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There are millions of microbes that live in the human gut. These are important in digestion
as well as defense. The host immune system needs to be able to distinguish between
the harmless bacteria and pathogens. The initial interaction between bacteria and the
host happen through the pattern recognition receptors (PRRs). As these receptors are
in direct contact with the external environment, this makes them important candidates for
regulation by dietary components and therefore potential targets for therapy. In this review,
we introduce some of the main PRRs including a cellular process known as autophagy, and
how they function. Additionally we review dietary phytochemicals from plants which are
believed to be beneficial for humans. The purpose of this review was to give a better
understanding of how these components work in order to create better awareness on
how they could be explored in the future.
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INTRODUCTION
The human body is inhabited by complex communities of
microorganisms known as the microbiota which inhabit most sur-
faces (Hooper et al., 2012). It is estimated that there is up to 100
trillion (1014) bacteria (Savage, 1977; Ley et al., 2006; De Cruz
et al., 2012) which is around 10-fold greater than the number of
human cells in the same individual (De Cruz et al., 2012). The
majority of the microbiota (10–100 trillion) inhabits the human
gastrointestinal tract where they are most dense in the distal intes-
tine (≥1012/cm3 intestinal contents). In the distal intestine the
microbiota has many beneficial functions such as fermentation
of indigestible dietary residues, production of vitamin K, control
of intestinal epithelial cell (IEC) proliferation and differentiation,
and the creation of a protective barrier against pathogens (Hooper
et al., 2012).

In the intestine, a balance is required between the diges-
tion of nutrients by symbiotic bacteria and protection against
pathogenic bacteria (Hooper et al., 2012). In healthy individ-
uals, the intestinal immune system has evolved to distinguish
between normal gut microbiota and pathogenic bacteria and
responds appropriately to each (Hooper et al., 2012). During
bacterial infection, inflammation is activated as a defense mech-
anism and is generally beneficial, However, if inflammation
is uncontrolled, this can lead to chronic inflammation caus-
ing disease such as inflammatory bowel disease (Medzhitov,
2010). The appropriate response to the resident microbiota begins
with the microbiota sensing receptors which activates down-
stream signals that respond by either defense, attach, repair, or
protection.

Studies have uncovered a mechanism that feeds into the bac-
terial sensing pathway, known as autophagy (see Autophagy).
Autophagy is a mechanism used by cells for degradation of cyto-
plasmic material and is required for quality control and immune
regulation.

Current literature suggests that dietary components can
interact with processes in the host and has the potential to
modify its course. One of the best studied and largest group
of dietary components are phytochemicals. These compounds
have a wide range of effects that include anti-inflammatory, anti-
cancer, anti-oxidant, and other beneficial properties both in vivo
and in vitro. However, the results are controversial and some-
times unclear. This is likely due to the differences in methods
used to assess polyphenols. These findings suggest that dietary
interventions have the potential to modify and prime different
physiological process including immunity. Understanding these
pathways further and how diet can interact with them will there-
fore contribute to developing personalized nutrition to manage
disease.

This review will focus on introducing the bacterial sensing
machinery and autophagy, and how they work. The second half
of this review will introduce plant polyphenols their digestion,
metabolism, bioavailability, and how they interact with the host
cells to carry out their role.

BACTERIAL SENSING
The innate immune system recognizes molecular structures that
are characteristics of microbial pathogens but not mammalian
cells (Abbas et al., 2012). The microbial substances that stimu-
late innate immunity are called pathogen-associated molecular
patterns (PAMPs). Different classes of microbes express differ-
ent PAMPs. The innate immunity also recognizes endogenous
molecules that are produced by and released from damaged cells.
These substances are known as damage-associated molecular pat-
terns (DAMPs). Receptors that recognize PAMPs and DAMPs are
expressed on phagocytes that include macrophages, neutrophils,
dendritic cells (DCs), and epithelial cells that compose the bar-
rier interface between the body and the external environment
(Figure 1). These receptors are known as pattern recognition
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FIGURE 1 | Host cells including epithelial cells, macrophages, and dendritic cells contain pattern recognition receptors (PRRs) that can recognize

molecules released from pathogens during infection (PAMPs) or stressed cells during tissue damage (DAMPs). This activates downstream pathways to
resolve infection or repair damaged tissue.

receptors (PRRs). When molecules bind to PRRs, they activate sig-
nal transduction events that promote the anti-microbial and pro-
inflammatory functions of the cells in which they are expressed
(Abbas et al., 2012).

There are several families of PRRs that have been identified
(Abbas et al., 2012). These include the Toll-like receptors (TLRs),
Nod-like receptors (NLRs), RIG-like receptors, and other cell-
associated PRRs (Abbas et al., 2012). The most widely studied
PRRs are the TLRs and NLRs which will be discussed in detail
in this section.

Toll-LIKE RECEPTORS
Toll-like receptors are a family of transmembrane proteins that
recognize and respond to: (1) PAMPs (Ozinsky et al., 2000), (2)
DAMPs (Piccinini and Midwood, 2010), and (3) pathogenic and
non-pathogenic microorganisms in the form of microorganism-
associated molecular patterns (MAMPs; Ramos et al., 2004). To
date, a total of 10 TLRs have been identified in humans (TLR1–10;
Abreu, 2010).

Toll-like receptors are predominantly expressed on host innate
immune cells including epithelial cells (Abreu, 2010). The TLRs are
comprised of type I transmembrane glycoproteins expressed on
the cell surface (TLR1, TLR2, TLR4–6, and TLR10) or endosomal
compartments (TLR3, TLR7–9). All TLRs express the N-terminal
ectodomain that contains leucine rich repeats (LRRs) involved in
ligand recognition and co-receptor interaction. They also express
a transmembrane region and an intracellular region containing
a Toll/IL1R resistance (TIR) signaling domain (Singletary and
Milner, 2008).

Each TLR recognizes specific molecules that activate it. TLR4
is the main receptor for lipopolysaccharides (LPSs) from Gram-
negative bacteria. TLR4 can also sense mannan which is the fusion
(F) protein of respiratory syncytial virus (RSV) and Chlamydial
heat shock protein (hsp). TLR2 interacts with TLR1 or TLR6
to recognize tri- or diacylated lipoproteins from Gram-positive
bacteria, mycobacteria, or mycoplasma (Lien et al., 1999). TLR5
detects bacterial flagellin (Gewirtz et al., 2001; Mizel and Snipes,
2002). Endosomal TLRs sense viral double stranded RNA (TLR3;
Alexopoulou et al., 2001), single strand RNA (TLR7 and TLR8;
Diebold et al., 2004; Heil et al., 2004), and hypomethylated CpG
motifs present in bacterial, viral, and fungal DNA (TLR9; Beutler,
2008).

Most TLRs form homodimers upon ligand binding. In con-
trast, TLR2 forms heterodimers with either TLR1 (TLR1/2) or
TLR6 (TLR2/6) to respond to tri- and diacylated lipoproteins,
respectively (Schenk et al., 2009). Gram-positive bacteria and
mycobacteria express diacylated lipoproteins, whereas lipopro-
teins of Gram-negative bacteria have an additional acyl group.
This puts TLR2 in a unique position of being capable of respond-
ing to lipoproteins from wide range of bacteria making it a vital
bacterial sensing cell surface receptor against infection (Schenk
et al., 2009).

Toll-like receptor response to molecules can be divided into two
distinct intracellular pathways (Smoak et al., 2010): one leading to
the activation of the MyD88-dependent pathway and the other
through the TIR-domain-containing adapter-inducing interferon
(IFN)-β (TRIF) signaling arm (Covert et al., 2005). All TLRs (with
the exception of TLR3) use the MyD88 signaling pathway which

Frontiers in Genetics | Nutrigenomics April 2014 | Volume 5 | Article 64 | 2

http://www.frontiersin.org/Nutrigenomics/
http://www.frontiersin.org/Nutrigenomics/archive


Ahmed Nasef et al. Dietary interactions with colonic bacteria

associates with the TLRs through the TIR–TIR domain inter-
actions (Beutler, 2008). This is followed by the recruitment of
IL1R-associated kinase 4 and kinase 1 which signals downstream
to activate nuclear factor kappa beta (NFκβ), mitogen-activated
protein kinases (MAPKs), and inflammatory cytokines (Doyle
and O’Neill, 2006). TLR3 solely engages with TRIF to activate
inflammatory cytokines and type I IFNs. On the other hand, TLR4
which uses both MyD88- and TRIF-dependent pathway, also uses
TRIF to signal expression of co-stimulatory molecules and type
1 IFNs via the activation of TANK-binding kinase 1 (TBK1) and
IFN regulatory factor (IRF) 3 and 7 (Doyle and O’Neill, 2006;
Beutler, 2008). TLR4 and TLR2 require the bridging adaptor TIR
domain-containing adapter protein (TIRAP) to recruit MyD88 to
the TLRs. However, TLR4 also requires a bridging adaptor TRIF-
related adapter molecule (TRAM) that recruits TRIF to the TLR4
complex (Yamamoto et al., 2003). TLR4 which recognizes Gram-
negative bacteria, mainly LPS, represents the principal pathway
responsible for detecting and responding to endotoxins, resulting
in the triggering of both the MyD88-dependent and -independent
pathways (Fukata et al., 2009). Sensing of conserved PAMPs such
as LPS via the LRR-containing ectodomain leads to TLR dimer-
ization. This brings their TIR signaling domain closer to each
other which form an intracellular docking platform that enables
recruitment of adaptor proteins and kinases (Beutler, 2008). In
one study, delayed activation of NFκβ in MyD88-deficient mouse
embryo fibroblast (MEF) model cells as compared to the wild
type cells was reported, suggesting that although both pathways
activate NFκβ and inflammation, the TRIF-dependent pathway
can do this with delayed kinetics (Covert et al., 2005). The study
found that LPS-stimulated MyD88-deficient cells, in comparison
with cells containing MyD88- and TRIF-deficient cells showed
substantially slower kinetics to reach the initial peak for NFκβ

activation. They also found the NFκβ activation in MEF cells
with TRIF began much earlier after stimulation with LPS than
in MEF cells deficient in TRIF. The MEF cells with and with-
out MyD88 sustained the activation of the NFκβ levels for much
longer than TRIF-deficient MEFs. These observations suggest that,
while the dependent pathway triggers the response to the initial
stimuli, the independent pathway is responsible for the suste-
nance of the pro-inflammatory program (Biswas and Tergaonkar,
2007).

In one study, TLR2 was also shown to activate a second path-
way in parallel to MyD88-dependant pathway (Cario et al., 2007).
The authors found that TLR2 signaling involves the PI3K–Akt
pathway which modulated intestinal epithelial barrier function
in vitro in IECs and ex vivo in mice. Stimulating TLR2 with
the synthetic triacylated lipopeptide analog Pam3CSK4 in IEC,
resulted in MyD88-dependant phosphorylation of the Akt p70S6K
S6 ribosomal pathway through the PI3K pathway. In contrast
stimulation with LPS did not lead to phosphorylation of Akt
and its downstream substrates above baseline IEC. In their study
they also found that TLR2 functions through the PI3K–Akt to
attenuate the MAPK–NFκβ-signaling cascade. Overexpression of
Akt leads to the significant dampening of PAM3CSK4-induced
NFκβ activation in vitro. Their findings suggest that the PI3K–
Akt secondary pathway ensures tolerance toward ligands from
commensal bacteria (Cario et al., 2007). This study looked at

PAM3CSK4 which activates TLR2/TLR1. Whether the same
results apply to the activation of TLR2/TLR6 remains to be
investigated.

Nod-LIKE RECEPTORS
When pathogens enter the cytosol of cells they are detected
by cytosolic receptors known as NLRs which elicit the appro-
priate response to clear or control the infection (Correa et al.,
2012). They do so by recruiting a number of molecules to form
a complex multi-protein structure referred to as the inflam-
masome (or a signalosome in the case of NOD1 and NOD2;
Correa et al., 2012).

Structure of the NLRs and intracellular signaling via the NLRs
All NLR proteins contain: a C-terminal region characterized by
a series of LRR domains that are involved in recognizing micro-
bial components or ligands; a central nucleotide domain termed
the NACHT domain that is important for self-oligomerization;
and a N-terminal effector domain that is responsible for the
interaction of the NLR with downstream signaling molecules
(Correa et al., 2012). NLRs can vary in the number of LRRs
as well as their N-terminal interacting domain. Many NLRs
have been identified that include NOD1, NOD2, NLRP1,
NLRP3, NLRP6, NLRP7, NLRC4, NAIP5, AIM2, and RIG-I
(Chen et al., 2009).

Based on NLR’s N-terminal protein–protein interacting mod-
ule, the NLRs can be divided into three subgroups depending on
the interacting domain they have (Correa et al., 2012): (1) cas-
pase recruitment domains (CARDs), (2) pyrin domains (PYDs),
or (3) other domains such as baculovirus IAP (inhibitor of apop-
tosis) repeat domains (BIRs). The type of interacting domain that
an NLR possess will determine the type of multiprotein complex
recruited and the type of response achieved.

When the NOD receptors are activated by their ligands,
the receptors oligomerize through mediation via the NACHT
domains (Correa et al., 2012). This recruits RIP2 (receptor inter-
acting protein 2) domain where the CARD of NOD1 or NOD2
bind the CARD of RIP2. This results in the ubiquitination
by IAPs and recruitment of the linear ubiquitin chain assem-
bly complex (LUBAC) by the X-linked inhibitor of apoptosis
protein (XIAP) with further binding of TAB/TAK1 complex.
TAK is an upstream activator of the IκB kinase (IKK) com-
plex as well as the stress kinase cascades that results in JNK
and p38 MAPK activation (Correa et al., 2012). In addition,
NOD1 and NOD2 have been reported to interact with other
NLRs that are important for caspase-1 activation (Correa et al.,
2012). Most NLRs (with the exception of NOD1 and NOD2)
will recruit caspase-1 either directly or indirectly (Correa et al.,
2012). Caspase-1 processes a number of cellular substrates which
includes the conversion of pro-IL1β and pro-IL18 into their active
forms (Martinon et al., 2009). In addition to pro-inflammatory
effect, continuous activation of caspase-1 can result in a form
of cell death known as pyroptosis. This has characteristics of
both apoptosis and necrosis (Martinon et al., 2009). NOD2
was shown to specifically and directly interact with NLRP1,
NLRP3, and NLRP12, whereas NOD1 interacts only with NLRP3
(Moreira and Zamboni, 2012).
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NOD1 and NOD2
NOD1 and NOD2 are the first NLRs that were identified and
are examples of NLRs containing a CARD (Inohara et al., 1999;
Ogura et al., 2001). NOD1 has been widely expressed in many
cell types and tissues in vivo, whereas NOD2 has been found in
macrophages, DCs, paneth cells, keratinocytes, intestinal epithe-
lium, lung oral cavity, and osteoblasts. Both proteins are activated
by bacterial peptidoglycan (PG; Schleifer and Kandler, 1972). PG
is responsible for providing shape and mechanical rigidity to bac-
teria (Schleifer and Kandler, 1972). It is a major component of
Gram-positive bacterial cell wall, while in Gram-negative bacte-
ria it is found as a thin layer in the periplasmic space (Correa
et al., 2012). NOD2 is a general bacterial sensor that detects and
directly binds muramyl dipeptide (MDP) a motif that is present
in the PGs of both Gram-positive and -negative bacteria (Girardin
et al., 2003b). In contrast NOD1 is dependent on the presence
of L-Ala-y-D-Glu-diaminopimelic acid (m-DAP), an amino acid
characteristic of most Gram-negative and some Gram-positive
bacteria (Girardin et al., 2003a). Several groups have reported a
role of NOD1 in the detection of a variety of invasive Gram-
negative bacteria such as E. coli (Kim et al., 2004) and Chlamydia
(Opitz et al., 2005). Because PG from both Gram-positive and

-negative bacteria contains MDP, NOD2 functions as a gen-
eral sensor of most bacteria (Correa et al., 2012). However PG
from Gram-positive bacteria do not contain m-DAP (with a few
exceptions), NOD1 mainly senses products from Gram-negative
bacteria (Correa et al., 2012). Moreover, several studies have
demonstrated the activation of other NLRs including NLRP3 and
NLRP1 by MDP (Moreira and Zamboni, 2012). The activation
of these NLRs with MDP leads to the secretion of ILβ (Martinon
et al., 2007).

AUTOPHAGY
Autophagy is derived from the Greek word for “self-eating,” and
refers to the process by which the cells breakdown and reuse their
own constituents (Levine et al., 2011). Unlike proteasomes that
are also involved in cellular degradation, autophagy is a recy-
cling pathway and plays an important role in maintaining cellular
homeostasis (Singletary and Milner, 2008). Autophagy can be
broadly divided into three types based on the method of trans-
fer used to deliver the cellular content into the lysosome (Cuervo
and Macian, 2012). The three types of autophagy are macroau-
tophagy, microautophagy, and chaperone-mediated autophagy
(Figure 2; Cuervo and Macian, 2012). However, the different types

FIGURE 2 | Microautophagy occurs when bulk cytosolic components are

directly engulfed by lysosomes through the invaginations of the

lysosomal membrane where they are rapidly degraded by hydrolase

enzymes. This process has been studied in yeast and is still poorly
characterized in mammals (Cuervo and Macian, 2012). Chaperone-mediated
autophagy (CMA) is a very complex and specific pathway which is initiated
when a chaperone recognizes a targeting motif in the cytosolic protein to be
degraded. The chaperone/substrate complex reaches the lysosome and the

substrate is internalized through the translocation complex in the lysosomal
membrane (Cuervo and Macian, 2012). CMA is considerably different from
the other types of autophagy because it does not directly engulf the protein
material but selectively transfers it individually into the lysosome (Kadian and
Garg, 2012). The most extensively described type of autophagy in the
literature is macroautophagy which is also referred to as autophagy in the
literature. A review on macroautophagy (which will be referred to as
autophagy from this point) is provided in this review.
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of autophagy do not function in isolation but often function in an
interconnected manner.

Autophagy is the main pathway that is activated in response to
a number of stressors with a pro-survival function (Cuervo and
Macian, 2012). In addition, some level of the basal autophagy
exists in almost all cell types and contributes to maintenance of
cellular homeostasis (Deretic, 2011). Autophagy either degrades
or recycles the cytoplasmic content initially by the formation of an
autophagosome. Autophagosomes are intermediate membrane-
surrounded structures that perform two major functions: firstly
it isolates the targeted cytoplasmic content within a cell from the
remaining cellular matter; secondly it delivers the isolated cyto-
plasmic content into mammalian lysosomes or plant and yeast
vacuoles. There are different types of selective autophagy that have
been described according to the substrate they target (Lapaque-
tte et al., 2012). Aggrephagy refers to degradation of aggregated
proteins (Rubinsztein, 2006), pexophagy to peroxisome degrada-
tion (Iwata et al., 2006), mitophagy to mitochondria degradation
(Okamoto et al., 2009), reticulophagy to ER degradation (Bernales
et al., 2006), and xenophagy to the degradation of intracellular
microorganisms (Deretic, 2010).

MECHANISM OF AUTOPHAGY
Autophagy can be induced by a variety of immune signals and
stress stimuli, including inflammatory cytokines, starvation and
energy stress, ER stress, PAMPs and DAMPs, hypoxia, redox stress,
and mitochondrial damage (Kroemer et al., 2010). Steps involved
in the process of autophagy after initiation are summarized as
follows:

Upon initiation, autophagy formation goes through several
steps (Kroemer et al., 2010). Beclin 1 (Atg6 in yeast), UVRAG
(Vps38 in yeast), Vps34 (Class III PI3K), and Vps15 are assembled
to form the lipid kinase signaling complex to mediate nucleation
or vesicle formation. The molecules to be digested are surrounded
by the isolating membrane called the phagophore which starts
to elongate (Kroemer et al., 2010). There are two ubiquitin-like
conjugation systems which are part of the membrane elonga-
tion process (Kroemer et al., 2010). The first system involves the
covalent conjugation of Atg12 to Atg5 with the help of Atg7.
This results in the association of Atg16L1, forming the Atg16L1–
Atg12–Atg5 complex. This complex functions by recruiting the
lipidated form of the microtubule-associated protein 1 light chain
3 (LC3-II/Atg8 in yeast; Yang and Klionsky, 2010). Small frac-
tions of the cytosolic ATG12–ATG5–ATG16L1 complex associate
with the outer membrane of the phagophore and dissociate from
it on or near completion of the double-membrane autophago-
some (Mizushima et al., 2003). Atg5 and Atg16L1 depend on each
other for their membrane targeting; whereas Atg12 is dispens-
able for Atg5–Atg16L1 membrane association (Mizushima et al.,
2003).

The second system that is important in the elongation pro-
cess involves the actual lipidation of LC3. This is done by the
conjugation of phosphatidylethanolamine (PE) to the glycine
residue of the mammalian LC3 by the sequential action of Atg4,
Atg7, and Atg3 (Yang and Klionsky, 2010). LC3 is initially syn-
thesized as its unprocessed form proLC3. LC3 is cleaved at its
C-terminus by the cystine protease Atg4 into the mature form

LC3-I. LC3-I is conjugated to PE by the ubiquitin E1-like pro-
tein – Atg7, and the ubiquitin E2-like protein – Atg3, to generate
a smaller lipidated form of LC3, LC3-II. This lipid conjugation
results in the conversion of the soluble form of LC3 (known
as LC3-I) to its membrane form LC3-II. LC3-II is stably asso-
ciated with the autophagosome membrane. Atg16L1 determines
the site of LC3 attachment through an interaction with Golgi-
resident small GTPase Rab33 (Itoh et al., 2008). LC3-II is found
both on the luminal and cytosolic surfaces of autophagosomes.
Elongation is then followed by the closure of the autophago-
some and fusion with the lysosomal compartment and the
hydrolysis of the molecules within the autophagosome (Tanida,
2011).

DIETARY PHYTOCHEMICALS
Plant secondary metabolites also known as phytochemicals are
derived from the products of primary metabolism in plants. They
are defined as bioactive non-nutrient plant compounds found
in fruits, vegetables, grains, and other plant foods (Liu, 2012).
It is estimated that there have been more than 5,000 individ-
ual phytochemicals identified so far. However, a large percentage
remains undiscovered (Shahidi and Naczk, 1995). According to the
literature, phytochemicals have been classified broadly into phe-
nolic compounds, terpenoids, nitrogen-containing compounds,
alkaloids and sulfur-containing compounds, phytosterols, and
carotenoids (Table 1; Rein et al., 2013).

Phytochemicals have a wide range of molecules, starting from
the low-molecular weight phenolic acids to the highly polymer-
ized proanthocyanidins. In addition to their broad classification,
phytochemicals have been divided into two distinct classes: water
soluble and lipid soluble (Neilson and Ferruzzi, 2012).

Unlike vitamins and minerals, these phytochemicals are not
recognized as essential dietary components because lacking in
them does not cause any specific deficiency. However, these
bioactive compounds have been linked to biological activity
in mammalian systems that may impact health and disease
risk (Liu, 2012). Most dietary phytochemicals are considered
non-essential nutrients. Therefore they are defined as com-
pounds that can be found in the organism, but not made by
the organism and not expected to be present in the organ-
ism, or used for normal metabolic function (also known as
xenobiotics; Neilson and Ferruzzi, 2012). Many foods contain
hundreds or even thousands of phytochemicals with variable
and mostly unknown biological activity (Neilson and Ferruzzi,
2012). Of these, the polyphenols and the carotenoids are the best
understood.

Phytochemicals vary widely in their composition in fruits and
vegetables, nuts, and grains. This variation depends on several
factors including soil (Price et al., 1989; Mansfield et al., 1999), cli-
matic conditions (Albert et al., 2009), agricultural methods (Binns
et al., 2002), physiological stress under which plants are grown
(Gershenzon, 1984), degree of ripeness (Faurobert et al., 2007),
storage conditions and length of storage before consumption (Liu,
2012). Thus no single value is representative of the amount of phy-
tochemicals found in an individual plant species. The mechanism
of action of different phytochemicals are often complimentary to
one another and are likely to work synergistically (Liu, 2012).
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Table 1 |The different classes of phytochemicals.

Phytochemical class Description Reference

Phenolic compounds At least one aromatic ring; one or more hydroxyl groups attached; more than 8000 structures;

includes flavonoids and phenolic acids

Tsao (2010)

Terpenoids Sometimes called isoprenoids; derived from five carbon isoprene units; more than 40,000

molecules; contributes to the aroma and flavor of plants

Aharoni et al. (2005)

Nitrogen-containing alkaloids Low molecular weight, nitrogen-containing compounds; mostly derived from amino acids;

found in ∼20% of plant species; exploited as pharmaceuticals, stimulants, narcotics, and

poisons

Wink (1998)

Sulfur-containing compounds Glucosinolates in cruciferous crops (e.g., Broccoli); Alliins in Allium crops (e.g., Garlic);

compartmentalized enzyme–substrate systems that produce a variety of products when the

plant tissue is damaged

Mithen (2008)

Phytosterols Plant steroids equivalent to cholesterol in animals; found mainly in vegetable oil Ling and Jones (1995)

Carotenoids Widely spread in plants; provides the colors yellow, red, and orange to plants; 600 known

species; all contain eight isoprenes molecules; 40 carbon atoms

Kadian and Garg (2012)

Like other xenobiotics, phytochemicals are subjected to the
body’s detoxification system (Neilson and Ferruzzi, 2012). This
system is designed to reduce the toxicity of potentially toxic
compounds. Biotransformation of xenobiotics is catalyzed by
enzymes known as drug-metabolizing enzymes to enable their
metabolism, detoxification and excretion from the body (Yang
et al., 2010). The drug-metabolizing enzymes can be broadly clas-
sified into three groups where phase I and phase II are enzymes
while phase III are transporters.

PHASE I METABOLISM
Metabolism usually begins with the hydrolysis of polymeric,
glycosylated and/esterified native compounds via the brush bor-
der of the small intestine, and the microbial enzymes (phase
I metabolism; Spencer et al., 1999). Phytochemicals are usually
present in food as glycosides or other conjugates and need to be
hydrolyzed in order to be absorbed (Yang et al., 2010). Phase I
metabolism encompasses both redox and hydrolytic reactions. The
oxidation of xenobiotics in the intestine is mainly performed by a
diverse family of enzymes referred to as cytochrome p450 or CYPs
(Yang et al., 2010).

PHASE II METABOLISM
Once absorbed into the IECs called enterocytes, xenobiotics are
subjected to phase II metabolism by the process of conjugation
(Yang et al., 2010; Neilson and Ferruzzi, 2012). Conjugation is
a common detoxification reaction which reduces the number of
reactive hydroxyl groups on the compound and includes glu-
curonidation, sulfation, methylation, acetylation, glutathione, and
amino acid conjugation (Jancova et al., 2010). The process of
conjugation makes the xenobiotics more polar and hydrophilic
resulting in increased solubility which is necessary for urinary
excretion (Dutton, 1978). This involves conjugation reactions
where a hydroxyl group on a compound is modified by the addi-
tion of sulfate, glucoronic acid, or methyl group (Neilson and
Ferruzzi, 2012).

Phase II drug metabolizing enzymes are mostly belong-
ing to a group of enzymes known as transferases that cat-
alyze the transfer of functional groups. These include UDP-
glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-
acetyltransferases (NATs), glutathione S-transferases (GSTs), and
various methyltransferases [mainly thiopurine S-methyl trans-
ferase (TPMT) and catechol O-methyl transferase (COMT);
Jancova et al., 2010]. UGT isoforms have a broad tissue distri-
bution with a major location in the liver and the small intestine
(Strassburg et al., 2000; Izukawa et al., 2009). The SULT fam-
ily have been identified as either cytosolic or membrane bound
and exhibit a wide distribution including the liver, brain, breast,
intestine, jejunum, lung, adrenal glands, endometrium, placenta,
kidney, and blood platelets (Riches et al., 2009). NATs are cytosolic
enzymes found in many tissues (Windmill et al., 2000). Soluble
GST is widely distributed around the body and has been found in
the liver, kidney, brain, pancreas, testis, heart, lung, small intestine,
skeletal muscles, prostate, and spleen (Whalen and Boyer, 1998).
TPMT is a cytosolic enzyme and mainly found in the liver and
kidney with low levels in the brain and lungs (Pacifici et al., 1991).
COMT is an intracellular enzyme and is either a cytoplasmic sol-
uble form or a membrane bound form located in the cytosolic
side of the rough endoplasmic reticulum (Jeffery and Roth, 1984).
COMT is expressed in most tissues with the highest expression
in the liver, kidney, intestine, and brain (Nissinen et al., 1988;
Boudíková et al., 1990; Hong et al., 1998).

The metabolites after phase II metabolism appear to be effi-
ciently effluxed by the efflux transporters in phase III metabolism
(Neilson and Ferruzzi, 2012).

PHASE III METABOLISM
In phase III metabolism, the metabolites are either effluxed back
into the intestinal lumen or to the bloodstream from where it is
taken to the liver. Enterocytes are intestinal cells which act as the
first barrier against xenobiotics. These cells use the action of efflux
transporters to prevent the buildup of xenobiotic compounds in
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their cytoplasm. The transporters either returns the compounds
(either in its native form or metabolized form) back into the lumen
or transport them to the portal vein where they enter the liver for
further processing (Neilson and Ferruzzi, 2012).

The efflux of phytochemicals is mediated by a number of
transporters. The efflux of polyphenols has been shown to be
facilitated by the ATP-binding cassette (ABC) superfamily of trans-
membrane transporters, which is termed phase III metabolism
(Wakabayashi et al., 2006; Planas et al., 2012). Multidrug resis-
tant protein (MRP) 2 is an apical/luminal end transporter that
was shown to efflux the compounds back to the lumen (Lambert
et al., 2007). MRP1 is a basolateral/blood stream end trans-
porter that transport the compounds to the blood circulation
(Lambert et al., 2007).

BIOAVAILABILITY OF DIGESTED COMPOUNDS
The rate and extent to which the active compound is absorbed
from its ingested form and becomes available at the site of action
is defined as bioavailability (Neilson and Ferruzzi, 2012). This
definition takes into account two factors in vivo: (1) the active
compound must be present at the site of action to produce its
biological activity and (2) the concentration of the compound
at the site (Neilson and Ferruzzi, 2012). This definition is more
easily applicable to pharmaceuticals than to dietary phytochem-
icals originating from complex food matrices. Bioavailability of
dietary phytochemicals is not only complicated by the biochem-
ical properties of the molecule but also because of enzyme and
microbial-mediated metabolism and active efflux (Neilson and
Ferruzzi, 2012).

INTESTINAL EPITHELIAL CELLS
Intestinal epithelial cells have many functions apart from absorp-
tion. They are involved in the metabolism of food substances and
also intestinal immunity. One interesting characteristic unique
to IEC is that they are usually exposed to high concentrations of
nutrients, non-nutrients, microbes, and xenobiotics. This suggests
that the IEC’s function is affected or even regulated by exter-
nal substances including food components despite their function
being generally controlled by internal factors such as hormones
and cytokines (Shimizu, 2010).

Several studies indicate that the small intestine has poor absorp-
tion of dietary polyphenols (Manach et al., 2005). Therefore most
of the ingested dose passes through the small intestine and reaches
the colon. The colon is home to a complex bacterial community
that has the ability to extensively ferment unabsorbed material
(van Duynhoven et al., 2011; Neilson and Ferruzzi, 2012).

PLANT POLYPHENOLS
Polyphenols are a large structurally diverse group of organic com-
pounds that contain at least one aromatic ring with one or more
hydroxyl groups attached (Rein et al., 2013). Plant foods contain
many different types of polyphenols, which are increasingly seen
as effective protective agents against disease (Scalbert et al., 2002,
2005; Shapiro et al., 2007; Priego et al., 2008; Bravo, 2009; Del
Rio et al., 2010; Sies, 2010; Gonzalez et al., 2011). Polyphenols
represent a wide range of compounds which are divided into sev-
eral classes determined by their structure. These include phenolic

acids, flavonoids, still beans, and ligands (Del Rio et al., 2010). In
this section, plant polyphenols will be reviewed in detail.

Absorption of polyphenols
Polyphenols ingested from food remain outside the body until
they are absorbed through epithelial cells lining the gastrointesti-
nal tract (Neilson and Ferruzzi, 2012). Most intact polyphenol
absorption happens in the small intestine with further absorp-
tion occurring in the colon of the large intestine (Scalbert et al.,
2002). In order to be absorbed by the epithelial cells in the gut
several factors need to take place. First, polyphenols must be
released from any interactions with other food components (Neil-
son and Ferruzzi, 2012). This is done by mechanical action such
as chewing and grinding in the mouth. Further breakdown hap-
pens in the stomach via the gastric juices (Neilson and Ferruzzi,
2012). Second, the stability of the polyphenols in the intestine will
greatly impact the concentration reaching the epithelial surface.
Third polyphenols must be soluble in the bulk aqueous phase of
the gastrointestinal milieu in order to facilitate diffusion through
the unstirred water layer that protects the epithelial surface layer
(Neilson et al., 2009).

According to Lipinski’s Rule of 5, compounds that have five
or more hydrogen bond donors (OH and NH groups), 10 or
more hydrogen bond acceptors (notably N and O), a molecular
weight of greater than 500, and a log P greater than 5 are usually
poorly absorbed after oral administration. This is because of their
large actual size (high molecular weight), high polarity or large
apparent size (due to the formation of a large hydration shell;
Yang et al., 2008). Dietary polyphenols range from species that
violate the Lipinski’s rule and as such have been shown to have
poor bioavailability (Lipinski et al., 2001; Mulder et al., 2001; Yang
et al., 2008), while others have been shown to have good absorp-
tive characteristics as predicted by the Lipinski’s rules (Yang et al.,
2008).

It is believed that the absorptions of polyphenols into
the epithelial cells of the small intestine (enterocytes) occurs
through both active and passive diffusions (Crespy et al., 2003;
Vaidyanathan and Walle, 2003; Lambert et al., 2007; Neilson and
Ferruzzi, 2012). Polyphenols appear to compete for the monocar-
boxylic acid transporter (Bravo, 2009). Passive diffusion appears
to contribute to the absorption of flavonoids with high log P values
such as isoflavones and flavonones but it contributes little to those
with a low log P value such as flavan3-ols (Neilson and Ferruzzi,
2012).

Flavonoids
Flavonoids are the largest class of plant polyphenols present in
fruits and vegetables. There are more than 4,000 distinct flavonoids
identified to date (Shahidi and Naczk, 1995). The main subclasses
of flavonoids common in diet are flavones (e.g., luteolin and api-
genin), flavonols (e.g., quercetin, kaempferol, and myricetin),
flavon-3-ols (catechin, epicatchin, epigallocatechin, epicatechin
gallate, and apigallocatechin gallate), isoflavones (e.g., genistein
and daidzein), flavonones (e.g., naringenin), and anthocyanidins
(e.g., cyaniding and malvidin; Liu, 2012). This class of polyphe-
nols has received attention due to their potent anti-oxidant activity
(Rice-Evans et al., 1995) and possible role in the prevention of
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cancer (Birt et al., 2001), cardiovascular (Hooper et al., 2008),
neurodegenerative (Nakajima et al., 2007), and infectious diseases
(Shin et al., 2005).

Flavonoids are often recognized as xenobiotics by the intesti-
nal detoxification system (Jeong et al., 2005). They are oxidized by
phase I enzymes, conjugated by phase II enzymes and then excreted
from the cells by phase III transporters (Shimizu, 2010). Recent
studies have observed that the detoxification enzymes are regu-
lated by a variety of transcription factors and regulatory proteins
(Kusano et al., 2008).

With the exception of catechins (which have a notable pres-
ence in tea and are also found in fruits), flavonoids in nature
are almost always found as a glycoside, i.e., attached to a sugar
group (Aherne and O’Brien, 2002). The aglycone, which is the
flavonoid without the sugar, is not normally found in food; how-
ever, the processing of plant food such as fermentation can increase
the level of aglycone such as in the case of miso soup. Glyco-
sylation increases the polarity of flavonoids which is important
for storage in the plant cell vacuoles. Flavonols and flavones
occur in food usually as o-b-glycosides (Aherne and O’Brien,
2002). Of the major flavonoid classes, the flavonols predomi-
nate in fruits in which a variety of glycosides have been identified,
whereas in vegetables quercetin glycosides predominate (Aherne
and O’Brien, 2002). When glycosides are formed, the preferred
glycosylation site on the flavonol molecule is the C-3 position and
less frequently the C-1 position (Aherne and O’Brien, 2002). D-
glucose is the most usual sugar residue but other carbohydrate
substitutions include arabinose, galactose, glucorhamnose, lignin,
I-rhamnose, and xylose 4 (Aherne and O’Brien, 2002). For exam-
ple, quercetin can be linked to the 3-o-glycoside rhamnose to
yield quercitrin, or glucorhamnose to yield rutin (Aherne and
O’Brien, 2002). Flavonols are found in nearly all fruits and vegeta-
bles with quercetin glycosides being the most abundant in the diet
(Psahoulia et al., 2007).

Polyphenols in health and disease
Cross-sectional and prospective epidemiologic studies have found
an association with diets rich in plant foods and protection against
degenerative diseases such as cancer and cardiovascular diseases
(CVDs; Hertog et al., 1993b; Omenn et al., 1996; Liu et al., 2005;
Scalbert et al., 2005; Kuriyama et al., 2006; Del Rio et al., 2010;
Sies, 2010). Intervention studies in humans and animals have con-
tributed further evidence supporting polyphenolic modulation of
vascular and platelet function, blood pressure (Hodgson and Croft,
2006), and improved plasma lipid profile (Scalbert et al., 2005). A
review analyzed 200 studies on the relationship between intake of
fruits and vegetables and different types of cancers (Block et al.,
1992). In 128 of the 156 dietary studies, the consumption of fruit
and vegetables was reported to be significantly protective. The risk
of cancer was twofold higher in those individuals that had rela-
tively low fruit and vegetable intake (Block et al., 1992). Several
epidemiological studies have examined the role of phytochemicals
on CVD prevention. Dietary flavonoid intake was significantly
linked to reduced heart disease in general as well as coronary heart
disease specifically related mortality (Hertog et al., 1993a, 1995).

There have been several in vivo studies with polyphenols
(reviewed by Gonzalez et al., 2011). These studies have indicated

that polyphenols help in the regulation of diseases including
immunoregulation, estrogen modulation, and protease inhibi-
tion in rheumatoid arthritis; immunoregulation in experimental
allergic encephalomyelitis (a model for multiple sclerosis); anti-
inflammatory effects in inflammatory bowel disease; anti-allergic
effects in asthma; anti-inflammatory and anti-oxidant effect,
transcription factor regulation, and protective mechanisms in
atherosclerosis; anti-inflammatory and protection against tissue
damage in ischemia-reperfusion; anti-inflammatory and anti-
oxidant effects and control of hyperinsulinemia, hypertension,
dyslipidemia in metabolic syndrome, and skin inflammation
(Gonzalez et al., 2011).

There have been several in vitro studies related to the anti-
inflammatory, anti-oxidant, and immunomodulatory actions of
polyphenol and in particular flavonoids (reviewed by Gonzalez
et al., 2011). The phytochemical chlorogenic acid (found in many
agricultural products such as coffee and apples) and its metabolite
caffeic acid have been shown to reduce the secretion of the proin-
flammatory cytokine IL8 in the human IECs caco2, when they
were stimulated with TNFα and H2O2 (Zhao et al., 2008). Similar
results were found for isoflavone fractions in another study (Satsu
et al., 2009). Chlorogenic acid was also observed to inhibit LPS
induced cyclooxygenase-2 expression in mouse macrophage cells,
by suppressing NFκβ activation (Shan et al., 2009).

In vitro studies have also shown that dietary substances includ-
ing polyphenols, can be modulators of tight junctions in the
intestinal epithelium (Suzuki et al., 2011; Kosiñska and And-
lauer, 2013). In addition, polyphenols have been reported to
modulate transporter function. A study reported that glucose
absorption via the intestinal SGLT1 was slightly inhibited in rats
by hydrolyzed metabolites from gymnemic acid extracted from
Gymnema sylvestre leaves (Yoshikawa et al., 1997). Another study
looked at the effect of polyphenols from Cocoa on T84 colonic
epithelia in Ussing chambers on the forskolin-stimulated cystic
fibrosis transmembrane conductance regulator (CFTR; Schuier
et al., 2005). CFTR is the major chloride ion channel in the apical
membrane of the epithelia and it is critically involved in salt and
water secretion and absorption in the gastrointestinal tract and
other epithelial membranes. Pharmacologic blocking of CFTR is
thought to inhibit salt and water loss during diarrhea. They found
that cocoa flavonols act as a mild CFTR blocker. The authors
noted that flavonols are poorly absorbed in the small intestine and
therefore large amounts of the compound would be present in
the intestinal lumen to interact with the apical surface of the IECs
(Schuier et al., 2005).

In vitro studies have also highlighted that phytochemicals may
have detoxification properties. pregnane X receptor (PXR) is
involved in the recognition of xenobiotics and upregulation of
the detoxification enzymes which help in metabolizing harmful
compounds and excreting them (Shimizu, 2010). A study looked
at the effect of food substances on PXR-mediated regulation of the
detoxification enzymes using human intestinal LS180 cells (Satsu
et al., 2008). Of the 42 phytochemicals tested, three flavonoids and
two terpenoids activated PXR-dependent transcriptional activity
suggesting that these compounds activate the intestinal detoxifica-
tion system and are involved in the barrier function against toxic
chemicals (Satsu et al., 2008; Shimizu, 2010). In addition, food
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substances have also been shown to bind toxin directly, interfering
with their absorption through the intestine (Natsume et al., 2005).
These studies suggest that phytochemicals are not only processed
by the epithelium but also influence and modulate it.

One study has investigated the anti-oxidant capacity of intact
juice blend in both in vivo and in vitro models (Jensen et al.,
2008). The authors initially established that their juice blend
to contained major polyphenol compounds including antho-
cyanins, proanthocyanidins, and phenolic acids. Using a CAP-e
assay they established that their juice blend is able to provide
anti-oxidant protection in vitro. They also found that ROS pro-
ductions were reduced in polymorphonuclear leukocytes cells in
vitro after incubation with the juice blend. They then went on
to testing the juice blend in vivo using a randomized, placebo-
controlled trial using 12 individuals in a within subject design.
Using the CAP-e assay they observed that there is an increase in
anti-oxidant capacity within 1 and 2 h of consuming the juice
blend (Jensen et al., 2008). In 2011, a pilot study was performed to
evaluate the effect of the juice blend on individuals with reduced
range of motion (ROM) due to pain (Jensen et al., 2011). The
study suggested that the juice blend increased anti-oxidant lev-
els in serum (using the CAP-e assay) and this was correlated
with improved ROM and reduced pain. The authors state that
while the results look promising, the significant association among
increased anti-oxidant status, improved ROM, and pain reduc-
tion warrants further study (Jensen et al., 2011). Even if in vitro
simulators suffer from the absence of a complete physiological
environment, they are still valuable to study the intestinal pro-
cesses in the gut itself without ethical constraints (Bolca et al.,
2013).

Whole food, native compounds, and synergistic effect
It is important to note that the observed health benefit of phyto-
chemicals may not necessarily occur due to the native form that
is found in food (Neilson and Ferruzzi, 2012). This is because
of the various metabolic processes that occur after absorption.
These metabolic processes that are performed by the digestive
enzymes and the gut microflora, breakdown the phytochemi-
cals into simpler compounds and alter the functional groups of
the phytochemical. Therefore the metabolites may actually be the
active compound responsible for the biological activity. However,
many studies measure the biological activity of the native phy-
tochemical for several reasons: (1) most phytochemicals can be
converted into many metabolites which exponentially increases
the number of metabolites that need to be measured, (2) in many
situations, the metabolites that are generated from a phytochem-
ical are unknown or incomplete, (3) the activity of the native
phytochemical is better characterized than its metabolites both in
vivo and in vitro, and (4) the native compound serves as a marker
for all its metabolites even if not a complete one (Neilson and
Ferruzzi, 2012).

It is believed that the observed beneficial activities of phy-
tochemicals from fruit and vegetables are more likely due to
a combined effect rather than to a single compound or small
group of compounds (Neilson and Ferruzzi, 2012). This is
because when looked at in isolation the individual phytochem-
ical studied in clinical trials do not appear to have consistent

preventative effects (Omenn et al., 1996; Stephens et al., 1996;
Yusuf et al., 2000). The isolated compound either loses its bioac-
tivity or may not behave the same way compared to when it is
in whole foods. Several studies have shown that the risk of can-
cer is inversely linked to eating green and yellow vegetables and
fruit. B-carotene, which is present in abundance in these fruits
and vegetables, was therefore extensively studied as a possible
cancer-preventative agent. However, the result from several clin-
ical studies were inconsistent (Greenberg et al., 1990; Hennekens
et al., 1996; Omenn et al., 1996). In one study, the incidence of
skin cancer was unchanged in patients receiving a b-carotene
supplement (Hennekens et al., 1996). In the Heart Outcomes Pre-
vention Evaluation (HOPE) study, patients at a high risk for
CVD were given vitamin E supplement or placebo (Jialal et al.,
2000). No difference was found in CVD mortality (Jialal et al.,
2000).

Other studies have also reported on the negative impact of
anti-oxidant supplements. A systemic review in 2012 assessed
the effect of anti-oxidant supplements on mortality and health
compared to placebo or no intervention (Bjelakovic et al., 2012).
They analyzed 78 trials and concluded that there was no evidence
of benefit from consuming anti-oxidant supplements. Moreover,
they found that consumption of b-carotene, vitamin E and high
concentrations of vitamin A may be harmful and increase risk
of mortality (Bjelakovic et al., 2012). In another study, the asso-
ciation between lung cancer and b-carotene was investigated in
smokers (Omenn et al., 1996). Smokers gained no benefit from
the supplement and the authors suggested that there may in fact
have been a significant increase in lung cancer and mortality
(Omenn et al., 1996).

There are thousands of phytochemicals present in whole foods
which differ in their molecular size, polarity, and solubility (Liu,
2012). These properties may affect their bioavailability and dis-
tribution on different macromolecules, subcellular organelles,
cells, organs, and tissues (Liu, 2012). It is thus more likely
that phytochemicals work synergistically to produce their ther-
apeutic effect. A synergistic therapeutic effect is defined as a
stronger effect by the combination of two or more compounds
compared to individual compounds at equal concentrations
(Yang and Liu, 2009).

Evidence for a synergistic therapeutic effect was seen in apple
studies. A study looked at the effect of phytochemicals extracted
from whole apple on tumor cell growth in vitro (Eberhardt
et al., 2000). They found that whole apple extracts inhibited
colon cancer proliferation in a dose-dependent manner with
extracts equivalent to 0–50 mg/ml of whole apple wet weight.
The phytochemicals in apples with peel exhibited a stronger
effect compared to apple without peel (Eberhardt et al., 2000).
Another study built on this information by performing an ani-
mal study (Liu et al., 2005). They demonstrated that apple extracts
prevented mammary cancer in rats in a dose-dependent man-
ner comparable to human consumption of 1, 3, and 6 apples
a day (Liu et al., 2005). More recently, a study examined the
potential additive, synergistic or antagonistic interaction among
apple phytochemicals (Yang and Liu, 2009). The results sug-
gested that apple phytochemicals in combination with quercetin
3-beta-D-glucoside (Q3G) possesses a synergistic effect against
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MCF-7 human breast cancer cell proliferation (Yang and Liu,
2009).

NUTRIENT MODULATION IN AUTOPHAGY AND BACTERIAL
SENSING
It is emerging that nutrients have the ability to modify vari-
ous cellular processes in particular autophagy (Marion-Letellier
et al., 2013). Inducing autophagy through the administration of
different nutrients may be beneficial for intestinal inflammation.

Many recent studies have reported the interaction between
autophagy and dietary factors. This includes the amino acids argi-
nine (arg), glutamine (gln), and leucine (leu) which play a crucial
role in intestinal growth, integrity, and function through cellular
mechanisms (Rhoads and Wu, 2009). It is becoming clear that
mTOR signaling plays a part in modulating amino acid intesti-
nal homeostasis (Goberdhan et al., 2009). Studies have reported
that arg, gln, and leu regulate the mTOR pathway (Goberdhan
et al., 2009). Arg has been shown to upregulate phosphorylation
of S6K, a downstream effector of mTOR (Ban et al., 2004). Gln
induces autophagy through the mTOR and p38 MAPK pathways
(Sakiyama et al., 2009).

Flavonoids from diet, such as dihydrocapsaicin (DHC),
quercetin, MK615, and soyasaponins, induce autophagy in
the intestine; however, the mechanism of action is still
undetermined (Marion-Letellier et al., 2013). The polyphe-
nol quercetin was reported to induce autophagy in Caco-H2
intestinal cell line with oncogenic Ras activity that resulted
in preferential reduction of the Ras protein (Psahoulia et al.,
2007). Saponins derived from soy bean were shown to sup-
press HCT15 colon cancer cell proliferation through S-phase
cell-cycle delay, and can induce macroautophagy suggesting
autophagic cell death (Ellington et al., 2005). Incubation with
an extract from Japanese apricot, MK615 resulted in an induc-
tion of autophagy in the colon cancer cell line (Mori et al.,
2007).

Peroxisome proliferator-activated receptor gamma (PPARγ)
which is important in the regulation of inflammation is also
thought to regulate autophagy (Jiang et al., 2010). Polyunsaturated
fatty acids (PUFAs) and resveratrol have been shown to induce
PPARγ which is highly active in the colon (Marion-Letellier et al.,
2009). It has been shown that fatty acids such as docosahexaenoic
acid (DHA) may be potent inducers of autophagy through PPARγ

in intestinal cells (Marion-Letellier et al., 2009).
A study reported that the stimulation of autophagy by treat-

ment with vitamin D significantly enhanced the anti-microbial
response against M. tuberculosis in human macrophages. This
effect seemed to be dependent on cathelicidin, a peptide that is
activated by vitamin D and enhances co-localization of bacterial
phagosomes with autophagosomes (Yuk et al., 2009).

In the Department of Nutrition at the University of Auckland,
our 6-week intervention study assessed the effect of a Mediter-
ranean diet on inflammation (Ellett et al., 2013). During the study,
blood samples were taken at the beginning and the end of the trial.
CRP levels were measured as a marker of inflammation and gene
expression was measured using gene arrays. At the end of the
6 weeks, CRP levels decreased and a significant change in gene
expression was observed. The change in gene expression included

TLR4 and TLR2 indicating that the TLR pathway is modulated by
changes in diet.

It is possible that chemical antagonists of NOD1 and NOD2
could have a therapeutic application for diseases where dampen-
ing the inflammatory response would be beneficial (Correa et al.,
2012). A study has reported that certain arene-Cr(CO)3 complexes
decrease inflammatory responses and reduce NOD2-mediated
inflammatory pathways (Bielig et al., 2010). These compounds
seem to be specific for NOD2 but not TLRs or TNFα receptors
(Bielig et al., 2010).

The studies highlighted here only provide a mere glimpse on
the potential of using dietary intervention to modify and prime
different physiological processes including immunity. The inter-
action between diet and the internal environment is not a new
concept. However, understanding and manipulating this interac-
tion at a molecular level to gain conclusive benefit remains an
ambitious task due to the interdisciplinary nature of this subject.
The bacterial sensing machinery was the focus of this review as it
offers a good biological process to study as they are important in
sensing and responding to the external environment. Nonetheless
there are other pathways that may be more relevant to a particular
disease or condition and would also be worth studying. It is likely
that understanding these pathways further and how diet can inter-
act with them will contribute to developing personalized nutrition
to manage disease.

CONCLUSION
In this review, we introduced some of the main PRRs and
autophagy and how they function. Additionally we reviewed
dietary phytochemicals which are believed to be associated with
health and wellbeing. Dietary interactions with the host biological
processes for therapeutic purposes have been the subject of great
interest and thousands of studies and clinical trials. This review
was an attempt to lay down the foundations of what is already
known from literature in order to help develop personalized
nutrition further for better management of disease.
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