
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 673934, 21 pages
doi:10.1155/2012/673934

Research Article

On the Existence of Wavelet Symmetries in Archaea DNA

Carlo Cattani

Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Correspondence should be addressed to Carlo Cattani, ccattani@unisa.it

Received 13 September 2011; Revised 27 October 2011; Accepted 29 October 2011

Academic Editor: Sheng-yong Chen

Copyright © 2012 Carlo Cattani. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the complex unit roots representation of archea DNA sequences and the analysis of symmetries in the wavelet
coefficients of the digitalized sequence. It is shown that even for extremophile archaea, the distribution of nucleotides has to fulfill
some (mathematical) constraints in such a way that the wavelet coefficients are symmetrically distributed, with respect to the
nucleotides distribution.

1. Introduction

In some recent papers the existence of symmetries in nu-
cleotide distribution has been studied for several living or-
ganisms [1–6] including mammals, fungi [1–4], and vir-
uses [5, 6]. Thus showing that any (investigated) DNA
sequence, when converted into a digital sequence, features
some fractal shape of its DNA walk and an apparently
random-like distribution. However, when the short wavelet
transform maps the digital sequence into the space of wavelet
coefficients, and these coefficients are clustered then they are
located along some symmetrical shapes.

One of the main tasks of this paper is to show that al-
though the distribution of nucleotide, in any DNA sequence,
can be considered as randomly given, when we compare a
random sequence (and the corresponding random walk)
with a DNA sequence (and walk) it can be seen that there
exists some distinctions. So that the nucleotides distribution
seems to side with a random distribution with some con-
straints. These constraints (rules) are singled out in the fol-
lowing, by showing the existence of hidden geometry which
underlies the structure of a DNA sequence.

In other words, nucleotides are distributed along any
DNA sequence at first apparently randomly but at second
analysis according to some (statistical) mathematical con-
straints which does not allow a given nucleotide to be arbi-
trarily followed by any other remaining nucleotides.

It is interesting to notice that even in the primitives or-
ganisms which billions of years ago have been colonizing

the earth under extreme conditions of life, their DNA has to
fulfill the same constraints of the more evolved DNAs.

In order to achieve this goal some fundamental steps have
to be taken into consideration and discussed.

(1) Since DNA is a sequence of symbols, a map of these
symbols into numbers has to be defined. In the fol-
lowing we will consider the complex unit roots map,
which has the advantage of being unitary and dis-
tributed along the unit circle.

(2) The indicator matrix is defined on the the indicator
map. This matrix is important in order to draw the
dot plot of the DNA sequence and from this plot we
can see that apparently nucleotides seem to be ran-
domly distributed. However, we will show by wavelet
analysis that they look randomly distributed, while
they are not.

(3) The Ulam spiral adapted to DNA sequences is defined
in order to single out some geometrical patterns.

(4) Random walks on DNA, or short DNA walks, show
that the random walks look like fractals.

(5) The analysis of clusters of wavelet coefficients show
that DNA walks have to fulfill some geometrical con-
straints.

In all DNA sequences, analyzed so far, for different kinds
of living organisms, this geometrical symmetry [1–6] has
been detected. In the following this analysis is extended also
to archaea, since they might be considered at the early
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Figure 1: Indicator matrix for: (a1) pseudorandom 70-length sequence; (a2) pseudo-periodic 70-length sequence with period π = 35; (b1)
70-length DNA sequence of Mycoplasma KS1 bacter; (h3) 70-length DNA sequence of Acidilobus Archaea.

stage of life and their DNA is compared with more evolved
microorganisms as bacteria.

It will be shown that, inspite of the many similarities with
random sequences, only the wavelet analysis makes it pos-
sible to single out some distinctions. In particular, the wavel-
et coefficients of all (analyzed) organisms tend to fulfill a
minimum principle for the energy of the signal. Also the
archaea which often live in extreme environments have to
fulfill the same geometrical rule of any other living organism.

The analysis of DNA by wavelets [7–9], as seen in [8–12],
helps to single out local behavior and singularities [7, 13]
or to express the scale invariance of coefficients [14]. Also
multifractal nature of the time series [15–17] can be easily
detected by wavelet analysis.

Some previous paper have studied various sequences of
DNA such as leukemia tet variants, influenza viruses such as
the A (H1N1) variant, mammalian, and a fungus (see [1–
3, 14]) provided by the National Center for Biotechnology
Information [18–21]. In all these papers it was observed

that DNA has to fulfill not only some chemical steady state
given by the chemical ligands but also some symmetrical
distribution of nucleotide along the sequence. In other
words, base pairs have to be placed exactly in some positions.

According to previous results, it will be shown that as
any other living organisms also these elementary organisms
have DNA walks with fractal shape and wavelet coefficients
bounded on a short-range wavelet transform. In other words,
also anaerobic organism which should be understood as the
most elementary at the first step of life have the same symme-
tries on wavelet coefficients as for more evolved organism,
so that life has to fulfill some constrained distribution of
nucleotides in order to give rise to some organism even at
the most elementary step.

In particular, in Section 2, some remarks about the an-
alysed data are given. Section 3 deals with some elementary
plots which can easily visualize the distribution of nu-
cleotides. The Ulam spiral plot is also proposed for the first
time and it is observed a different distribution of weak/strong
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Figure 2: Indicator matrix for the first 100 amino acids of (h1) Aeropyrum pernix K1, (h2) Acidianus hospitalis W1, (h3) Acidilobus
saccharovorans 345-15 (b1) Mycoplasma putrefaciens KS1, (b2) Mortierella verticillata, and (b3) Blattabacterium sp.
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Figure 3: Distribution of nucleotides on a rectangular spiral.

hydrogen bonds. Section 4 provides some definitions about
parameters of complexity. We will notice that all these
parameters give rise to the same classification of organism.
Section 4 proposes a complex numerical representation of
DNA chains and random walks, while in final Section 6 the

short wavelet trasform is given in order to single out some
symmetries at the lower order of transform.

2. Materials and Methods

In the following we will take into consideration some ge-
nome, complete sequences of DNA, concerning the following
archaea:

h1: Aeropyrum pernix K1, complete genome. DNA, circu-
lar, 1669696 bp, [18–21], accession BA000002.3. Lin-
eage: Archaea; Crenarchaeota; Thermoprotei; Desul-
furococcales; Desulfurococcaceae; Aeropyrum; Aero-
pyrum pernix; Aeropyrum pernix K1.
This organism, which was the first strictly aerobic
hyperthermophilic archaeon sequenced, was isolated
from sulfuric gases in Kodakara-Jima Island, Japan in
1993.

h2: Acidianus hospitalis W1, complete genome. DNA, cir-
cular, 2137654 bp, [18–21], accession CP002535. Lin-
eage: Archaea; Crenarchaeota; Thermoprotei; Sulfol-
obales; Sulfolobaceae; Acidianus; Acidianus hospitalis;
Acidianus hospitalis W1.
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Figure 4: Spiral distribution of the first 3752 nucleotides for the random sequence.

h3: Acidilobus saccharovorans 345-15. complete genome.
DNA, circular, 2137654 bp, [18–21], accession
CP001742.1.
Lineage: Archaea; Crenarchaeota; Thermoprotei;
Acidilobales; Acidilobaceae; Acidilobus; Acidilobus
saccharovorans; Acidilobus saccharovorans 345-15.
Anaerobic bacteria found in hot springs.

to be compared with the following (aerobic/anaerobic) bac-
teria/fungi:

b1: Mycoplasma putrefaciens KS1 chromosome, complete
genome. DNA, circular, length 832603 bp, [18–21],
accession NC 015946,. Lineage: Bacteria; Tenericutes;
Mollicutes; Mycoplasmatales; Mycoplasmataceae;
Mycoplasma; Mycoplasma putrefaciens; Mycoplasma
putrefaciens KS1.

b2: Mortierella verticillata mitochondrion, complete ge-
nome. dsDNA, circular, length 58745 bp, [18–21],
accession NC 006838. Lineage: Eukaryota; Opistho-
konta; Fungi; Fungi incertae sedis; Basal fungal

lineages; Mucoromycotina; Mortierellales; Mortier-
ellaceae; Mortierella; Mortierella verticillata.

b3: Blattabacterium sp. (Periplaneta Americana) str.
BPLAN, complete genome. DNA, circular, length
636994 nt, [18–21], accession NC 013418. Lineage:
Bacteria; Bacteroidetes/Chlorobi group; Bacteroide-
tes; Flavobacteria; Flavobacteriales; Blattabacteriace-
ae; Blattabacterium; Blattabacterium sp. (Periplaneta
Americana); Blattabacterium sp. (Periplaneta Ameri-
cana) str. BPLAN.

Moreover we will compare DNA sequences with artificial
sequences of nucleotides randomly taken (see Section 4).

2.1. Archaea. Archaea are a group of elementary single-cell
microorganisms, having no cell nucleus or any other mem-
brane-bound organelles within their cells. They are similar to
bacteria, since they have the same size and shape (apart few
exceptions) and the generally similar cell structure. However,
the evolutionary history of archaea and their biochemistry
has significant differences with regard to other forms of life.
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Figure 5: Spiral distribution of the first 3752 nucleotides for Mycoplasma putrefaciens KS1.

Therefore they are considered as members of a phylogenetic
group distinct from bacteria and eukaryota.

Archaea during their evolution have been spreading all
over the Earth in almost all habitats [22, 23] existing in
a broad range of habitats, being one of the major con-
tribution (20%) to earth’s biomass. The most peculiar feature
of archaea is that they can live in some environments with
extreme life conditions (thus being considered as extremo-
philes [22, 24]). Indeed, some archaea survive to high tem-
peratures, over 100◦C, while others can live in very cold habi-
tats or highly saline, acidic, or alkaline water. Nevertheless
some archaea are living in mild conditions.

It has been also recognized that the archaea may be the
most ancient organisms on the Earth, so that archaea, and
eu-karyotes are probably diverged early from an ancestral
colony of organisms.

We will see, in the following, that archaea DNA it looks
very close to random sequences so that we can assume that

the ancestral organism were evolving by random permuta-
tions from a primitive assembly of nucleotides. So that the
evolution can be seen as a tendency to a steady state far from
the randomness. Therefore, the bacteria’s DNA (and other
eukaryotes’ [1–6]), as a result of the evolution, shows the
existence of some hidden stability.

3. Correlation Plots

In this section we will consider some elementary plots from
where it is possible to visualize autocorrelation, distribution
law of nucleotides and to measure some fundamental param-
eters by using frequency count.

Let

A
def= {A, C, G, T} (1)

be the finite set (alphabet) of nucleotides (nucleic acids):
adenine (A), cytosine (C), guanine (G), thymine (T), and
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Figure 6: Spiral distribution of the first 3752 nucleotides for Mortierella verticillata.

x ∈A any member of the alphabet. Nucleic acids are further
grouped according to their ligand properties as

(a) purine {A, G}, pyrimidine {C, T},
(b) amino {A, C}, keto {G, T},
(c) weak hydrogen bonds {A, T}, strong hydrogen bond

{G, C}.
A DNA sequence is the finite symbolic sequence

S = N×A (2)

so that

S
def= {xh}h=1,...,N , N <∞ (3)

with

xh
def= (h, x) = x(h), (h = 1, 2, . . . ,N ; x ∈A) (4)

being the nucleotide x at the position h.

In general we can define an �-length alphabet as follows:
let the �-length DNA word be defined by the �-combination
of the 4 nucleotides (1). For each fixed length � there are
4� words, however not all of them can be considered, from
biological point of view, as independent instances (see, e.g.,
Table 1), for this we define the �-length alphabet as the set of
�-length independent words:

A�
def= {

a1, a2, . . . , aM�

}
, M�

def= |A�| ≤ 4� (5)

with | · · · | cardinality of the set and

�
def= length

(
aj
)

,
(
j = 1, . . . ,M�

)
. (6)

For instance with � = 1, the alphabet is A1 = A =
{A, C, G, T}, with � = 3 the alphabet is given by the 20 amino
acids

A3={M, E, Q, D, R, T, N, H, V, G, L, S, P, F, I, C, A, K, Y, W}
(7)
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Figure 7: Spiral distribution of the first 3752 nucleotides for Blattabacterium sp.

each amino acid being represented by a 3-length word of
Table 1.

Let SN be an N-length ordered sequence of nucleotides
{A, C, G, T} and A� the chosen alphabet, a DNA sequence of
words is the finite symbolic sequence

D�(SN ) = N×A� (8)

so that

D�(SN )
def= {xh}h=1,...,N , (x ∈A� ; N <∞) (9)

with

xh
def= (h, x), (h = 1, 2, . . . ,N ; x ∈A�) (10)

being the word x at the position h.

3.1. Indicator Matrix. The 2D indicator function, based on
the 1D definition given in [25], is the map

u : S × S −→ {0, 1} (11)

such that

u(xh, xk)
def=
⎧
⎨

⎩

1 if xh = xk,

0 if xh /= xk,
(xh ∈ S, xk ∈ S), (12)

with

u(xh, xk) = u(xk, xh), u(xh, xh) = 1 (13)

and, where for short, we have assumed

S
def= D1(SN ). (14)

According to (12), the indicator of an N-length sequence can
be easily represented by theN×N sparse symmetric matrix of
binary values {0, 1} which results from the indicator matrix
(see also [3–5])

uhk
def= u(xh, xk), (xh ∈ S, xk ∈ S; h, k = 1, . . . ,N),

(15)
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Figure 8: Spiral distribution of the first 3752 nucleotides for Aeropyrum pernix K1.

being, explicitly

...
...

...
...

...
...

...
...

...
...

... . .
.

G 0 1 0 0 0 0 0 0 0 1 · · ·
C 0 0 0 1 0 0 0 0 1 0 · · ·
A 1 0 0 0 1 0 1 1 0 0 · · ·
A 1 0 0 0 1 0 1 1 0 0 · · ·
T 0 0 1 0 0 1 0 0 0 0 · · ·
A 0 0 0 0 1 0 0 1 0 0 · · ·
C 0 0 0 1 0 0 0 0 1 0 · · ·
T 0 0 1 0 0 1 0 0 0 0 · · ·
G 0 1 0 0 0 0 0 0 0 1 · · ·
A 1 0 0 0 1 0 0 1 0 0 · · ·
uhk A G T C A T A A C G · · ·

(16)

This squared matrix can be plotted in 2 dimensions by
putting a black dot where uhk = 1 and white spot when uhk =
0 (Figure 1) thus giving rise to the two-dimensional dot plot,
which is a special case of the recurrence plot [26].

A simple generalization of this matrix can be considered
for the alphabets A� , as follows. By choosing the 3 alphabet
of amino acids, the 2D indicator function is the map

u : D3(SN )×D3(SN ) −→ {0, 1} (17)

such that

u(xh, xk)
def=
⎧
⎨

⎩

1 if xh = xk,

0 if xh /= xk,
(xh ∈D3(SN ), xk ∈D3(SN )),

(18)

with

u(xh, xk) = u(xk, xh), u(xh, xh) = 1. (19)
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Table 1: Correspondence codons to amino acids.

Amino acid Codon

1 M Methionine ATG

2 E Glutamic acid GAA, GAG

3 Q Glutamine CAA, CAG

4 D Aspartic acid GAT, GAC

5 R Arginine CGT, CGC, CGA, CGG, AGA, AGG

6 T Threonine ACT, ACC, ACA, ACG

7 N Asparagine AAT, AAC

8 H Histidine CAT, CAC

9 V Valine GTT, GTC, GTA, GTG

10 G Glycine GGT, GGC, GGA, GGG

11 L Leucine TTA, TTG, CTT, CTC, CTA, CTG

12 S Serine TCT, TCC, TCA, TCG, AGT, AGC

13 P Proline CCT, CCC, CCA, CCG

14 F Phenylalanine TTT, TTC

15 I Isoleucine ATT, ATC, ATA

16 C Cysteine TGT, TGC

17 A Alanine GCT, GCC, GCA, GCG

18 K Lysine AAA, AAG

19 Y Thyroxine TAT, TAC

20 W Tryptophan TGG

Stop TAA, TAG, TGA

According to (12), the indicator, on the 3-alphabet of
amino acids of an N-length sequence can be easily repre-
sented by theN×N sparse symmetric matrix of binary values
{0, 1}:

uhk
def= u(xh, xk),

(xh ∈D3(SN ), xk ∈D3(SN ); h, k = 1, . . . ,N),
(20)

being, explicitly

...
...

...
...

...
...
...

...
...

...
... . .

.

M 1 0 0 0 0 0 0 0 0 1 · · ·
Q 0 0 0 0 0 0 0 0 1 0 · · ·
R 0 0 1 1 0 0 0 1 0 0 · · ·
T 0 0 0 0 0 1 1 0 0 0 · · ·
T 0 0 0 0 0 1 1 0 0 0 · · ·
E 0 0 0 0 1 0 0 1 0 0 · · ·
R 0 0 1 1 0 0 0 0 0 0 · · ·
R 0 0 1 1 0 0 0 1 0 0 · · ·
K 0 1 0 0 0 0 0 0 0 0 · · ·
M 1 0 0 0 0 0 0 0 0 1 · · ·
uhk M K R R E T T R Q M · · ·

(21)

With the graphical representation of this matrix we can also
show the correlation of amino acids.

3.2. Test Sequences. In the following, in order to single out
the main features of biological sequences, we will compare
the DNA sequence with some test sequences.

(1) Pseudorandom N-length sequence of nucleotides is
the sequence {Ri}�i=1,...,N where ri is a symbol ran-
domly chosen in the alphabet A� , like for example,
(� = 1):

{A, C, A, G, T, A, T, G, G, A, T, T, A, C, C, G, . . .}. (22)

(2) Pseudoperiodic N-sequence of nucleotides with
period π is the direct sum of a given π-length
pseudorandom sequence, such thatN = kπ, (k ∈ N)
and Ri =Ri+π , for example,

{A, C, A, G, A, C, A, G, A, C, A, G, A, C, A, G, . . .},
(π = 4).

(23)

When π = 1 we have a pseudorandom sequence.

If we plot the indicator matrix of some bacteria and
compare it with a pseudorandom and periodic sequence, we
can see that (Figure 1)

(1) the main diagonal is a symmetry axis for the plot;

(2) there are some motifs which are repeated at different
scales like in a fractal;

(3) periodicity is detected by parallel lines to the main
diagonal (Figure 1(a2));
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Figure 9: Spiral distribution of the first 3752 nucleotides for Acidianus hospitalis W1.

(4) empty spaces are more distributed than filled spaces,
in the sense that the matrix uhk is a sparse matrix
(having more 0’s than 1’s);

(5) it seems that there are some square-like islands where
black spots are more concentrated; these islands show
the persistence of a nucleotide (Figures 1(a2) and
1(b1));

(6) the dot plot of archaea is very similar to the dot plot
of a random sequence (Figures 1(a1) and 1(h3)).

It can be noticed that DNA sequences of a living organ-
ism resemble (Figure 1) random sequences, with some short
range influence, built on the same alphabet. This has been
taken as an axiom of nucleotides distribution, so that DNA
sequences are often considered as Markov chain [27]. How-
ever, there are some hidden rules in combining the nucle-
otides and these rules lead, during the evolution, to a steady
distribution. In fact, the more primitive the sequence is, the
more randomly distributed the nucleotides are. It seems that

as a consequence of the evolution, nucleotides move from
a disordered aggregation toward a more organized stru–
cture, shown by the growing islands in the dot plot. The bio–
logical evolution is such that the challenge for the self-
organization might follow from random permutations of
a primitive disordered sequence so that the organization,
that is, the complexity, is only the result of many arbitrary
permutations of randomness. During the challenge for com-
plexity, DNA sequence becomes “less random” and it loses
some kind of energy.

From the graphical representation of the indicator matrix
for bacteria and amino acids we can see a more sparse matrix,
but with some typical plots (Figure 2).

3.3. Spiral Plot. In this section we consider a 2D distribution
of nucleotides, following the idea given by Ulam for the
distribution of primes, along an Ulam-like spiral [28]. In
order to find some patterns in their distribution, nucleotides
are arranged along a rectangular spiral. This is equivalent to



Computational and Mathematical Methods in Medicine 11

A C

G T

Figure 10: Spiral distribution of the first 3752 nucleotides for Acidilobus saccharovorans 345-15.

mapping the 1D sequence of integers into a 2D sequence as
follows:

X1 1 {0, 0}
X2 2 {1, 0}
X3 3 {1, 1}
X4 4 {0, 1}
X5 5 {−1, 1}
X6 6 {−1, 0}
X7 7 {−1,−1}
X8 8 {0,−1}
X9 9 {1,−1}
X10 10 {2,−1}
X11 11 {2, 0}
...

...
...

(24)

For instance the sequence

{A, T, G, G, A, A, G, A, T, A, A, G, . . .} (25)

distributed along the spiral looks like Figure 3.
For each nucleotide we can draw a spiral containing the

distribution of only one acid nucleic. To each organism there
correspond four plots, for A, C, G, T, respectively.

Let us first note that on a random sequence (Figure 4) the
four distribution are equivalent.

By comparing the spirals of bacteria, random and archaea
(Figures 4, 5, 6, 7, 8, 9, 10) we can see that there is a
different distribution of each nucleotide. However the more
evolved organism tends to have a higher percentage of weak
hydrogen bonds (Figures 5, 6 and 7), so that we can assume
the following.

Conjecture 1. During the evolution, the distribution of nuc-
leotides changes in a such way that strong hydrogen bonds tend
to become weak.
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Figure 11: Walks on the first 200 nucleotides: (b1) Mycoplasma putrefaciens, (b2) Mortierella verticillata, (b3) Blattabacterium, (h1)
Aeropyrum pernix, (h2) Acidianus hospitalis, and (h3) Acidilobus saccharovorans.

It should be noticed that along these spirals, there is a
one-to-one map λ between N and the points of the spiral
(with integer coordinates) in�2

λ : N �−→ γ ⊂ �×� (26)

so that

λ(n) = (a, b),
(
n ∈ N; (a, b) ∈ γ ⊂ �×�; a ∈ Z, b ∈ Z),

λ−1(a, b) = n.
(27)

This bijective map can be considered also between N and the
complex space C so that each natural number corresponds to
a complex number (with integer coefficients)

λ(n) = z
def= a + ib, (n ∈ N; a, b ∈ Z; z ∈ C). (28)

Since these spirals seem to fill in a finite region of the
plane we can evaluate the complexity of each curve by typical
fractal measures.

4. Parameters of Complexity

In this section we define some parameters, based on frequen-
cy distribution, which can measure the complexity of a DNA
by computing the complexity of its representation in the
complex plane (for a more detailed analysis see [29] and ref-
erences therein).

Let SN be an N-length-ordered sequence of nucleotides,
and

px(h), x ∈A1 = {A, C, G, T} (29)

be the probability to find the nucleotide x at the position
h, 1 ≤ h ≤ N . According to (12) we define

ah
def=

h∑

j=1

uAj , ch
def=

h∑

j=1

uC j ,

gh
def=

h∑

j=1

uGj , th
def=

h∑

j=1

uT j ,

(1 ≤ h ≤ N)

(30)
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Figure 12: Absolute value of walks on the first 100 amino acids: (b1) Mycoplasma putrefaciens, (b2) Mortierella verticillata, (b3)
Blattabacterium, (h1) Aeropyrum pernix, (h2) Acidianus hospitalis, (h3) Acidilobus saccharovorans.

as the number of nucleotides in the h-length segment of SN ,
so that

ah + ch + gh + th = h. (31)

The corresponding frequencies are

vx(h)
def= 1

h

h∑

j=1

ux j , x ∈ A1, (1 ≤ h ≤ N), (32)

so that

vA(h) = ah
h

, vC(h) = ch
h

,

vG(h) = gh
h

, vT(h) = th
h
.

(33)

We can assume that for large sequences

px(h) ∼= vx(h). (34)

4.1. Randomness. Since for a random sequence the frequen-
cies of nucleotides coincide for large n,

vA(n) ∼= vC(n) ∼= vG(n) ∼= vT(n) (35)

Table 2: Randomness.

Mycoplasma
putrefaciens

0.696

Mortierella
verticillata

0.779

Blattabacterium 0.743

Aeropyrum pernix 0.982

Acidianus hospitalis 0.828

Acidilobus
saccharouorans

0.934

pseudorandom 0.999

we can define as randomness index the following:

R
def= 1− σ(vA(n), vC(n), vG(n), vT(n)) (36)

with σ being the variance, so that R = 1 for random
sequence and R = 0 for a nonrandom sequence. Over the
first 10000 nucleotides we have the randomness value of
Table 2.
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0,β∗1
0); (d) (β1

1,β∗1
1).

However, if we compute the randomness index over the
frequencies of amino acids in the A3 alphabet then we can
observe a different distribution of values. Over the first 30000
nucleotides corresponding to 10000 amino acids, we have the
randomness value of Table 3.

So that we can comment that the arising complexity of
the words and alphabets shows a different randomness in
each alphabet.

4.2. Complexity. As a simple measure of complexity [30–32],
for an n-length sequence, the following has been proposed
[33]:

K = 1
n

log
n!

an!cn!gn!tn!
. (37)

In Table 4 the complexity of the first 100-length segment
of the DNA sequences is computed. It is interesting to notice

Table 3: Randomness of amino acids distribution.

Mycoplasma
putrefaciens

0.946

Mortierella
verticillata

0.938

Blattabacterium 0.953

Aeropyrum
pernix

0.962

Acidianus
hospitalis

0.916

Acidilobus
saccharouorans

0.950

pseudorandom 0.963

the more similarities between the archaea Acidilobus with
the pseudorandom sequence than with the pseudoperiodic.



Computational and Mathematical Methods in Medicine 15

100 200

50

100 200

50

50

(a)

1

1

1

1

1

1

−1 −1
−1

−1

−1−1

(b)

(c)

−1

(d)

Figure 14: Cluster analysis of the 4th short Haar wavelet transform of the complex representation for a DNA walk on the first 2000
nucleotides of (h1) Aeropyrum, (h2) Acidianus, (h3) Acidilobus saccharovorans in the planes: (a) (α,α∗); (b) (β0

0,β∗0
0); (c) (β1

0,β∗1
0); (d)

(β1
1,β∗1

1).

Table 4: Complexity.

Mycoplasma
putrefaciens

1.151

Mortierella
verticillata

1.285

Blattabacterium 1.197

Aeropyrum
pernix

1.212

Acidianus
hospitalis

1.231

Acidilobus
saccharouorans

1.296

Pseudorandom 1.295

Nucleotide distribution in primitive biosequences is more
likely random than pseudodeterministic. Moreover, the
evolution reduces the complexity of the sequence.

4.3. Fractal Dimension. The fractal dimension is computed
on the dot plot, by the box counting algorithm [34, 35], as

the average of the number p(n) of 1’s in the randomly taken
n×nminors of theN×N indicator matrix uhk or equivalently
the number p(n) of black dots in the randomly taken n × n
squares over the dot plot

D = 1
2N

N∑

n=2

log p(n)
logn

. (38)

The explicit computation enables us to compare the
fractal dimension on the first 100-length segments of DNA
chains, with an approximation up to 10−3 (see Table 5).

If we compare the fractal dimensions of the bacteria with
pseudorandom and pseudoperiodic we can see that the frac-
tal dimension of nucleotide distribution ranges, for all var-
iants, in the interval [1.28–1.30]. As expected, the more “ran-
dom” sequences have higher fractal dimension.

4.4. Entropy. Another fundamental parameter, related to the
information content of a sequence which measures the het-
erogeneity of data, is the information entropy (or Shannon
entropy) [36–42]. Based on the axiom that less information
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Figure 15: Cluster analysis of the 8th (left), 16th (middle column), 32th (right) short Haar wavelet transform of the DNA walk on the first
1000 nucleotides of h1 (Aeropyrum) in the planes: (a) (α,α∗); (b) (β0

0,β∗0
0); (c) (β1

0,β∗1
0); (d) (β1

1,β∗1
1).

Table 5: Fractal dimensions.

Mycoplasma
putrefaciens

1.283

Mortierella
verticillata

1.296

Blattabacterium 1.287

Aeropyrum
pernix

1.288

Acidianus
hospitalis

1.290

Acidilobus
saccharouorans

1.297

pseudorandom 1.298

pseudoperiodic 1.285

implies a larger uncertainty and vice versa that more
information leads us to a more deterministic model, the
entropy concept has been recently offering some interesting

interpretations about uncertainty in DNA. In fact, DNA
as any other signal has been considered as a sequence of
symbols carrying chemical-functional information.

The normalized Shannon entropy [39, 40, 42] is defined,
over the alphabet A� , as

H(n) = − 1
log �

∑

x∈A�

px(n)×
⎧
⎨

⎩

log px(n) if px(n) /= 0,

0 if px(n) = 0,
(39)

where px(n) should be computed for large sequences.
According to (32), (34), we will approximate its value with

px(n) ∼= 1
n

n∑

i=1

uxi, (x ∈A� , 1 ≤ n ≤ N). (40)

However, the entropy is a parameter very similar to the
complexity. In fact, it can be easily seen that (for the proof see
[29]) the entropy H and the measure of complexity K differ
for a factor. There follows that the entropy does not give any
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Table 6: Shannon entropy.

Mycoplasma
putrefaciens

0.877

Mortierella
verticillata

0.976

Blattabacterium 0.911

Aeropyrum pernix 0.922

Acidianus hospitalis 0.937

Acidilobus
saccharovorans

0.984

pseudorandom 0.984

new information comparing with the previous parameters.
As expected also the table of entropies classifies bacteria and
archaea in the same way (Table 6).

5. Complex Root Representation of DNA Words

The complex (digital) representation of a DNA sequence of
words is the map of the symbolic sequence of words into a
set of complex numbers and it is defined as

D�(SN )
ρ−→ C (41)

such that for each xh ∈D�(SN ) it is ρ(xh) ∈ C.
The complex root representation of the sequence SN is

the sequence D�(SN ) of complex numbers {yh}h=1,...,N de-
fined as

yh = ρ(xh)
def= e2πi( j−1)/|A�|,

(
j = 1, . . . , |A�|, h = 1, . . . ,N

)

(42)

with i = √−1 being the imaginary unit. There follows that,
independently on the alphabet, it is

∣∣yh
∣∣ =

∣
∣
∣e2πi( j−1)/|A�|

∣
∣
∣ = 1, (∀�; h = 1, . . . ,N) (43)

being all complex roots, of the unit, located on the unit circle
of the complex plane C1.

For instance, with A1 = {A, C, G, T}, the cardinality of
the alphabet is |A1| = 4 and

ρ(A) = e0/4 = 1, j = 1,

ρ(C) = eπi/2 = i, j = 2,

ρ(G) = eπi = −1, j = 3,

ρ(T) = eπi3/2 = −i, j = 4.

(44)

Analogously, with A3 = {M,E, . . . ,W} it is |A3| = 20
and the 20 complex roots of unit

ρ(xn) = e2πi(n−1)/20, (n = 1, . . . , 20; xn ∈A3) (45)

so that explicitly is

ρ(M) = e2πi0/20 = 1, j = 1,

ρ(E) = eπi/10 = 1
4

[√

2
(

5 +
√

5
)

+ i
(√

5− 1
)]

, j = 2,

ρ(Q) = eπi/5 = 1
4

[

1 +
√

5 + i

√

2
(

5−√5
)
]

, j = 3,

...
...

ρ(W) = eπi19/10 = 1
4

[√

2
(

5 +
√

5
)
− i
(√

5− 1
)]

, j = 20.

(46)

Therefore the complex representation of a DNA sequence is
a sequence of complex numbers

yh = ξh + ηhi, ξh = �
(
yh
)
, ηh = �

(
yh
)

(47)

with yh given by (42).
An n-length pseudorandom (white noise) complex se-

quence belonging to the unit circle can be defined directly
by using some random exponents

Rn
def= (−1)rn isn , |Rn| = 1, (48)

with rn, sn being random values in the set {0,N}.

5.1. Random Walks. Random walk on the complex sequence
YN is defined as the series ZN = {zn}n=1,...,N

zn
def=

∑

k=1,...,n

yk, n = 1, . . . ,N (49)

which is the cumulative sum
⎧
⎨

⎩y1, y1 + y2, . . . ,
n∑

s=1

ys . . . ,
N∑

s=1

ys

⎫
⎬

⎭. (50)

When yk = ρ(xk) with xk ∈A� and Xk ∈ SN we will properly
call these walks as DNA walk. When the yk are randomly
generated we will call them random walks.

By remembering the definition of frequencies, DNA walk
is the complex value signal {Zn}n=0,...,N−1 with

zn = (�[zn],�[zn]) = (an − gn
)

+ (tn − cn)i, zn ∈ C1,
(51)

where the coefficients an, gn, tn, cn given by (12) fulfill the
condition (31).

If we compare the DNA walks (Figure 11) some primitive
archaea such as h3 are very similar to a random walk
(Figure 13). In particular archaea seem to grow less than
other bacteria (with the exception of b2).

It is interesting also to notice that the random walks on
amino acids (Figure 12) show that more evolved organisms
have some “periodic” behavior, while the absolute value of
walks on archaea is growing fast.



18 Computational and Mathematical Methods in Medicine

100

50 50 50

(a)

1

1

1

1

1

1

−1−1
−1−1 −1

−1

(b)

1

1

1

1

1
1

−1−1−1−1

−1

−1

(c)

1

1 1

1

1

1

−1

−1
−1
−1 −1−1

(d)

Figure 16: Cluster analysis of the 8th (left), 16th (middle column), 32th (right) short Haar wavelet transform of the DNA walk on the first
1000 nucleotides of h2 (Acidianus) in the planes: (a) (α,α∗); (b) (β0

0,β∗0
0); (c) (β1

0,β∗1
0); (d) (β1

1,β∗1
1).

6. Wavelet Analysis

Wavelet analysis is a powerful method extensively applied
to the analysis of biological signals [12, 43–45] aiming to
single out the most significant parameters of complexity and
heterogeneity in a time series and, in particular, in a DNA
sequence. This method is based on the analysis of wavelet
coefficients which are obtained by the wavelet transform.

We will consider in the following the Haar wavelet basis
(see, e.g., [3, 4, 29]) made by scaling functions:

ϕnk(x)
def= 2n/2ϕ(2nx − k), (0 ≤ n, 0 ≤ k ≤ 2n − 1),

ϕ(2nx − k) =
⎧
⎪⎨

⎪⎩

1, x ∈ Ωn
k , Ωn

k
def=
[
k

2n
,
k + 1

2n

)
,

0, x /∈ Ωn
k ,

(52)

and the Haar wavelets:

ψnk (x)
def= 2n/2ψ(2nx − k),

∥
∥∥ψnk (x)

∥
∥∥
L2
= 1,

ψ(2nx − k)
def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, x ∈
[
k

2n
,
k + 1/2

2n

)
,

1, x ∈
[
k + 1/2

2n
,
k + 1

2n

)
,

(0 ≤ n, 0 ≤ k ≤ 2n − 1),

0, elsewhere.

(53)

The discrete Haar wavelet transform is the N × N matrix
WN : KN ⊂ �2 → KN ⊂ �2 which maps the vector

Y ≡ {Yi},
(
i = 0, . . . , 2M − 1, 2M = N <∞, M ∈ N

)

(54)
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Figure 17: Cluster analysis of the 8th (left), 16th (middle column), 32th (right) short Haar wavelet transform of the DNA walk on the first
1000 nucleotides of h3 (Acidilobus saccharovorans) in the planes: (a) (α,α∗); (b) (β0

0,β∗0
0); (c) (β1

0,β∗1
0); (d) (β1

1,β∗1
1).

into the vector of wavelet coefficients βN = {α,βnk}:
WNY = βN ,

βN
def=
{
α,β0

0, . . . ,βM−1
2M−1−1

}
,

Y
def= {Y0,Y1, . . . ,YN−1},

(
2M = N

)
. (55)

The matrix WN can be easily computed by some recursive
product [3, 4, 13, 29, 46] so that withN = 4, M = 2, we have
[3, 4, 29]

W4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

1
2

1
2

1
2

−1
2

−1
2

1
2

1
2

− 1√
2

1√
2

0 0

0 0 − 1√
2

1√
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (56)

From (55) with M = 2, N = 4, by explicit computation,
we have

α = 1
4

(Y0 + Y1 + Y2 + Y3) (57)

and [1–3, 14]

β0
0 =

1
2

(Y2 − Y0 + Y3 − Y1),

β1
0 =

1√
2

(Y0 − Y1),

β1
1 =

1√
2

(Y3 − Y2). (58)

Thus the first wavelet coefficient α represents the average
value of the sequence and the other coefficients β the finite
differences. The wavelet coefficients β’s, also called details co-
efficients, are strictly connected with the first-order proper-
ties of the discrete time series.

In the following we will consider the short wavelet trans-
form which consists in the subdivision of the DNA sequence
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into 4-length segments and apply the wavelet transform to
each segment. As a result, from the N = 2M-length complex
vector Y, which is subdivided into 2M−2 segments, the 4-
parameter short Haar wavelet transform gives the cluster of
points

(W p�(Ys), W p�(Ys)), s = 0, . . . , σ = N

p
, p = 4

(59)

in the 8-dimensional space R4 ×R4, that is,

(α,α∗),
(
β0

0,β∗0
0

)
, . . . ,

(
β
p−1
2p−1−1,β∗ p−1

2p−1−1

)
, p = 4.

(60)

This algorithm enables us to construct clusters of wavelet
coefficients and to study the correlation between the real and
imaginary coefficients of the DNA representation and DNA
walk. It has been observed [3, 4, 29] that some symmetry
arises from the plots of wavelet coefficients of DNA walks.

6.1. Cluster Analysis of the Wavelet Coefficients of the Complex
DNA Representation. Let us first compute the clusters of wa-
velet coefficients for the random sequence (48). As can be
seen the wavelet coefficients both for the sequence and for its
series range in some discrete set of values (see Figure 13).

The cluster algorithm applied to the complex representa-
tion sequence shows that the values of the wavelet coefficients
belong to some discrete finite sets (Figure 14).

It should be noticed that this symmetry on detail co-
efficients is lost for wavelet transform on longer segments
(Figures 15, 16 and 17).

There follows that DNA sequences have to be considered
as Markov chain with short range dependence; in other
words any acid nucleic is attached to the chain on the base
of a correlation of the previous acid nucleic. In other words,
if we look for a dependence rule on the DNA nucleotides this
dependence might be summarized by a function as

xn+1 = f (xn), (n = 1, . . . ,N). (61)

7. Conclusions

In this paper archaea DNAs have been studied by focussing
on the main parameters for complexity. It has been shown
that more or less the main indices for complexity and het-
erogeneity, such as entropy, fractal dimension, and complex-
ity do not differ too much when we have to classify the com-
plexity of the sequence. However, some DNA sequences look
more close to random sequences than others, thus sug-
gesting that the evolution involves a process of complexity
reduction: the more evolved a sequence is, the more far
from a random distribution it is. In any case seems to be
apparently impossible to distinguish between a random
sequence and a DNA chain. By using the short wavelet trans-
form instead we have shown that on short range (4-nu-
cleotides) a DNA sequence shows some symmetries that
slowly disappear by increasing the length of the analysed
segment. Moreover, more evolved organisms have a more
symmetrical distribution of wavelet coefficients.
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