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Abstract: A simple micro-machined pressure sensor, based on the stress-impedance (SI) effect,
was fabricated herein using typical micro-fabrication technologies. To sense pressure, a 1-µm thin,
soft magnetic metallic film of FeSiB was sputtered and used as a diaphragm. Its electrical response
(impedance change) was measured under pressure in a frequency band from 5 to 500 MHz.
A lumped-element equivalent electric circuit was used to separate the impedance of the soft magnetic
metal from other parasitic elements. The impedance change clearly depended on the applied pressure.
It was also shown that the impedance change could be explained by a change in relative permeability,
according to the theory of the SI effect. The radial stress in the diaphragm and the relative permeability
exhibited a linear relationship. At a measurement frequency of 200 MHz, the largest sensor response,
with a gauge factor of 385.7, was found. It was in the same order as the conventional sensors. As the
proposed device is very simple, it has the potential for application as a cheap pressure sensor.

Keywords: magnetic thin film; pressure sensing; stress impedance effect; micro device

1. Introduction

The permeability, µ, of soft ferromagnetic materials is influenced by perturbations, such as
magnetic field, temperature and strain. The change in permeability can be understood by the resulting
change in impedance, Z, which is measured with an alternating current. This is due to the skin effect.
An alternating current in a conductor creates an alternating magnetic field. Due to the change in the
magnetic field, an electric field that opposes the change in current intensity is created. Thus, the electrons
of the current are forced out of the center of the conductor, where the field is strongest [1]. The current
density J in the conductor follows this distribution:

J = JSe−(1+ j) z
δ (1)

The current density at the surface of the conductor is JS, z is the distance from the surface and δ is
the skin depth. δ is defined as the depth at which J has reached 1/e of JS and can be approximated
as follows:

δ =

√
2ρ
ωµ

(2)

where ρ is the resistivity of the conductor, ω is the angular frequency of the current, and

µ = µrµ0 (3)
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where µr is the relative permeability of the conductor material, and µ0 is the permeability in a vacuum.
δ can be understood as the effective conductive thickness. A low permeability results in a large skin
depth, resulting in low impedance; a high permeability yields high impedance accordingly.

The dependence of the complex impedance of a magnetic conductor on the magnetic field is
called the magneto-impedance (MI) effect [2–5]. This effect is strong and is widely used to create
highly sensitive magnetic field sensors [6–9]. It was discovered that the MI effect in particular, and the
magneto-elastic properties in general, depended on the strain (stress) of the material [10,11]. The inverse
magnetostrictive effect, also known as the Villari effect, is responsible for a change in the magnetic
anisotropy that influences the permeability by applied stress [12]. There are several models to describe
this stress-impedance (SI) effect [13,14]. This effect has been used to create strain gauges based on wires,
ribbons, and thin films [15–20]. One way to characterize such sensors is the gauge factor (GF):

GF =
∆Z
Z
ε

(4)

where ∆Z is the impedance change induced by strain ε. It is possible to achieve gauge factors of
more than 1000 [20]. In a configuration where a high-permeability material surrounds a non-magnetic
conductor, the transducer effect is large [21]. In the case of a thin-film device, typically a sandwich of
a non-magnetic highly conductive layer between soft ferromagnetic layers, e.g., FeSiB/Cu/FeSiB or
CoSiB/Cu/CoSiB, with a total thickness in the range of several µm is used [22,23]. As for applications
other than as a strain gauge, the possibility of using it as a force sensor, for structural health monitoring,
or a pressure sensor has been mentioned [24,25]. Nevertheless, no actual pressure measuring device,
using this effect, has been presented yet. Here, we present a study of a simple micro-fabricated pressure
sensor using thin-film technology based on the SI effect. It demonstrates the first practical use of the SI
effect in a pressure sensor. In contrast to conventional piezoresistive pressure sensors, its fabrication
technology is very simple.

2. Experimental Section

Most of the traditional micro-fabricated pressure sensors consist of a diaphragm with integrated
semiconductor piezoresistive strain gauges that are arranged in, for example, a Wheatstone bridge
configuration. Although a similar setup can be constructed by replacing the semiconductor strain
gauges with SI thin-film strain gauges, we wanted to demonstrate the feasibility of a sensor with a very
simple fabrication and design and without the need for many process steps.

The device was designed as a circle diaphragm with a diameter of 1 mm on a silicon substrate.
The whole diaphragm was constituted of FeSiB that had no additional structure on it. Electric contacts
were made at the sides of the diaphragm to allow the impedance across the whole diaphragm to be
measured. A schematic of the fabrication process is summarized in Figure 1.

A 100-mm double-sided polished Si wafer (300 µm thick) was used as a substrate. The process
began with the deposition of 1-µm-thick thermal SiO2. This layer worked as an electrical insulator and
a mask for silicon backside etching. A functional layer of FeSiB was formed with a thickness of 1 µm
after a Ti adhesion layer with a 20-nm thickness had been deposited by sputtering. Instead of sputtering
from an alloy target, the equipment allowed for the simultaneous sputtering from the four targets
used (ULVAC, QAM-4-S). By choosing the power of each target’s magnetron, the composition of the
sputtered film could be precisely controlled. After measuring the sputter rate of each target, the sputter
power was individually adjusted. The composition was confirmed by inductively coupled plasma
mass spectrometry (ICP–MS). To achieve the desired composition of Fe79Si7B14, three targets—Fe,
FeB (50:50 at%), and Si—were sputtered at 150, 75, and 150 W, respectively. The total deposition
rate of the obtained film was 9.3 nm/min, and the ICP–MS measurement showed a composition of
Fe78.88Si6.54B14.58. To reduce the intrinsic stress of the non-deflected diaphragm as much as possible,
the sputter process was optimized. The stress of a sputtered thin film depends on many parameters,
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such as film thickness, substrate temperature, and sputter rate. In this case, the Ar flow rate was chosen
as the optimization parameter, and all other conditions left unchanged.
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Figure 1. Process flow of the fabrication of the pressure sensor—shown by its cross-section.

The lowest stress was obtained as −5 MPa at an Ar flow rate of 8.5 sccm (Figure 2). Below 7.8 sccm
and above 15.5 sccm, no stable plasma could be maintained at the Fe target. The amorphous nature
of the film was confirmed using X-ray diffraction (XRD D8 Advance, Bruker, Billerica, MA, USA).
The metal film was etched by ion-beam milling. OFPR-800 200cp (Tokyo Ohka Kogyo, Tokyo, Japan)
with a thickness of 3 µm was used as a photoresist mask. Next, Au electrodes were deposited.
RF magnetron sputtering (CSF-4ES-232, Shibaura Mechatronics, Yokohama, Japan) was employed to
deposit a 300-nm-thick blanket Au layer, with a 20-nm-thick Cr adhesion layer. Cr was used because it
has good adhesion to both SiO2 and FeSiB. Photolithography using OFPR-800 was again conducted on
the blanket Au layer. The electrodes were then patterned by wet etching using aqueous iodine solution
(KI + I2). The photoresist was stripped after the etching process. Next, the SiO2 on the backside was
etched to form a mask for the Si reactive ion etching (RIE). Through the Bosch process (MUC-21, SPT,
Tokyo, Japan), the diaphragm, which formed the core part of the pressure sensor, was opened from the
backside. After that, the mask material on the backside and the isolation layer below the diaphragm,
both of which were thermal SiO2, were etched by RIE. During the etching, the front side was protected
by photoresist. We observed no distortion of the membrane after completing the fabrication process.
XRD analysis also showed that the amorphous nature of the FeSiB metal did not change as a result of
the fabrication steps.
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To characterize the diaphragm, the setup shown in Figure 3 was prepared. It consisted of
a 3D-printed stand where the demonstrator was mounted on top and an Ar gas source was connected
via a tube. The pressure in the device was controlled by a PC via a microcontroller. The setup allowed
for the observation of the device under test conditions from the top using a coherence scanning
interferometer (Nexview, Zygo, Middlefield, CT, USA).
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Figure 3. (a) Schematic setup to characterize the pressure sensor. (b) Microscopic image of a diaphragm
and its contacts. (c) Picture of a device with deformed diaphragm during measurement.

The deformation of the device was observed upon application of different pressures from the
backside of the diaphragm—From 0 to 40 kPa in steps of 2000 Pa. Figure 4 shows the deflection
vs. pressure. It followed the expected nonlinear behavior for a fully clamped circular diaphragm
with large deflection according to [26]. The setup allowed for a maximum of 40 kPa to be applied.
The diaphragm did not break in a test at maximum pressure.

Micromachines 2020, 11, 649 5 of 13 

 

 

Figure 4. Measured deflection of the sensor diaphragm vs. applied pressure. 

The impedance of the device was measured by a network analyzer (E5071B, Agilent, Santa Clara, 
CA, USA) using a high-frequency (HF) probe station in the range from 5 to 500 MHz. 

3. Results 

The basic electric and magnetic properties of the sputtered FeSiB film were measured. I-V 
characteristics were linear and the resistivity was determined by the 4-point probe method to be 1.65 
µΩm. A superconducting quantum interference device (SQUID) was used to measure the in-plane 
direction magnetic hysteresis curve of the thin film at room temperature (Figure 5). The parameters 
derived from the measurements are summarized in Table 1. 

 

Figure 5. Hysteresis loop of the FeSiB thin film. 

  

Figure 4. Measured deflection of the sensor diaphragm vs. applied pressure.

The impedance of the device was measured by a network analyzer (E5071B, Agilent, Santa Clara,
CA, USA) using a high-frequency (HF) probe station in the range from 5 to 500 MHz.

3. Results

The basic electric and magnetic properties of the sputtered FeSiB film were measured.
I-V characteristics were linear and the resistivity was determined by the 4-point probe method
to be 1.65 µΩm. A superconducting quantum interference device (SQUID) was used to measure
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the in-plane direction magnetic hysteresis curve of the thin film at room temperature (Figure 5).
The parameters derived from the measurements are summarized in Table 1.
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Figure 5. Hysteresis loop of the FeSiB thin film.

Table 1. Characteristic parameters of the sputtered FeSiB, obtained by superconducting quantum
interference device (SQUID) measurement.

Parameters of Sputtered FeSiB Measured Value

Saturation magnetic flux density Bs 0.63 T
Coercivity Hc 38 A/m
Saturation magnetization Ms 5.03 × 105 A/m
Remanent magnetization Mr 2.34 × 104 A/m

The sputtered material clearly showed soft magnetic characteristics. The values were comparable
with the films obtained by other groups [2,27].

A simple lumped equivalent circuit was used to model the electrical properties of the device.
This model was useful to separate the effect of the parasitic elements of the device under test from
the effect caused by stress that was induced in the diaphragm due to deformation by the pressure
difference. The equivalent circuit consists of two serial branches, one of which consists of two parallel
branches, as shown in Figure 6.
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The series branch of L1 and R1 represents the parasitic effect of the contact paths to the diaphragm.
C1 is caused by the capacitive feedthrough via the substrate, and R2 represents the resistance of
the substrate and non-moveable FeSiB. The soft magnetic transducer consists of RSI and LSI. RSI is
determined by considering the skin effect, and, in the case of a wide, very thin strip, it can be
approximated as:

RSI = RDC

(
1 +

1
48

( t
δ

)4)
(5)

where RDC is the DC resistance and t is the thickness of the film [28]. The skin depth δ is given by
Equation (2). LSI is caused by the self-inductance of the transducer material. In the case of a thin strip
with a length l and width w >> thickness, it can be calculated as follows:

LSI =
µ0µr

6πw2

3w2l ln
l +
√

l2 + w2

w
−

(
l2 + w2

) 3
2 + 3wl2 ln

w +
√

l2 + w2

l
+ l3 + w3

 (6)

The impedance ZSI is the impedance of the diaphragm metal:

ZSI = RSI +ωLSI (7)

Per Equations (2), (5), and (6) [29], it can be seen that RSI and LSI, and therefore ZSI, depend on the
relative magnetic permeability µr of the transducer metal.

To obtain the values of R1, R2, L1, and C1, the total impedance ZT of the device was measured
between 5 and 500 MHz, without inducing any deformation of the diaphragm using pressure. The total
impedance ZT of the device varied between 7.7 and 10.4 Ω, as shown in Figure 7.
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characteristic calculated from the lumped sum equivalent circuit obtained by fitting.

The values of the equivalent circuit elements were determined by fitting them with the target
of minimizing the error ∆ between the measured impedance ZT and the calculated impedance ZCalc,
which is given as follows:

∆ = (ZT −ZCalc)
2 (8)

As the starting values of the fitting, the values estimated from the dimensions of the device were
used. The Levenberg–Marquart method was employed as an algorithm to minimize ∆. The results
with the best fitting are shown in Table 2. The obtained values are reasonable for the parasitics of
a device of this size. A comparison between the frequency characteristics of ZT and the frequency
characteristics obtained by calculation with the equivalent circuit shows a good agreement (Figure 7).
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Table 2. Values of the element of the lumped equivalent circuit (Figure 6) obtained by fitting.

Lumped Equivalent Circuit Element Fitted Value

R1 0.48 Ω
R2 0.50 Ω
L1 2.12 nH
C1 0.11 pF

The relative permeability µr of the soft magnetic film under this condition was also obtained as
2306 through fitting.

Figure 8 shows the change in the impedance of the device under different applied pressures.
Over the entire frequency range, the impedance decreased with increasing pressure. The effect was the
strongest at 200 MHz.
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the device under test.

By applying the lumped element equivalent circuit, which was described earlier, it was possible
to separate the impedance change of the diaphragm metallization (FeSiB) ZSI from the total ZT.
The relation between ZSI and the applied pressure is shown in Figure 9. It decreased until 12 kPa,
and after that, higher pressures did not lead to a further change in impedance.
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By using this result and Equations (5)–(7), the permeability of the FeSiB for each pressure step
was obtained by fitting with the Levenberg–Marquart method, as shown in Figure 10. The impedance
was recalculated from the obtained permeability and was plotted on the same figure. It showed a good
fitting with the measured impedance, indicating that the results were reasonable. At a pressure of
12 kPa, the relative permeability approached a value of 1, and the impedance did not vary greatly.
The relationship between impedance and pressure was non-linear.
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4. Discussion and Conclusions

The measurement results show a clear dependence of the impedance on the applied pressure.
Additionally, it could be shown that the change in impedance can be observed by a change in the
permeability of the soft magnetic FeSiB material. The applied pressure deforms the diaphragm and
stress is created in the diaphragm. The stress causes a change in the magnetic anisotropy of the
diaphragm material and, as a result, the permeability changes. The mechanical energy overcomes the
domain wall energy and the domain wall moves. The measurement results show that, at a certain
pressure, the impedance remains constant and the relative permeability approaches 1. We believe that
this is because the magnetic material reached its saturation magnetization when its magnetic domain
structure changed from multi domain to single domain under the induced stress. This is a limitation of
the device.

To evaluate the usefulness of such a simple structure as a pressure sensor, we calculated the gauge
factor GF, as in Equation (4). For this, the strain must be obtained. As the diaphragm is much thinner
than its radius, the stress is approximated as being constant over the entire diaphragm. If the bending
moments are small, the deflection is a function of the intrinsic stress and the elastic straining of the
membrane. If the radial strain εr is assumed as being constant over the entire membrane, it can be
estimated from the difference in the length of the diameter (2r) of an undeflected membrane and the
segment of a parabola, corresponding to the cross-section of a membrane with a center deflection of w0,
as follows:

εr =
2
3

w2
0

r2 (9)

The strongest change in impedance was observed at 200 MHz. It is close to the electric resonance
of the device where the reactance is at its minimum, reducing the influence of the parasitic elements.
At 12 kPa pressure, the center deflection of the diaphragm w0 was 15.6 µm, and the transducer
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impedance ZSI was 11.29 Ω. In the initial state (0 Pa), the impedance of the transducer was 15.07 Ω.
By using Equations (4) and (9) [30], the result of GF = 385.7 could be obtained. The gauge factor was
much higher than that of metal strain gauges (<10) and slightly higher than that of silicon strain gauges
(~200). Although it was much lower than the optimized SI effect strain gauges, this very simple pressure
sensor still demonstrates good potential for application. The sensitivity of the device is determined
by the mechanical compliance of the diaphragm and the relationship between induced stress and
impedance change. Mechanical compliance of a fully clamped circle diaphragm is defined as:

w0 =
3P

(
1− ϑ2

)
r4

16Et3 (10)

where E is the Young’s modulus, ϑ is the Poisson’s ratio, and P is the applied pressure. It can be
seen that a thinner and larger diaphragm results in larger deflection at the same pressure. As a result,
the strain and stress in the diaphragm are larger and the gauge factor should be higher. On the other
hand, as shown in Equation (5), the impedance change of the diaphragm will be larger with higher
t at the same ∆δ, and if t << δ, the impedance change will be too small. Additionally, t and r of the
diaphragm are also important for the maximum sustainable pressure. A diaphragm design should be
optimized based on the sensor requirements.

Under the assumption of Young’s modulus E = 170 GPa [31] and the strain obtained by Equation (9),
it is possible to calculate the radial stress σ and to plot it against the relative permeability. Figure 11
shows this relationship.
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Figure 11. Relationship between relative magnetic permeability of the FeSiB and the radial stress in the
diaphragm caused by deformation.

Up to a relative permeability value approaching 1, it appeared to have a linear relation with the
radial stress in the diaphragm. To confirm this relation, µr should be obtained directly by measurement
in a vibrating-sample magnetometer (VSM) under different applied stresses in future experiments.
In the related theory, it is known that magnetic permeability depends on the magnetic field acting on
it [32]. However, a complete quantitative model of permeability as a function of mechanical stress has
not yet been published. An advanced solution was proposed in reference [13]. The effective magnetic
field in the material Heff also considers the influence of mechanical stresses as linear:

He f f = H + αM +
3
2

λS
µ0MS

M
MS

σ (11)
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H is the applied magnetic field, M is the magnetization of the material, and α is a dimensionless
parameter representing interdomain coupling. The saturation magnetostriction λS may also depend on
stress [33].

The impedance change of the diaphragm vs. the pressure change ( ∆ZSI
∆P ) was nonlinear,

with a larger change at lower pressures. The reason is the also nonlinear mechanical behavior of the
diaphragm at large deflections, as well as the complex relationship between µ and ZSI, as shown in
Equations (2) and (5)–(7).

In this investigation, at a relative pressure of 40 kPa, a maximum stress of 250 MPa was applied
to the diaphragm. It did not break or show any kind of damage. To obtain information about the
structural stability of the diaphragm, its XRD pattern was recorded just after sputtering, after device
fabrication, and after 10 times of applying of the maximum pressure to the device. Figure 12 shows
the results. Beside the peaks resulting from the silicon substrate, Ti from the adhesion layer was
detected after sputtering. There were no other sharp peaks detected, confirming that the FeSiB was in
an amorphous state. After device fabrication and after applying the maximum possible pressure of
40 kPa, no apparent change in the diffraction pattern was observed. The impedance of the device also
did not change. It can be concluded that the amorphous structure did not change during fabrication or
under load.
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It is known that amorphous FeSiB can have an extremely high tensile strength of more than
3.5 GPa [34]. This can sustain much larger strains than conventional strain transducers or fabricate
very thin diaphragms with high mechanical compliance. Additionally, the transducer is just a simple
diaphragm without structure or additional layers and can be fabricated easily. Typical micro machined
pressure sensors using piezoresistive strain gauges, integrated into a silicon diaphragm. Beside the
processes to fabricate the diaphragm itself, silicon piezoresistive strain gauges require several process
steps, such as ion implantation and thermal diffusion, to create different doped regions in the
semiconductor material of the diaphragm. By contrast, our proposed device only needs magnetron
sputtering to form the diaphragm, as the diaphragm itself is already the transducer. Several lithography
mask layers (to form the piezoresistive transducers in the diaphragm) are not needed. Furthermore,
FeSiB, the material for the diaphragm, is not expensive and used for thin-film magnetic field sensors [2,7].
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We believe that the proposed simple device has a good potential for use as a cheap sensor, with GF being
at least as good as piezoresistive sensors. The influence of external electro-magnetic fields and other
noise sources should be investigated in future work. To increase the magnetic anisotropy, permeability,
and ultimately the GF, thermal annealing of the transducer metal, preferably in an external magnetic
field, should be carried out in an attempt to improve the performance [35]. Another method is to apply
a constant magnetic field during the deposition process.
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