalized taxonomic composition data

based on contigs best BLAST hit (threshold of 50 on the BLAST bit score) of PBOb (Project ID 8183) and ALOHA station deep abyss (Project ID 3816) were

downloaded from MetaVir2 server. Different colors refer to different viral groups showed in the legend on the right side.

The comparative genome analysis of PBI2_1_C, Flavobacterium
phage 11b and Cellulophaga phage phi10:1 showed that they
shared similar structural modules at the gene level (Figure 5A).
The high genome similarity between these two isolated phages
and the assembled Antarctic viral contig shows that Antarctic and
Arctic waters might contain similar viruses, potentially infecting
cold-adapted microorganisms.

Comparison Between the Prydz Bay
Viromes and the Published Aquatic
Viromes
In this study, some interesting results were found by comparing
the viromes in Prydz Bay with other published viromes. In
the MDS biplot, the Prydz Bay viromes were similar to the

Arctic freshwater virome (Arctic contigs) and the Arctic Ocean
viromes (Arctic Vir–2002) but they were different from the
Antarctic freshwater virome (Antarctic Lake Summer). The
Arctic freshwater viral community was reported to be different
from that of the Arctic Ocean, and shared viral taxonomic
communities with Antarctic freshwater ecosystems (though with
very low fine-grain genetic overlap) (Cárcer et al., 2015). To
some extent, the results presented here demonstrated that there
were correlations between the dsDNA viral communities in the
Antarctic and the Arctic. It also reflected that there was a complex
relationship between polar freshwater and marine viromes.

It was also found that the Prydz Bay viromes were closely
related to the Antarctic desert soil virome (Antarctic open soil
contigs; Miers Valley) (Zablocki et al., 2014). A large number of
Psychrobacter phage Psymv2, which was isolated from the Miers

Frontiers in Microbiology | www.frontiersin.org 13 December 2018 | Volume 9 | Article 2981

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Gong et al. Viral Metagenomes in Prydz Bay Antarctic

Valley (Meiring et al., 2012), was also found in the Prydz Bay
viromes. These results provide some evidence for the study of
the origin and distribution of viruses in the Antarctic region
and the relationship between the marine and Antarctic desert
environments.

The dsDNA viral community in the bottom waters of Prydz
Bay (PBOb) were quite different from those of the surface water
viromes (Figures 2, 6). In PBOb, the Phycodnaviridae and giant
virusesMimiviridae,which were within NCLDVs, were abundant
(Figure 2). Interestingly, such a large proportion of NCLDVs
in the deep waters (PBOb, >3,000 mbs, 30.74%) was similar
to the one deep sea virome at ALOHA (34.44%, Figure 8).
Knowledge of deep sea Antarctic viromes is very limited and
here possible mechanisms for the dominance of NCLDVs in
the deep sea viromes are suggested. Firstly, it is possible that
the phytoplankton blooms in the surface waters of Prydz Bay
induced high infection rates of the phytoplankton and protists
by NCLDVs; secondly, the infected algae and protists sank to the
deep sea, subsequently lysing and releasing the NCLDVs into the
deep water.

Methodological Considerations About the
Whole Genome Amplification (WGA)
The MDA, one of the most commonly used WGA methods
was used to get sufficient DNA for viral metagenomic
sequencing in this study. Though MDA is known to result
in amplification biases and to increase the amplification
of ssDNA molecules (Kim and Bae, 2011; Marine et al.,
2014), MDA has been successfully used in many viral
metagenomic studies in different environments (Angly et al.,
2006; Labonté and Suttle, 2013; Zablocki et al., 2014; Roux et al.,
2016b).

To avoid the influences caused by the MDA amplification,
several measures have been chosen, including: (1). The Qiagen
REPLI-g kit, which was proved to be the ideal choice for the
WGA kit, was used in this study (Thoendel et al., 2017); (2) This
study paid primary attention on the dsDNA viral communities
that were less affected by MDA; (3) For comparison with
other published aquatic viromes, a viral metagenomic study that
carried out MDA and performed MetaVir2 for the comparisons
among different samples were referred to Roux et al. (2016b).
In addition, a recent study reported that the bias induced by
WGA has only a limited impact on the beta diversity of human
saliva viromes (Parras-Moltó et al., 2018), hence MDA might
have a smaller than expected impact on the comparisons among
different samples. Though MDA could be considered as an
acceptable method for the study of viral community, the direct
sequencing method without amplification is still the first choice
to illustrate the actual viral community in the future, especially
with the rapid technological progress on the high-throughput
sequencing.

CONCLUSION

This study describes the surface and deep sea viral community
structure of Prydz Bay, Antarctic, based on a metagenomic

analysis and its relationship with environmental factors. dsDNA
viromes dominated the local DNA viral community structure;
Caudovirales and NCLDVs were the most abundant dsDNA
viromes at the surface and in the deep sea, respectively. Although
the reason for the abundance of NCLDVs in the deep sea
is not yet known, data presented here suggest that NCLDVs
are an abundant component of deep sea viral communities
around the Antarctic. In future, the simultaneously study of
the 16S rRNA, 18S rRNA genes, and viral profiles of the same
seawater samples should provide an insight into the detailed
relationship between viruses and their possible hosts in the
Antarctic.
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Figure S3 | Affiliated and unaffiliated contigs in Prydz Bay. Affiliated contigs:

contigs were assigned to be of viral origin; affiliated dsDNA viruses contigs:

contigs were assigned to be of dsDNA viruses.

Figure S4 | Relative abundances of viral contigs after normalization (DNA-RPKM).

Figure S5 | Redundancy analysis of the relationship between the relative viral

abundance of viral species and environmental factors. DO, dissolved oxygen;

Chla, chlorophyll a; NO3-N, nitrate; NH4-N, ammonium.

Table S1 | Taxonomic viral composition based on LCA affiliation for viral contigs

via MetaVir2. Relative quantities expressed as DNA-RPKM numbers and

percentage.

Table S2 | Specific viral composition based on host taxonomies. Relative

quantities expressed as percentage.

Table S3 | Detailed information of selected environmental DNA viromes available

on MetaVir2.
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