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Abstract

Background: Human cells appear exquisitely sensitive to the levels of hTERT expression, the
telomerase reverse transcriptase. In primary cells that do not express hTERT, telomeres erode
with each successive cell division, leading to the eventual loss of telomere DNA, an induction of a
telomere DNA damage response, and the onset of cellular senescence or crisis. In some instances,
an average of less than one appropriately spliced hTERT transcript per cell appears sufficient to
restore telomerase activity and telomere maintenance, and overcome finite replicative capacity.

Results: To underscore this sensitivity, we showed that a widely used system of transcriptional
induction involving ecdysone (muristerone) led to sufficient expression of hTERT to immortalize
human fibroblasts, even in the absence of induction. To permit tightly regulated expression of
hTERT, or any other gene of interest, we developed a method of transcriptional control using an
invertible expression cassette flanked by antiparallel loxP recombination sites. When introduced
into human fibroblasts with the hTERT cDNA positioned in the opposite orientation relative to a
constitutively active promoter, no telomerase activity was detected, and the cell population
retained a mortal phenotype. Upon inversion of the hTERT cDNA to a transcriptionally competent
orientation via the action of Cre recombinase, cells acquired telomerase activity, telomere DNA
was replenished, and the population was immortalized. Further, using expression of a fluorescent
protein marker, we demonstrated the ability to repeatedly invert specific transcripts between an
active and inactive state in an otherwise isogenic cell background.

Conclusion: This binary expression system thus provides a useful genetic means to strictly
regulate the expression of a given gene, or to control the expression of at least two different genes
in a mutually exclusive manner.

Background linear chromosomes would undergo a gradual loss of ter-
The observation that DNA polymerases synthesize DNA  minal DNA with each round of DNA replication [1-3].
in a unidirectional manner (5'-3') and do not completely ~ Subsequently, telomere DNA was indeed found to erode
replicate the 5' end of a linear DNA template, led  upon continuous cell culture of human fibroblasts [4,5].
Olovnikov and Watson to independently speculate that ~ Combined with the observation that human somatic cells
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have a limited replicative capacity in culture that is
inversely proportional to the age of the donor [6], it was
proposed that telomere attrition was responsible for this
so-called 'Hayflick limit' [4,7]. In accord with this hypoth-
esis, the average telomere length in a primary fibroblast
population is a stronger predictor of the number of
remaining cell doublings than donor age [4,7,8].

Human telomerase contains two essential subunits, an
RNA component, hTR [9], which serves as the template
for de novo telomere synthesis, and hTERT, the telomerase
reverse transcriptase [10-13], which was cloned based on
sequence similarity with the telomerase reverse tran-
scriptase subunit identified in ciliates and yeast [14-16].
The first functional evidence that TERT comprised the tel-
omerase core was that wild-type hTERT is necessary for tel-
omerase activity in cell extracts [10], and that
recombinant hTR and hTERT are necessary and sufficient
to reconstitute telomerase activity in vitro and in cells [17-
19]. While hTR is expressed in most cells, h'TERT transcrip-
tion is often repressed in many normal human cell types,
however its expression can be detected in some dividing
human cells, and hTERT mRNA expression is often
increased in cancer cells [reviewed in [20,21]]. Some tel-
omerase-positive cell populations have been estimated to
average less than one functional h"TERT mRNA per cell
[22,23].

The ectopic expression of hTERT is sufficient to immortal-
ize several cell types [reviewed in [20,21]]. In these cell
populations, the immortalization does not necessarily
correlate with telomerase activity levels or telomere
length; in some cases, immortalization can be achieved
despite very short average telomere lengths [24-26]. In
addition, unlike human tumor cell lines that possess mul-
tiple karyotypic abnormalities, primary cells immortal-
ized via hTERT do not usually display overt chromosome
rearrangements [27-30]. However, genetic rearrange-
ments have been documented in hTERT-immortalized
epithelial cells or fibroblasts, especially after prolonged
periods of culture, suggesting that telomerase expression
may be permissive for events that promote cellular trans-
formation [31-36]. Further, not all cells that express tel-
omerase become immortalized, and in these populations
ploidy changes can occur, and are apparently resolved
with continued culture without resulting in a transformed
phenotype [37,38].

In an effort to better understand the reversible and/or
emergent properties of cells immortalized with hTERT, we
developed a system to allow the reversible and well-con-
trolled expression of hTERT in a cell line that would allow
an isogenic comparison between telomerase-positive and
telomerase-negative cell populations. Previous studies
have established methods for the introduction [27,39-
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Schematic of the binary expression vector. a. In one
application of the Cre-loxP system, Cre-mediated recombi-
nation between two parallel loxP sites results in excision of
the intervening sequence. b. When two loxP sequences are
anti-parallel, Cre-mediated recombination results in inver-
sion of the intervening sequence. c. The binary expression
vector backbone. Note the antiparallel loxP sites, with a
transcriptional promoter upstream of the first loxP site.
Other features include drug selectable markers such as NPT
(neomycin phosphotransferase) and HPT (hygromycin B
phosphotransferase) to allow selection for the desired orien-
tation, and a fluorescence marker, enhanced green fluores-
cence protein (EGFP). IRES — Internal Ribosome Entry Site,
MCS — Multiple Cloning Site, Py — Cytomegalovirus pro-
moter, pA — polyadenylation signal.

43], and subsequent removal of h'TERT cDNA [25,44-46],
however no system allowed for efficient and repeated
reversion between the two states, nor allowed transcrip-
tional regulation of hTERT (as opposed to complete exci-
sion of hTERT). Biochemical induction of hTERT might be
used for this purpose, however this method proved inca-
pable of sufficient repression in the absence of induction.
Thus, we adopted a method of reversible transposition of
a defined DNA sequence flanked by two loxP sites in
opposing orientations, using Cre recombinase.

The Cre recombinase recognizes DNA sequences known
as loxP sites, and specifically catalyzes recombination
between them. Use of this system to excise and inactivate
genes of interest by looping out the DNA between two
parallel loxP sites on exposure to regulated Cre expression
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was first demonstrated in murine cells over a decage ago
[47]. The same principle has also been used to activate
expression of a gene in vivo via excision of a "stop"
sequence that otherwise blocked transcription [48]. Upon
excision, one loxP site is left in the genome, while the
other remains in the excised DNA. Cre expression may be
induced virally [49] or in a tissue-specific manner by
crossing the mice with an appropriate strain expressing a
Cre recombinase transgene under the control of a pro-
moter specific to the tissue of interest [48]. More recently,
antiparallel loxP sites have been used to invert a specific
sequence in mammalian cells, swapping the expression of
one gene for another [50]. Here, we show that human
cells can be immortalized in a manner strictly dependent
upon Cre-mediated inversion of an integrated hTERT cas-
sette, and that inversion allows the strict and multiply
reversible expression of transcriptional reporters.

Results

Biochemical regulation of hTERT transcription is
insufficiently stringent

We explored the use of a commercially available biochem-
ical induction system (see Materials and Methods) where
the insect hormone ecdysone, or its analogs muristerone
or ponasterone, is used to induce transcription of a gene
of interest. In this system, constitutively expressed gluco-
corticoid receptor and retinoid X receptor form a het-
erodimer in the presence of the inducing agent, and
subsequently bind a tandem array of response elements
upstream of the exogenous gene, thereby activating tran-
scription [51]. This approach was considered because, in
some systems, the absence of muristerone resulted in a
very low or undetectable basal level of expression of the
target gene. [52]. However, cells containing inducible
hTERT were rendered telomerase-positive, and the popu-
lation became immortalized, even in the absence of
induction (data not shown). This finding is consistent
with the observation that very low levels of the TERT
mRNA are sufficient to render a cell telomerase positive
[22].

Development of a genetic switch for reversible gene
expression

Consequently, we sought a stricter means of regulating
gene expression that capitalizes upon the activities of the
Cre recombinase (Figure 1) [50,53]. Due to the direction-
ality of Cre-induced recombination, when loxP sites are
oriented antiparallel to one another the intervening DNA
will be inverted rather than excised (Figure 1). By placing
the gene of interest between the loxP sequences, adjacent
to transcriptional promoter sequences outside this region,
itis possible to juxtapose the gene and the promoter in the
same, tandem orientation (to activate transcription), or
move them apart and to opposing orientations (thereby
deactivating transcription). Further, each orientation can
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Figure 2

Isolation of a 293 clone containing a single copy of
the binary expression vector. Genomic DNA (15 pg)
prepared from individual 293 cell clones containing an inte-
grated binary expression vector with EGFP in the OFF posi-
tion, as in Fig |C. DNA was digested with the restriction
enzyme Xbal, which cleaves within the construct, approxi-
mately 3.5 kbp 3' to the probe sequence (CMV). Thus each
individual insertion should result in a single electrophoretic
species whose size is dictated by the nearest genomic Xbal
site. Lane |, 293 parental cells containing no vector; Lanes 2—
3, two random clones (X, Y) that contain more than one
cross-hybridizing species; Lane 4, one clone (S), showing a
single cross-hybridizing species, as predicted for a single
insertion. The positions of the DNA markers are indicated at
right, in kilobase pairs (kbp).

contain a different potential transcript, permitting mutu-
ally exclusive regulation of a gene pair. In order to extend
the system to bi- or polycistronic gene expression, we also
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Figure 3

Multiple switching of the binary expression vector. a, b, the clonal population carrying a single insertion of the binary
expression vector (Clone S, Figure 2) by bright field and under fluorescence, respectively. ¢, d, the same population as in pan-
els A and B after introduction of Cre recombinase, and FACS cell sorting to obtain an EGFP-positive population. e, FACs anal-
ysis of the EGFP-positive population in panel D, with fluorescence plotted logarithmically on the vertical axis and pulse width
(particle size) plotted logarithmically on the horizontal axis. f, Cre recombinase was introduced into the cell population in
panel E, and analyzed by FACS. The major peak at top center (green arrows) represents GFP-positive cells, while the region at
lower center is the expected peak location for GFP-negative cells (white arrows). The signal in the lower left quadrant of the
FACS profile represents cellular debris. Since the binary vector used to establish Clone S (EGFP OFF) had been switched from
ON to OFF in vitro prior to introduction into cells (see Materials and Methods), these data establish at least three consecutive

switching events are possible.
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Strict control of cellular immortalization via the
hTERT binary vector. After introduction of a binary
expression vector containing hTERT in the 'OFF' state, two
clonal populations were selected, hTERT-OFF(a) (open sym-
bols) and hTERT-OFF(b) (filled symbols). These distinct cell
populations then underwent transient transfection with a
control vector, pUC (triangles), or a vector expressing Cre-
recombinase (squares). Note that only the cells in which Cre
recombinase was introduced became immortalized (squares).
The x-axis indicates the number of days, and the y-axis
shows cumulative population doublings (PDL).

incorporated internal ribosome entry sites (IRES) [54]
and genes whose expression would confer drug resistance
or fluorescence.

As the two loxP sites are in cis (on the same DNA mole-
cule), the inversion reaction is expected to be iterative
until Cre expression is lost, as the loxP target sites are not
destroyed in the reaction [50,53], thereby generating a
racemic population of DNA cassettes in opposite orienta-
tions. By virtue of the coupled transcription of the target
gene with an antibiotic resistance or fluorescence marker,
it was hypothesized that each orientation could be specif-
ically selected from the population. In order to behave as
areversible binary switch, the construct must be present at
a single locus; otherwise, multiple copies of the construct
could coexist within the same cell in different orienta-
tions.

Multiple inversion of the binary loxP cassette in human
cells

Initial characterization of the binary vector system was
carried out using a version that expressed green fluores-
cent protein (EGFP) in one orientation but not the other.
This binary expression vector, with EGFP in the 'OFF' state
(as in Fig. 1C), was introduced into 293 cells via electro-
poration, cells were plated to low density to select single
populations, and Southern blotting of genomic DNA was
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performed to identify a clonal population that contained
a single insertion of the vector DNA, Clone S (Figure 2,
lane 4). This population of cells was initially uniformly
EGFP negative, as expected (Figure 3, panels A, B). Upon
transient introduction of a vector expressing Cre recombi-
nase, a small fraction of the population became stably
EGFP positive (data not shown). Cells from this fraction
were enriched by fluorescence activated cell sorting
(FACS) and plated at low density. Subclones of EGFP pos-
itive cells exhibited a stable EGFP positive phenotype over
successive cell divisions, and their progeny were uni-
formly and heritably EGFP positive (Figure 3, panels C
and D, and data not shown). Subsequent reintroduction
of Cre recombinase, to further iterate the switching proc-
ess, resulted in the generation of a new population of
EGFP negative cells discernible by flow cytometry (Figure
3E, 3F). These data establish that the binary vector system
is capable of multiple inversions in vivo.

Application of the binary system to hTERT

To determine if the binary system could be used to strictly
control hTERT expression in human cells, we introduced
hTERT (followed by puromycin-N-acetyl-transferase) into
the binary expression vector, such that hTERT was in the
'OFF' position. This vector was introduced into HA-5 cells,
which are mortal and derived from human embryonic
kidney cells transformed with the SV40 large T and small
t antigens [55]. Two clonal populations were selected for
further analysis (Figure 4). To one-half of each population
was then introduced a control vector (pUC19) or a vector
expressing Cre recombinase (pMC-Cre). In the absence of
Cre recombinase, the population growth slowed and then
arrested, as expected if cells did not express hTERT (Figure
4). In contrast to the previous biochemical induction
method, cells that contained the h'TERT cDNA in the 'OFF'
position retained a mortal phenotype. Upon Cre expres-
sion, however, the cells became immortalized, and con-
tinued to divide throughout the duration of the
experiment (Figure 4, and data not shown).

The binary system allows strict control of R TERT
expression

To determine whether hTERT was strictly regulated in the
binary system, we examined telomerase activity and tel-
omere length distribution in cell populations containing
hTERT in a presumed 'OFF' or 'ON' orientation. In the
absence of any vector introduction, HA-5 cells were tel-
omerase negative, as expected (Figure 5, lanes 10-12).
Upon introduction of hTERT in the 'OFF' position, cells
retained their telomerase-negative status (Figure 5, lanes
2, 8), and became telomerase-positive only upon intro-
duction of Cre recombinase (Figure 5, lanes 3-7). These
samples were also analyzed for telomere length distribu-
tion by Southern blotting (Figure 6 - see Materials and
Methods). Untreated HA-5 cells displayed a gradual attri-
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Figure 5

Reversibility of telomerase activity via the hTERT
binary vector. Lysates from hTERT-OFF(a) cells shown in
Figure 4 were assayed for telomerase activity by the tel-
omere repeat amplification protocol (TRAP). One micro-
gram total protein was used for each sample, with a 25-cycle
amplification step (see Materials and Methods). Lane 1, no
lysate added. Lanes 2—7, lysates from HA-5 cells containing
the hTERT-OFF vector, followed by introduction of pUC
(lane 2) or Cre recombinase (lanes 3-7), at the indicated
population doublings. Lane 8, an unrelated population of HA-
5 cells containing stably expressed hTERT. Lane 9, a popula-
tion of untreated HA-5 cells split following introduction of
hTERT-OFF, at population doubling 65. Lanes 1012,
untreated HA-5 cells, containing no additional vector
sequences, at the indicated population doublings. The aster-
isk indicates a PCR product that serves as an internal positive
control for the PCR reaction itself. At left, a bracket shows
the amplified telomeric repeats indicative of the presence of
telomerase activity.

tion in telomere length, as expected (Figure 6, lanes 9-
11). A cell population containing hTERT in the 'OFF' posi-
tion showed a mean telomere length similar to untreated
HA-5 cells at a similar population doubling (Figure 6,
compare lanes 1 and 11). In contrast, in cells in which
hTERT is flipped to the 'ON' state, the average telomere
length is stabilized and even increased upon continuous
culture (Figure 6, lanes 2-6). Thus, unlike the biochemi-
cal induction method of hTERT expression, the binary sys-
tem described here allows strict control over telomerase
activity, and cellular immortalization.

http://www.biomedcentral.com/1472-6750/6/10

The use of drug selection via a bi-cistronic transcript

In the binary system, although we were able to success-
fully and strictly reverse hTERT expression, we were una-
ble to select for one vector orientation over another based
solely on the drug-resistance of the population (with
either G418 or puromycin) when the gene conferring drug
resistance was placed after the IRES. We hypothesize this
difficulty arose as a consequence of the IRES, from which
translation initiation is presumed less efficient. This
observation is supported by another study, where the
placement of a GFP-encoding cDNA after an IRES element
resulted in undetectable GFP fluorescence [56].

Discussion

Regulable gene function in a manner that is strictly con-
trolled, and iterative, reversible switching between two
expression states in an otherwise isogenic background
represents a useful and broadly applicable research tool.
In the case of introduced hTERT, where cells proved to be
particularly sensitive to 'leaky' gene expression, we
showed that the binary system could successfully switch
from a non-immortalized, telomerase-negative popula-
tion to an immortalized, telomerase-positive population.
Moreover, we showed that EGFP fluorescence could be
used to successfully select for the multiple inversion of
sequences between two loxP sites in vivo. While one limi-
tation remains to be overcome, notably the ability to
simultaneously select for expression of a second gene fol-
lowing an IRES element, this binary expression system
could be extended to any situation in which an integrated
expression cassette would benefit from strict control of
gene expression. Furthermore, the system possesses the
distinct advantage that expression can be efficiently tog-
gled between two genes. As one example, a mutant "TERT
¢DNA (initially in the 'OFF' state) could be placed in the
opposite orientation to wild-type hTERT, and after selec-
tion of immortalized cells containing one copy of the cas-
sette, Cre recombinase-induced switching would allow a
comparison of cells containing either wild-type or mutant
hTERT for the ability to sustain the immortalized pheno-
type. In addition, the technique might be further
improved by replacing the constitutive transcriptional
promoter with an inducible promoter, combining an
extremely low background expression when in the 'OFF'
state, and the ability to regulate expression levels once the
gene has been inverted.

Conclusion

We have established a binary expression system in which
two genes, in opposite orientation and flanked by loxP
sites, can be toggled successively between an inactive and
active transcriptional state. Using hTERT as a sensitive
measure of strict gene expression, we showed that cellular
immortalization could be achieved only when hTERT was
placed in the 'active' orientation. This binary expression
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Reversible telomere length maintenance via the
hTERT binary vector. Southern blot analysis of telomere
DNA fragments in the same samples shown in Figure 5. Fif-
teen micrograms of digested genomic DNA was loaded in
each lane, and the blot was probed with a radiolabelled telo-
meric oligonucleotide (see Materials and Methods). The posi-
tions of the DNA markers are indicated at left, in kilobase
pairs (kbp). Note the gradual elongation of average telomere
length in the hTERT-OFF population switched to the 'ON'
state (lanes 2-6) relative to HA-5 cells containing no vector
(lanes 9—11), or hTERT-OFF cells without addition of Cre
(lanes I, 8).

system promises broad application wherever strict and
reversible transcriptional regulation is required.

http://www.biomedcentral.com/1472-6750/6/10

Methods

Construct generation

The binary expression vector was generated using a com-
bination of PCR and standard molecular cloning tech-
niques. The hTERT <¢DNA (Genbank Accession
AF015950) was obtained from previously published
material [10]. The EGFP gene derived from pEGFP-C2 and
the IRES and associated antibiotic resistance markers were
obtained from pIREShyg, pIRESneo, and pIRESpuro (BD
Biosciences, Mississauga, ON). The loxP sequences and
one of the polyadenylation sequences were inserted as de
novo synthesized oligonucleotides. A triple polyadenyla-
tion sequence was a kind gift of Dr. Corrine Lobe. Prior to
transfection of cells, the binary vector was linearized with
the restriction enzyme Sspl, which restricts the DNA out-
side the CMV promoter and loxP-flanked sequences, to
minimize the loss of essential DNA sequences upon inte-
gration. Cre recombinase was introduced into cells via the
transient transfection of a Cre recombinase expression
vector (pMC-Cre, provided by Dr. Razqallah Hakem,
Ontario Cancer Institute).

In vitro Cre recombinase switching

In vitro Cre recombinase reactions were carried out using
the Cre Recombinase kit (Novagen / VWR Canlab, Missis-
sauga, ON) as per the manufacturer's instructions. In
brief, after incubation of the binary expression vector with
Cre recombinase in vitro, the reaction mixture was trans-
formed into E. coli, and DNA prepared from single colo-
nies to identify those clones that had undergone inversion
between the two loxP sequences.

Cell culture

Initial characterization of the binary system was carried
out in immortal, telomerase-positive 293 cells (Figure 3)
[57,58]. The biochemical induction and genetic binary
expression of hTERT were carried out in HA-1 and HA-5
cells (kindly provided by Dr. Silvia Bacchetti), respec-
tively, using growth conditions as described in [55].

Transfection

Transfection of cells with various DNA samples was car-
ried out using the Fugene-6 (Roche, Mississauga, ON), as
per the manufacturers instructions.

Electroporation

Cells were trypsinized followed by addition of PBS with
calcium and magnesium, counted and washed in ice-cold
PBS without calcium or magnesium and resuspended in
ice-cold PBS without calcium or magnesium at 2-5 mil-
lion cells per mL. One mL was then mixed with 20 pg lin-
earized plasmid DNA and electroporated at 400 V, 250 uF
in a Bio-Rad Gene Pulser with Capacitance Extender (Bio-
Rad Laboratories, Mississauga, ON).
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Isolation of HA-5 single cell clones
Clonal populations of HA-5 cells were isolated manually,
using a pasteur pipet, by removal of adherent colonies vis-
ualized under an inverted microscope, followed by place-
ment into a new growth chamber.

Telomere Repeat Amplification Protocol

TRAP reactions were performed using the TRAPeze kit
(Intergen, Purchase, NY, USA) as per the manufacturer's
protocol.

Southern blotting

15 micrograms of each genomic DNA sample, prepared
using the DNAzol reagent (Invitrogen, Burlington, ON)
following the manufacturer's protocol, was digested with
Xbal and resolved by electrophoresis in a 0.8% w/v agar-
ose gel. The DNA was then denatured, transferred to
Hybond-N+ nylon membrane (Amersham Biosciences,
Baie d'Urfé, QC) by capillary methods, and UV
crosslinked (240 m] in a UV Stratalinker 2400, Stratagene,
La Jolla, CA, USA). The membrane was probed with radi-
olabelled DNA probe generated by random priming of a
fragment corresponding to the CMV promoter (Figure 2),
and washed in 1x SSC, 0.1% w/v SDS at increasing tem-
perature, followed by a final wash in 0.1x SSC, 0.1% w/v
SDS. The autoradiographic image was captured using a
Storm Phosphorimager (Amersham Biosciences). The
Southern blot in Figure 6 was carried out as described
above, except that genomic DNA was digested with both
Hinfl and Rsal, resolved in a 0.5% w/v agarose gel, trans-
ferred, and the membrane was probed with a 5' 32P-
labelled oligonucleotide, (C;TA,)5,.
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