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Abstract: Systematic single pass rolling experiments were carried out at room temperature on extra
low carbon steel by varying the roll diameter ratio between 1:1 to 1:2 and thickness reduction per
pass in the range of 20–75%. The aim of this study was to define the conditions under which the
rolling texture can transit into a shear texture. The consequences for grain fragmentation, tensile
strength, recrystallization texture, and grain growth kinetics were also studied. It was found that in
a certain range of thickness reduction per pass and asymmetric ratio, an effective rotation towards
the shear texture takes place in conventional rolling. The value of the shear coefficient factor (shear
strain rate/rolling strain rate) in asymmetric rolling depends on the selection of thickness reduction
per pass. The measured value of shear coefficient was found to be independent of the number of
passes used in asymmetric rolling. The consequence of arising shear textures is an acceleration of
grain fragmentation. After rapid heat treatment, both tensile strength and recrystallization kinetics
of asymmetric rolled sheets showed merits over the conventional rolling. Only the evolved Goss
orientation from asymmetric conditions of deformation shows higher stability than any other preferred
shear texture components after complete recrystallization.

Keywords: asymmetric rolling; texture; thickness reduction per pass; shear coefficient; recrystallization;
steel

1. Introduction

In recent years, rolling with imposed asymmetry has gathered interest to introduce a through
thickness shear texture effect in a rolled sheet [1–11]. It has been also considered that imposing
asymmetric conditions just by varying the rolling parameters in conventional rolling is the most
efficient way to introduce shear into the sheet [12–14]. Several studies report that the added shear
strain in rolling can lead to increased grain refinement, tensile strength improvement, and tilt/rotation
of the rolling texture, so one can tailor the deformation texture anisotropy [1,4,6,15–17]. Based on
the type of applied asymmetry, different nomenclatures have been given to asymmetric rolling
processes [4,5,9,10,15,16]. There are three ways to introduce asymmetry: difference in roll diameter,
in angular speed, or in friction. However, the pre-notion was that the effect of these different ways of
imposed asymmetry in rolling remains mostly similar on deformed texture and microstructure, except
the tribological type of asymmetry, which is reported to be much less effective than the others [18].

It has been predicted from numerical methods that the shear effect generated from the applied
asymmetric conditions can tilt/rotate the conventional rolling texture up to the ideal shear texture,
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or close to it [2,3,11,19]. It was reported in these works that the asymmetric ratios, such as 1:1.5
or above, can tilt/rotate texture significantly when the applied thickness reduction per pass (TRPP)
is small or medium (5–40%) in multi-pass rolling. It was also found in experiments on multi-pass
asymmetric rolling that the texture in the mid thickness area of the sheet remains nearly the same as
for symmetric rolling [2,3,11,19]. However, in a very recent publication, current authors have shown
the possibility of forming a through thickness shear texture in multi-pass rolling when all parameters
are high—thickness reduction per pass, diameter ratio, and total thickness reduction [20]. It was also
found in that work that by simple rigid body rotation the conventional rolling texture turns into shear
texture. However, it is yet to investigate the dependence of texture rotation on the applied number of
passes and the thickness reduction per pass.

A range of shear coefficient (defined as the ratio of shear strain rate/rolling strain rate) values has
been considered in various investigations to predict the texture rotation in asymmetric rolling [2,3,6,11,
19,21]. However, so far, this parameter has not been measured experimentally in order to correlate it
with the texture rotations in asymmetric rolling.

Huang et al. [22] carried out single pass asymmetric rolling on magnesium alloys. They found
little rotation of the texture in spite of the large reduction of passes, up to 63%. This, however,
is understandable, because of their initial texture, which was a strong basal texture. Namely, such a
texture is highly stable in simple shear [23], so it is not expected to rotate under the shear component
of the asymmetric rolling process. Several other investigations were also carried out with high ratio
differential speed rolling combined with high TRPPs in single pass rolling [16,24,25]. However, these
studies were focused on the extreme conditions of asymmetric rolling rather than on the formation of
shear textures.

The present study aims to reveal texture evolutions as a function of thickness reduction per
pass. Single pass asymmetric rolling was carried out on extra low carbon steel. The effect of texture
rotation was also examined in terms of microstructure evolution. We selected a ferritic steel because
there are only a few investigations about its behavior in asymmetric conditions. Shear texture plays a
very important role in several applications. For example, with added silicon content in ferritic steel,
a through thickness shear texture in rolled sheet is the prime requirement to minimize eddy current
loss in transformers.

2. Materials and Methods

Specimens with the dimensions of 30 mm width × 60 mm length and 5 mm in thickness were
machined from a billet which was earlier heat treated at 1000 ◦C for an hour. The front end of
the specimens was wedged to ease achieving a high thickness reduction per pass (TRPP). In some
specimens, vertical pins were inserted, made of the same material. This step was taken in order
to measure the value of the shear coefficient from the inclination of the pins, as reported in other
investigations [7], and associate it with the texture evolution.

In addition to the insertion of pins, a vertical grid was also made using indentation marks, forming
a square mesh of 0.75 mm × 0.75 mm on the TD (Transverse Direction) plane at the edge of the specimen.
In this way, the results obtained from both inserted pins and grids could be compared. For multiple
passes, additional new vertical inserts were placed into the sheets before each pass. A schematic of
the experimental setup is presented in Figure 1, showing the positions of the neutral points and the
reference system.
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Figure 1. Schematic of the experimental setup, representing positons of (a) neutral points and
(b) inserted pins in a sample.

Rolling was carried out at room temperature with special attention paid to the rolls, maintaining
them in a smooth and dry state for every pass. The sheets were rolled in monotonic mode without
strain path change. The asymmetric conditions were imposed by differences in roll diameter ratio for
the values of 1:1.3, 1:1.6, 1:2. The TRPP was varied between 20% and 75%. A single motor driven Carl
Wezel rolling mill was equipped with a special roll-set for the experiments. It had four sets of diameter
ratios, from 1:1 (200 mm/200 mm) to 1:2 (133 mm/267 mm), and their revolutions per minute was 32.
The results were compared with the symmetric (1:1) case, keeping the other parameters the same as
the asymmetric case. Table 1 shows the carried out rolling schedule. Note that due to the spring back
effect of the rolling mill, the final thickness reduction of a sheet at each TRPP was always less than the
scheduled TRPP; the differences went up to 7%.

Table 1. Rolling schedule for different roll diameter ratios.

Thickness Reduction per Pass
Roll Diameters Ratio

1:1 1:1.3 1:1.6 1:2

20% × - - ×

30% × - - ×

40% × - - ×

50% × × × ×

57% × × × ×

65% × - - ×

75% × × × ×
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For X-ray diffraction and electron back scattered diffraction (EBSD), samples from the rolled sheet
were first mechanically polished with 600, 1200, and 1800 SiC grit papers, before further polishing
steps. Thereafter, the samples were polished with 6 µm, 3 µm, and 1 µm diamond suspension and
final polishing was performed with colloidal silica suspension (OP-S solution).

The bulk texture of the rolled specimens were measured by X-ray diffraction on the ND (Normal
Direction) plane at mid thickness, as well as about 200 µm below the top and bottom surfaces of
the sheet. The Labosoft™ software [26] was used for texture data analysis without applying any
sample symmetry. A total of 10◦ deviation from the ideal position was considered for the volume
fraction quantification of texture components. The deformed microstructure was examined in the
mid thickness area of the TD surface by a scanning electron microscope (SEM) equipped with an
electron back scattered diffraction (EBSD) detector. The SEM for EBSD was operated with 15 kV
voltage. The step size for scanning was chosen between 0.35 and 0.2 µm based on the features of
interest in the microstructure. The noise reduction in the scanned EBSD maps was carried out by
removing the first wild spike, followed by the standard procedure of assigning the minimum six
neighboring pixel’s orientation to the non-indexed pixels with repetitive iterations. The microstructural
representation and quantification of data collected from the EBSD-scanned area were analyzed using
the Channel 5 software provided by Oxford Instruments. The ATEX software [27] was also used for
data post-processing. The reference system for the Euler angles of the crystal orientations were defined
as: RD = x, TD = y, ND = z on Inverse Pole Figure (IPF) maps. The grains were defined on the basis of
a minimum disorientation angle of 5◦ and consisted at least of three or more pixels.

For recrystallization kinetics study, isothermal annealing at 660 ± 10◦ temperature was used.
Material strength before and after recrystallization was measured by tensile testing at a 0.006 mm/second
strain rate with specimen dimensions down sized from the ASTM E8 standard size. The tensile
specimens were grinded and polished sufficiently enough from both sides of top and bottom surfaces
so that deformation effects arising due to change in roll diameter ratios could be examined more
precisely in the mid thickness region of the rolled sheet.

3. Results

Figure 2 shows the microstructure and texture of the initial material. The microstructure after
the prior heat treatment to rolling consisted of equiaxed ferrite grains with an average size of about
36 µm, and a texture that was practically random. Figure 3 represents the measured bulk texture in
the ϕ2 = 45◦ sections of the orientation distribution function (ODF) at the mid thickness area of a
sheet for rolling with diameter ratios of 1:1 and 1:2, with TRPP increasing from 20% to 75%, in single
passes. It is apparent that the texture development depends both the TRPP and the roll diameter ratio.
For symmetric rolling, the texture intensity steadily increased and the α and γ fibres became more
defined. Whereas at the roll ratio of 1:2, these two fibres disappeared completely, while the texture
intensity did not change significantly. At the same time, the texture components inclined progressively
towards the shear texture components.

Figure 4 shows the resultant texture at the intermediate ratios of 1:1.3 and 1:1.6 for a thickness
reduction per pass of 50% and 75%, in single pass. The loss of texture symmetry with respect to
symmetric rolling is visible by the displacement of the second part of the γ fibre (extending from
ϕ1 = 180◦ to 360◦) for both roll diameter ratios. At the same time, the shifted fibre part becomes more
defined by increasing the TRPP value. The displacement of this rotated fibre was higher for the 1:1.6
asymmetry ratio, nevertheless, remaining inferior to what was observed at the ratio 1:2 in Figure 3.

The effect of asymmetry was examined at a constant (50%) TRPP, with the help of inserted
pins and indentation marks; the metallographic images are shown in Figure 5. Their shape change
reflects the imposed strain field. The shear component changed the orientation of a vertical line.
The red lines in Figures 5 and 6 indicate the shapes of the markers. In symmetric rolling, the shear
component changes the sign between the top and bottom half of the sample in a symmetric manner.
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By introducing dissymmetry in the roll diameters, the bottom shear zone extends upward. From the
ratio 1.6, it occupies the whole sample.
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whole sheet thickness.

The signature of the imposed asymmetric condition is quite evident in the measured
microstructures taken from the mid thickness area on the TD plane, see Figures 7 and 8. These figures
show inverse pole figure (IPF) maps of the RD axis, where the grain boundaries with disorientations
larger than 15◦ were superimposed. It is noticeable that with increase in TRPP, the microstructure
becomes more advanced at the asymmetric ratio of 1:2 than at any other applied ratios.
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Figure 9 represents the microstructure obtained in isothermal recrystallization conditions for
asymmetry ratios of 1:1 and 1:2, for 60 s and 100 s annealing times. One can observe faster complete
recrystallization at the asymmetry ratio 1:2 for 60 s. Figure 10 shows the mechanical behaviour in tensile
testing before and after recrystallization for samples rolled to 75% thickness reduction in one pass.
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Figure 10. Engineering stress–strain curves in tensile testing after deformation by 75% thickness
reduction in a pass (a) and recrystallization (b) for 100 s at 660 ± 10 ◦C.

4. Discussion

This study shows that the selection of applied thickness reduction per pass for a given asymmetry
ratio strongly affects both texture and microstructure development. In the following, the discussion is
sub-sectioned in three parts to examine the effect of asymmetric conditions on:

1. shear strain distribution and texture rotation,
2. deformed microstructure,
3. recrystallization kinetics, texture and tensile strength.
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4.1. Shear Strain Distribution and Texture Rotation

The shear coefficient p was defined in Reference [7] as the ratio of the shear strain rate
( .
γ
)

and the

rolling strain rate
( .
ε
)

:
.
γ = −p

.
ε. (1)

p is constant if the velocity gradient remains constant during rolling. In this case, after one pass, or
after any given number of passes for an initially vertical pin, the p value is determined by the initial (hi)
and final (h f ) thicknesses of the sheet by:

p =

( h f

hi − h f

)
tan(α), (2)

where α is the inclination angle of the inserted pin after each rolling pass with respect to its initial
vertical position, hi is the sheet thickness prior to a given pass, and h f is the thickness after the pass.
From Equations (1) and (2), we obtained the shear strain value:

γ =

( h f

hi − h f

)
tan(α) ln

(h f

hi

)
. (3)

This relationship shows that the shear strain is function of both the applied sheet thickness
reduction and the inclination angle of the initially vertical pin in a pass. Note that this equation can be
employed locally—namely, α is not necessarily constant through the thickness (see Figures 5 and 6).
The results of such analysis are presented in Figure 11a. It is clear from this Figure 11a that the
shear strain distribution depends both on the roll diameter ratio and on the TRPP. The shear strain
is practically uniform through the thickness when the roll diameter ratio is 1:2 compared to other
applied ratios.
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Shear values and shear coefficients were reported for asymmetric rolling in several papers [3,6,28–31].
The shear strain distributions within the thickness were examined experimentally in Reference [29]
with the help of indentation marks, and by simulations in [29–35]. The main finding of Roumina
et al. [29] was that higher TRPPs in asymmetric rolling lead to more uniform shear distribution in
multi-passes for the same total thickness reduction. Our results in Figure 11a also show that for a given
TRPP, both the magnitude of the shear strain and its uniformity through the thickness are higher by
increasing the asymmetry ratio.
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It has been shown in References [29,34] that the neutral point (see in Figure 1) is shifted opposite
to RD on the top roll and towards RD at the bottom roll in asymmetric rolling. In this way, a cross-shear
zone is formed, in which both shears produced at the top and bottom rolls are shearing the metal in the
same way. This is not the case for symmetric rolling leading to two shear zones with opposite shears
(see Figures 5 and 6). This means that asymmetric rolling is promoting deformation homogeneity
within the sheet. Our results clearly show that the obtained shear component depends on both TRPP
and on the asymmetry ratio. These two parameters are playing decisive roles in increasing the size
and the effectiveness of the cross-shear zone. However, to reach high shear it is vital to impose a high
asymmetry ratio combined with high TRPP. We emphasize that a high TRPP with low asymmetry
cannot produce the same result.

The texture rotation due to shear is strongly affected by the combination of the TRPP and the
asymmetry ratios. As can be seen in Figure 11b, significant texture rotation is only obtained when
both TRPP and asymmetry ratio are high. Under such conditions, along with the uniform shear strain
distribution, a uniform rotation of the texture is obtained, leading to a homogeneous shear texture
across the thickness in asymmetric rolling. It follows from the texture results (Figure 3) and from the
measured shear coefficient trends (Figure 12a), that after reaching a certain range of parameters in the
asymmetric rolling conditions, the amplitude of the shear strain can become comparable to the rolling
strain in the mid thickness area of the sheet (Figures 3 and 12a).
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multi-passes with TRPP of 30% and 50% at the asymmetry ratio of 1:2.

Shear coefficients were also determined for multiple passes, see the results in Figure 12b. There were
two possibilities in multiple passes to obtain shear coefficient values. One way was to use the initial
inserts, and the other was to use new inserts, which were placed additionally before each new pass.
These two ways should have led to the same result using the proper initial and final thickness values.
However, as can be seen in Figure 12b, the shear coefficients obtained from the new inserts were
systematically smaller than those derived from the initial pins. Moreover, they were nearly constant in
each pass. This discrepancy actually means that Equation (1) is not fulfilled in asymmetric rolling,
so Equations (2) and (3) are also not valid. The obtained differences can be only explained by assuming
that in a given pass the shear is not happening at the same time as the reduction in thickness (the rolling
strain). It is quite probable that the deformation process begins with the reduction of thickness without
any significant shear, followed by a new stage, where the thickness is not decreasing significantly,
while mostly shear deformation is produced.

Figure 12b displays also the rotation of the texture due to shear. The rotation value was identified
by the rotation of the D1 shear texture component, which originates from the rotated cube of the rolling
texture (see more on this in Reference [20]). It can be seen that the rotation is limited to 11◦ when the
TRPP is 30%, while it goes up to 30◦ when the TRPP is 50%. The value of 30◦ is the limiting value
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because at this value the rolling texture components turn into the shear ideal texture components
(see Reference [20]). Larger rotations are not possible because the ideal positions are reached at 30◦.

In Figure 12a, one can notice that the approximation of the shear coefficient from inserted pins and
marked grids varied with an increase in TRPP for a given asymmetric ratio. The values obtained from
inserted pins were slightly higher than those obtained from the marked grid points. These differences
were mostly due to either the unavoidable overestimation of the inclination angles from inserted
pins or underestimation of angles using the grids. However, the trend of both results is consistent,
considering the error bars (about 10%). Starting from the shear coefficient value of 1.0, Toth et al. [19]
have shown by simulation that significant rotation takes place in symmetric rolling texture together
with limited stability along both the α and γ fibres, which was the case when the asymmetry ratio was
1:2 and TRPP was about 50–57% in the present experiments.

To obtain shear textures by both the roll diameters, high asymmetry and the TRPP can be evidenced
also in the present measurements by studying the volume fractions of the prominent shear texture
components. Figure 13 demonstrates that there is a gradual increase in shear texture components at
the expense of the rolling components as the TRPP is increased. A noticeable rise in volume fractions
of shear texture components above the theoretical randomness occurs only when TRPP is at least 50%
together with the asymmetry ratio being larger than 1:1.6.
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with TRPP of 20–75% and (b) at ratios of 1:1.3 and 1:1.6 with TRPP of 50% and 75%.

By combining all the results presented above obtained from the inclination angles of inserted pins
and grid marks, the rotation of the texture, and the variation of the shear texture components, it can be
concluded that an asymmetry ratio larger than 1:1.6 with TRPP of at least 50% are the criteria for the
rolling texture to switch into shear texture.

4.2. Deformed Microstructure

The deformed microstructures displayed in Figures 7 and 8 have a common feature concerning
the shear bands that appear at about 35◦ with respect to RD, as a usual microstructure feature in rolling.
These bands are significantly accentuated for the asymmetric rolling conditions, in almost all grains.
They represent periodic orientation variations between adjacent bands. For the case of 1:2 asymmetry
and 65% TRPP, the transformation of the bands into fragmented grain structure is evident. Under the
condition of asymmetric deformation, orientations that should remain stable in the symmetric case
become unstable, so keep rotating with strain [36–41]. Such a scenario can lead to increased grain
fragmentation by orientation splitting, deformation bands, and macro shear bands, as compared to
the plane strain deformation condition alone. Previous studies have shown that the different types of
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bands and orientation splitting are appearing as a consequence of the complex imposed deformation
state [42–45]. The increased grain fragmentation for the asymmetric case can be attributed to the
strong shear component. Indeed, it has been shown in Reference [46] that grain fragmentation is much
more efficient in simple shear compared to pure shear, i.e., symmetric rolling. Thus, the enhanced
grain refinement with the imposed severity of asymmetric deformation is due to the increased lattice
rotation, an effect well known in simple shear [46].

Furthermore, examination of what type of orientations can form within these instabilities can be
noticed in Figure 14, where local crystal orientations were mapped on selected sites; see in Figure 7 the
marked white ellipses. Detailed orientation analysis shows that most of the fragmented sites possess
either shear texture orientations or orientations that are different from the parent grain. The formation
of such orientations and their gradients by instabilities implies that the asymmetric conditions can
promote the development of shear texture, and locally, a randomization of the texture.
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4.3. Recrystallization Kinetics, Texture, and Tensile Strength

The consequence of imposed asymmetry conditions during deformation also reflects on post
processing. The current investigation takes an account of recrystallization behavior in terms of changes
in kinetics, texture, and tensile strength.

A perturbed microstructure due to different types of deformation bands formation and their
intersections causes heterogeneous distribution of dislocation density and grain boundary junctions in
fragmented parts of original grains [45,47–51]. Thereby, an inherent difference lies in accumulated
stored energy at different locations in a deformed microstructure or in the distribution of preferential
sites for the recrystallization. The deformed microstructure becomes more heterogeneous, with an
increase in imposed asymmetric conditions, than the symmetric case in similar conditions of rolling.
The newly formed grains grow into a deformed matrix by migration of high angle grain boundaries
due to the stored energy difference between them [48,52–54]. In the case of asymmetric rolling, there
is a higher possibility for these newly formed grains to be surrounded by an increased network of
high angle grain boundaries than in symmetric rolling. Because of this, the kinetics of recrystallization
are faster in the asymmetric case than in the symmetric one. However, with an increase in time,
the coarsening of strain-free new grains can be limited later by their impingement with each other.

In the case of symmetric rolling, there are still elongated bands of original initial grains; see the
green colored bands of α fiber grains in Figures 7 and 8, which retain low angle disorientation ≤7◦

despite the applied severe deformation. Such grain bands are slower to form new grains than other
bands which have already formed strain free grains (example, γ fiber grains) [55]. Interestingly,
these low angle disorientation regions of α fiber grains can also be consumed by the growth of
existing strain-free grains [56]. Such invasion can lead to a growth of strain-free grains, due to the
high mobility of their high angle boundaries [56,57]. Thereby, the occurrence of having a complete
recrystallized microstructure with smaller grain size in asymmetric ratio is more probable than in
the symmetric case for the same isothermal annealing conditions (Figure 15a). Analysis of the JMAK
(Johnson–Mehl–Avrami–Kolmogorov) exponent presented in Figure 15b shows a smaller JMAK value
for the asymmetric case than for symmetric rolling. This observation further confirms inhomogeneity
both in microstructure and in stored energy distribution, which is increasing the number of nucleation
sites for recrystallization [53]. Based on the reduced JMAK exponent and more heterogeneous
microstructure, it can be also inferred that the apparent activation energy to initiate recrystallization
has also been reduced for the asymmetric case compared to the symmetric one. There is evidence
where it was noticed that the apparent activation energy was reduced for a more heterogeneous
microstructure [58,59].
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Parameters, such as image quality, band contrast, misorientation average deviation, and grain size,
were usually employed to identify the recrystallized grains in the deformed microstructure. However,
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recently, emphasis has been given more to grain internal disorientation-based partitioning for the
recrystallizing grains [52,60–64]. This is due the fact that recrystallizing grains are more dislocation
free than the others. Therefore, it is a pragmatic approach to choose a criterion based on the value
of the internal disorientation angle below which grains are considered to be recrystallized. Further
partitioning based on grain size can also be added for filtering the grain sizes of interest. Figure 16
shows the fraction of recrystallizing grains in the deformed matrix for symmetric rolling as an example
of partitioning, based first only on the grain internal disorientation average (GIDA) as well as combined
with the grain size filter. It is clear from Figure 16 that the recrystallizing grains go from having a
value of zero to a small value of grain internal disorientation average (GIDA) compared to the grains,
which are still in the deformed and recovered states. In this case of partially recrystallized sample
obtained by symmetric rolling (Figure 16b), the maximum angle of 2.8◦ was selected to identify the
recrystallized grains.
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The evolution of the texture presented in Figure 17 were observed in partially (30%) and fully
recrystallized specimens. For symmetric rolling, it is in accord with earlier investigations, where the
prevalence of γ fiber over α fiber was reported [53,65–67]. However, so far in the literature, the textures
of partially and fully recrystallized states have not been examined in detail for asymmetric rolling.
The texture of newly formed grains in partial (30%) recrystallization consists mainly of Goss {110}<001>

(or F in shear) components, while the other components are disappearing. In the fully recrystallized
state, the cube or rotated cube {100}<110> components appear in proximity to its preferred ideal
location along with the pre-existing Goss texture component. The retention of Goss and forming cube
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or rotated cube texture components in the fully recrystallized state can be comprehended by their
stability. It has been observed that a strong Goss texture can be formed in the shear deformation of bcc
steels while in plain strain rolling it does not appear [20,37,38]. Thus, in the recrystallization state of
asymmetric rolled specimen, it can become weak but would not vanish. In symmetric rolling, the Goss
component can also appear during recrystallization with low intensity, see Figure 16b. In that case, its
origin lies in the shear bands [40,68]. Cube or rotated cube has been considered stable end orientation
and easily forms by both deformation and annealing in bcc structured steels [62,69–71].
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The effect of imposed asymmetry on mechanical properties was evaluated for both deformed and
fully recrystallized states after 100 s rapid annealing at 660 ± 10 ◦C. Figure 10 shows the merits of the
asymmetric rolled specimens over the symmetric case. The increased strength in deformed state can
be attributed to the increased refinement in average grain size due to the severity of deformation with
imposed asymmetry over symmetric rolling. After complete recrystallization, in both deformation
states, there was a loss in tensile strength but a gain in ductility. Nevertheless, the loss in tensile
strength after deformation is higher at imposed asymmetry than in its absence (at ratio 1:1). This is
due to the extra withhold time of annealing after their complete recrystallization accomplished in 60 s,
as compared to 100 s for the symmetric rolling. However, the tensile strength of asymmetric rolled
specimens is still higher over the symmetric rolling, while achieving a similar level of ductility.

5. Conclusions

In this work, extra-low carbon steel was systematically cold rolled in single pass by varying both
the applied asymmetric ratio and thickness reduction per pass. An experimental attempt was made
to connect the rotation of the rolling texture to form shear texture and the measured values of the



Materials 2019, 12, 1935 16 of 19

shear coefficients. The applied asymmetric conditions significantly affected both the deformed and
recrystallized states. On the basis of the experimental results, we can draw the following conclusions:

1. The rolling texture approaches the shear texture when the applied thickness reduction per pass is
50% or above, together with an asymmetry ratio of 1:2.

2. The value of the shear coefficient is independent of the applied number of passes but sensitive to
its measurement position along the thickness of the sheet. This measured value in a given pass
with inserted new pin can be related to the expected rotation of the texture to be achieved in
asymmetric rolling.

3. Under effective asymmetric conditions, there is more grain fragmentation in the mid thickness area
of a sheet due to the increased lattice rotation inherent in shear compared to the symmetric case.

4. Both average grain size and JMAK exponent remain smaller in the case of asymmetric rolling
than for symmetric rolling after recrystallization.

5. A very different recrystallization texture forms in optimal asymmetric rolling conditions compared
to the conventional recrystallization textures observed in symmetric rolling.
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