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ABSTRACT
We present the evaluation of two well-known, low-cost consumer-grade EEG devices:
the Emotiv EPOC and the Neurosky MindWave. Problems with using the consumer-
grade EEG devices (BCI illiteracy, poor technical characteristics, and adverse EEG
artefacts) are discussed. The experimental evaluation of the devices, performed with
10 subjects asked to perform concentration/relaxation and blinking recognition tasks,
is given. The results of statistical analysis show that both devices exhibit high variability
andnon-normality of attention andmeditation data, whichmakes each of themdifficult
to use as an input to control tasks. BCI illiteracy may be a significant problem, as well
as setting up of the proper environment of the experiment. The results of blinking
recognition show that using the Neurosky device means recognition accuracy is less
than 50%, while the Emotiv device has achieved a recognition accuracy of more than
75%; for tasks that require concentration and relaxation of subjects, the Emotiv EPOC
device has performed better (as measured by the recognition accuracy) by ∼9%.
Therefore, the Emotiv EPOC device may be more suitable for control tasks using the
attention/meditation level or eye blinking than the Neurosky MindWave device.

Subjects Neurology, Human-Computer Interaction
Keywords BCI, Consumer-grade EEG, Usability

INTRODUCTION
Motivation
Human–computer interaction (HCI) devices allow humans to interface with computers for
the purposes of data entry, control or communication.Most of the efforts over the years have
been dedicated to the design of user-friendly, efficient and ergonomic systems to produce
a faster and more comfortable means of communication. Natural User Interfaces (NUI)
(Jeong et al., 2004) based on voice recognition, gesture recognition, physical movement and
other technologies have received enormous research attention over the years and successful
examples of these technologies are being produced commercially.

Recently, a radical and novel approach of computer interfaces has received a lot of
scientific interest. Since the first experiments of electroencephalography on humans in
1929, the electroencephalogram (EEG) of the human brain has been used mainly to
evaluate neurological disorders in the clinical environment and to investigate functions
of the brain in the research laboratory environment. An idea that brain activity could be
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used as a communication channel has gradually emerged. An electroencephalogram (EEG)
demonstrates direct correlations with user intentions (Dong & Lee, 2012), thereby enabling
a direct Brain-Computer Interface (BCI) communication.

BCI is a communication channel that enables users to control devices and applications
without the use of muscles. BCI research has been successfully used not only for helping
the disabled, but also as being an additional data input channel for healthy people to be
used as an extra channel in game control, augmented reality applications, household device
control, fatigue and stress monitoring and other applications. BCI design represents a new
frontier in science and technology that requires multidisciplinary skills from fields such as
neuroscience, engineering, computer science, psychology and clinical rehabilitation. The
ultimate goal of BCI research is to create a system that responds to users’ modulation of
his/her brain signals (Hammon & De Sa, 2007) and gives feedback to the user.

Despite recent developments, there are numerous obstacles to building a usable and
effective BCI system. Implementing BCI requires high computational capacity to analyze
brain signals in detail and in real-time, and such equipment was very expensive. Current
consumer-grade BCI systems are inaccurate and have a low transfer rate. This means that
the user may need a long period of time in order to send commands to the device that is
being controlled.

Multi-electrode, medical grade EEG systems have long been used in hospitals and
laboratories. But the recent availability of inexpensive, single-channel, dry-electrode EEG
devices makes it feasible to take this technology outside of the laboratory into informal
real-world environments such as schools and homes. The benefits of such devices are
affordability and ease of use. Considering the current availability of many different
commercial consumer-grade EEG devices, there is a need in exploring the feasibility
of using low-cost EEG devices for monitoring individuals’ EEG signals in their natural
environment.While a systemwith a larger number of electrode/sensors would be providing
more and better quality data than its counterpart, the users of the domestic applications
of the BCI technologies such as neurofeedback games (Thomas, Vinod & Guan, 2013; Yisi,
Sourina & Hou, 2014) favor lightweight easy-to-use EEG headset with a small number of
sensors. Therefore, evaluating the applicability and feasibility such devices for non-medical
applications is important.

The aim of this article is to analyze the suitability of using consumer-grade EEG devices
for simple control tasks using the attention/meditation levels and blinking recognition.
Here control task is understood as manipulation of an external object (physical or virtual)
using EEG of a subject as an input. The importance of research is motivated by an increased
number of low cost customer-grade EEG devices appearing both on the market as well as
increasingly cited in the BCI and EEG research domain papers.

Attention and meditation states
There has been a great deal of research works focusing on detecting the attention
and relaxation (meditation) states of mind from the characteristics of EEG (Aftanas &
Golocheikine, 2001; Jacobs & Friedman, 2004; Lin & John, 2006; Hamadicharef et al., 2009;
Rebolledo-Mendez et al., 2009; Jiang et al., 2011; Li et al., 2011; Liu, Chiang & Chu, 2013;
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Patsis et al., 2013; Vyšata et al., 2014; Kaur & Singh, 2015). The detection of the attention
and meditation is important in many fields, including clinical studies of stress reduction,
sleep deprivation, fatigue, educational studies of learner attention and game studies of
player concentration and engagement.

Relaxation is an integrated body reaction that reflects the voluntary resting state of both
the body and themind (Teplan, Krakovská & Špajdel, 2014); however, it is difficult to define
in terms of specific physiological parameters. According to Travis (2001), five categories
of physiological variables have the potential to discern between the levels of relaxation,
including breath and heart rates, as well as skin conductance. Similar parameters for the
characterization of stress levels were reported by Vavrinský (2005). However, there is no
consistent evidence regarding the characterization of relaxation in terms of the specific
EEG features. The increased power and acute changes of the alpha and theta activity (Jacobs
& Friedman, 2004) and frontal alpha coherence (Travis, 2001), are usually considered to
be neurophysiological indicators of a state of rest. Alpha band is predominant in a relaxed
adult, while theta band is prominent in light sleep. The ratio of signal power in alpha
and theta bands is also used to assess relaxation. One research indicates that the sum of
alpha and theta, and the sum of alpha, beta and theta are good indices for measurement of
neurological relaxation (Lin & John, 2006).

Relaxation can be difficult to reach in real-world environment by modern people due to
an increased tempo of life, stress, surrounding noise, etc. Various types of psychosomatic
techniques such as meditation are known to induce a relaxed state (Aftanas & Golocheikine,
2001). But neuroelectrophysiology of the meditation-induced mental states is still an open
question (Kaur & Singh, 2015). Vyšata et al. (2014) verified the existence of statistically
significant differences between certain features of EEG data (such as reduction in
permutation entropy) before meditation and during meditation.

Attention, on the other hand, has been defined as the ability to focus our cognitive
resources on one relevant aspect of the environment while ignoring other irrelevant aspects
(Riccio et al., 2013). Many BCI-based neurofeedback games (Wang, Sourina & Nguyen,
2010; Jiang et al., 2011; Pires et al., 2011) employ attention-related EEG feature as the
control parameter, as attention is a key factor of human cognition. However, automatic
determination of subjects’ attention state is challenging because attention involves complex
human cognitive functions. Previous research (Liang et al., 2005;Hamadicharef et al., 2009;
Li et al., 2011) has demonstrated evidence that EEG signals (esp. the beta band) contain
considerable information about attention, indicating the possibility of recognizing a
subjects’ attention level by studying the EEG data.

Consumer-grade EEG devices
Several types of low-cost EEG devices exist commercially in the market today. Further, we
consider two consumer-grade EEG systems: Emotiv EPOC (https://emotiv.com/epoc.php)
and Neurosky MindWave (http://neurosky.com/)

According to Stamps & Hamam (2010), the most usable low-cost EEG device is the
Emotiv EPOC headset. The Emotiv EPOC is a lightweight inexpensive EEG device. The
EPOC was not originally intended for research; however, it is becoming increasingly
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popular due its flexibility and wide range of suites which it offers. The EPOC device comes
with a series of software suites that can detect user’s emotions, facial expressions and control
objects in a virtual world. The Emotiv EPOC device has 14 electrodes and two reference
electrodes, placed in the 10–10 international system of EEG electrode placement (see Fig. 1)
(Jurcak, Tsuzuki & Dan, 2007). The headset is designed as a video game accessory where
developers are interested in using the device as a controller. We used the Research Edition,
which provides both the interface for programming with the headset and access to raw EEG
data. The internal sampling rate of the device is 2048 Hz. The data is then downsampled
to 128 Hz before becoming available to the system for capturing the EEG signals. The
captured data contains values for each of the 14 electrodes on the EPOC headset. Kos’myna
& Tarpin-Bernard (2013) examined multimodal combinations of BCI and eye tracking in
the context of a simple puzzle game involving tile selection and rotations using Emotiv
EPOC. The results of the experiment performed on 30 subjects show that when using BCIs,
Steady State Visually Evoked Potentials (SSVEP) manages to lead to a performance using
Linear discriminant analysis (LDA) classifier (the average classification accuracy for SSVEP
was 79.8% with a standard deviation of 1.3%) very close to pure eye tracking, which is
commendable but still is perceived as a not too natural way of performing a rotation. As for
the Motor Imagery, the performance (61.3% for the classification accuracy with a standard
deviation of 4.3%) greatly suffered from the low classification accuracy that led to many
errors and much slower interactions. Azcarraga & Suarez (2001) suggested that the Emotiv
EPOC needs a small amount of time to normalize a user’s data. In their study they told
the subjects to relax for a period of three minutes in order for the EEG to allow to create
a baseline for EEG data. Duvinage et al. (2013) have demonstrated that the performance of
EPOC is above random and that EPOC could be used for non-critical uses such as games
for healthy people or communication for disabled users. In Liu et al. (2012), a g.tec device
was compared with EPOC showing worse (around 10%) results for the EPOC. Chumerin et
al. (2013) used Emotiv for a game control in a real-world setting achieving mean accuracy
of 80.37%. Lin, Wang & Jung (2014) used Emotiv to perform online SSVEP decoding in
human walking. Haapalainen et al. (2010) achieved an average classification accuracy of
60.2% across the various cognitive experiments they conducted using data from various
bio-sensors, including the attention signal. Despite low accuracy, the authors claim the
consumer-level EEG devices can be deployable to users in natural environments and in
real-world BCI systems.

According to Stamps & Hamam (2010), Neurosky MindWave is at the lower end of
usability of low-cost consumer EEG devices. It has only one electrode (placed at Fp1) and a
reference electrode near the ear, placed in the 10–20 system of EEG electrode placement. As
with other devices it can also detect blinking. The manufacturers of Neurosky MindWave
claim that above the typical EEG device functionality it is also capable of detecting two
mind states (focused and are relaxed). The signal is processed 128 times per second. In
order to utilize a device for research purposes, a researcher must program additional
functionality via provided SDK. Patsis et al. (2013) used Neurosky MindWave to measure
the attention levels of Tetris players with respect to game difficulty. The results show that
the trend of attention value rather than actual values can be related to game difficulty,
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Figure 1 Electrode placement according to the International 10–20 (A) and 10–10 (B) system.Odd
electrode numbers are on the left hemisphere, even electrode numbers on the right hemisphere. Letters
correspond to lobes–F(rontal), T(emporal), P(arietal), and O(ccipital). C stands for Central (there is no
central lobe).

that non-linear increase in game difficulty results in a non-linear increase in attention.
Crowley et al. (2010) evaluated the NeuroSky Mindset headset for measuring the attention
and meditation levels of a subject while conducting two psychological stress-inducing tests
(Stroop’s and Tower of Hanoi) and have achieved 78% accuracy. However, they were
unable to correlate isolated moments of human error in Stroop’s test (Stroop, 1935) with a
precise change in the attention or meditation signals.

Vourvopoulos & Liarokapis (2014) tested both the Neurosky headset and the Emotiv
headset. Evaluation results indicate that robot navigation through commercial BCIs can
be effective and natural both in the real and the virtual environment. Shirazi et al. (2014)
have achieved recognition of reading vs. other tasks with 74.4% and relax vs. others with
79% on average. However, there was significant variability in the recognition results since
6 participants out of 15 had reading recognition rate less than 50%.

Badcock et al. (2015) assessed the validity of the Emotiv EPOC gaming EEG system as
an auditory event-related potential (ERP) measurement tool in children. The results were
validated by simultaneous measurement using a research-grade Neuroscan system and
the EPOC system. The study has obtained intra-class correlation of 0.67–0.74 between
mismatch negativity ERP components recorded several problems with using the EPOC
device such as the need of the shielded room to reduce EEG noise, a smaller number of
recorded acceptable epochs, instability of EPOC’s sensors resting on the scalp, and delayed
latencies for the EPOC system.

For recording the state of eyes (open or closed) Roesler et al. (2014) have compared
Neurosky MindWave and Emotiv EPOC devices. The results show that the MindWave
headset is not suitable for the classification of the eye state (classification accuracy only
43.52%) therefore it is not useful for the control tasks. However, the EPOC headset has
shown high performance for eye state prediction (mean error rate only 10.5%).

Maskeliunas et al. (2016), PeerJ, DOI 10.7717/peerj.1746 5/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.1746


BCI illiteracy
While BCI theoretically can be employed with impaired subjects as well as with healthy
subjects, there are problems that must be resolved before BCI can be adopted to the wide
use by the public. It has been noted the success in using BCI systems significantly depends
upon individual characteristics of its users. In existing BCI systems, 20–30% of users are
known to show significantly worse performance than others (Dickhaus et al., 2009). This
causes high performance variability both between and within subjects. The phenomenon
is known as BCI illiteracy (Ahn et al., 2013a; Ahn et al., 2013b). This phenomenon has
been underresearched, and a clear understanding of the BCI illiteracy or a solution to
this problem has not been reported so far. In a study done by Popescu, Blankertz & Müller
(2008) with a total of 23 untrained users. About 20% of subjects did not show strong
enough motor-related mu-rhythm variations for effective asynchronous motor-imagery
BCI, another 30% exhibit slow performance (<20 bits/min). Another study (Badcock et
al., 2015) claims to have achieved better results of using BCI with children than with adult
people leading to speculation of whether aging related effects have influence over ability to
use BCI effectively. The boundary between BCI literate and BCI illiterate also has not been
defined conclusively. Several studies (Kubler & Muller, 2007; Allison et al., 2010) defined
70% accuracy as the threshold value. However, the number is too close to the average
performance of subjects in using BCI. However, there has not been enough research done
to prove that this distinction is meaningful and other thresholds could substantially affect
results. Therefore, the problem of BCI-illiteracy needs to be understood so that BCI systems
could be useful in the future.

There is still no clear cause as to why some of healthy BCI users exhibit ‘‘illiteracy’’ with
BCI systems by being no able to generate controllable brain signals, and how it could be
overcome using the computational intelligence methods. All healthy brains have the same
structures in roughly the same places, however some cortical areas may not produce EEG
signal detectable on the scalp. For example, this may result from the folding of the brain
(Fialek, 2014). The performance of BCI may also be affected by other psychological and
cognitive factors such as stress, mood, fear of BCI technology, insufficient instructions,
unsuitability of control tasks or the flaws of BCI training protocols. Understanding this
phenomenon better and investigation of its roots are important in improving usability
of BCI systems. Predictors of BCI performance may help to avoid the frustrating and
costly procedure of trying to establish control over BCI, while also help in early illiteracy
detection (Sannelli et al., 2008). Motor imagery (MI) questionnaires can help detecting BCI
illiterate so they can be trained to overcome BCI illiteracy prior to using BCI (Vuckovic,
2010) by using specific neurofeedback training procedures as described by Vidaurre
& Blankertz (2010). Popular MI questionnaires are Hall’s questionnaire (Hall & Pongrac,
1983),Movement ImageryQuestionnaire-3 (MIQ-3) (Hall & Martin, 1997) or Kinaesthetic
and Visual Imagery Questionnaire (KVIQ) (Malouin et al., 2007). Any subject with this
phenomenon would be excluded from further analysis of data obtained from BCI.
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Technical aspects of EEG recording
Each change in the EEG recording, not directly influenced by the human brain electrical
potential, is called an artifact. Noise sources that cause this artificial activity can be classified
into sources of biological and sources of technical origin. Biological artefacts have their
roots in the human physiology. They are mostly voltage differences on the scalp caused
by extra-cerebral voltage sources, such as muscles. Technical artefacts arise from electrical
sources in the pathway from the electrodes to the EEG recording device. They can also be
caused by external electromagnetic activity or static electric fields. The recognition and
suppression of artefacts is an important problem in electroencephalography. The origin
and characteristics of different artefacts is also important in recognizing and minimizing
their influence. Some artefacts can be similar to real EEG activity. Artefacts, just like EEG
features, have to be diagnosed and interpreted.While technical artefacts increase error rates
in BCI systems, biological artefacts can cause artificial effects, i.e., eye movement can be a
major source of noise in EEG. If different eye movements are registered in two different
experiments, it is hard to recognize, if EEG activity was also different.

EEG potential differences are in the range of 10–100 µV, and therefore have to be
registered by sensitive amplifiers. It is obvious that EEG recordings are full of outside
electrical interferences—artefacts. Mostly these artefacts differ significantly from the
human brain activity and can be easily eliminated. Yet, in some cases they are very similar
or overlap brain activity. Artefacts are removed by sophisticated modern equipment, good
scalp electrode placement, optimization of the electrical current in the electrodes, filters for
known artifact sources, elimination of large artefacts, exceeding 1 mV and EEG variations
exceeding 200 µV. This allows for the control of artefacts or their complete removal. Below
we discuss a list of the most common EEG artefacts (Fisch & Spehlmann, 1999):

1. Lid and eye artefacts are the most common extra-cerebral noises in EEG recording. In
slow cortical potentials (SCP) recording, these types of artefacts can be difficult to control.
The easiest way to reduce eye interference is gaze fixation: the subject is asked not to blink
during the duration of the test. Most subjects find gaze fixation tiring and avoid or ignore
it. It is better to measure eye artefacts with an electrooculogram (EOG). This is performed
by placing electrodes next or onto the person’s eyebrows and excluding samples with high
potential changes in these electrodes altogether.

2. Pulse artefacts are noise on single electrodes. They arise when an electrode is placed
on a pulsating blood vessel. It is a problem of dry, close positioned or defected electrodes.
These artefacts are easily differentiated from EEG—the pulse has a uniform pattern.

3. ECG artefacts are influencing reference point of measurements. The ECG is a
consequence of a strong muscular dipole, caused by the human heart, which reaches out
through the whole human body. It can be 10 times the magnitude of EEG brain waves.
ECG patterns can be removed digitally after recording.

4. Muscle artefacts recorded in the EEG. Therefore these artefacts are recorded over the
temporal and frontal scalp areas, where face and neck muscle movements are the main
cause of interference. These artefacts can be removed by low-pass filters. Grand averaging
also helps in removal, because muscle artefacts are random in time and amplitude.
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5. Movement artefacts arise from subject’s body or head movements. The electrode is
thereby mechanically moved by the connecting cable. All artefacts arising from muscle
movement (i.e., face mimics), breathing and jaw movement artefacts are regarded to as
movement artefacts. Movement artefacts, therefore, are recorded together, mixed in with
the muscle artefacts.

6. Skin and sweat artefacts introduced by changes in skin potential (Lutzenberger et al.,
1985). They appear as low frequency waves (0.2–1 Hz) in the EEG, are irregular and can
be correlated to a presented stimulus. They can be detected by a characteristic form of
negativity of 2–3.5 s, followed by a positive drop. These obstacles cause adverse effects
in signal measurements with high leakage currents and high contact impedances leading
to corruption of EEG signals and the quality of measured signals becoming lower than
desirable (Lee et al., 2013). Some cosmetic chemicals and hairsprays can also influence
electrode potentials. Sweat artefacts are normally recognized by big, synchronous potential
changes in several recording channels, mostly in the forehead region. They are partially
influenced by laboratory temperature control.

Technical artefacts that influence the quality of the EEG signal are as follows.
1. Electrode and cable artefacts. Reference electrode movement is categorized under

biological sources, because it is caused by the movement of the subject (unrest, cough
etc.). Electrode artefacts can lead to positive or negative potential changes, but they do not
follow any specific rules. Their appearance, however, depends on the type of measurement
mode being used. With a reference point measurement, the noise in the reference leads
to a noise in all recording electrodes. These artefacts are mostly distinguished by sharp
potential changes and are easy to detect. Electrode short circuits, however, are difficult
to notice. They are caused by conductive fluid pathways between neighboring electrodes:
strong sweating or an excess of conductive gel. Electrode artefacts can also arise from cable
connector faults, caused e.g. by prolonged exposure of the electrode in salt solutions, which
causes a chlorination effect on the contact and can lead to false voltages. A light soiling in
the contacts can influence resistance. After a period of use, cable cracking can occur.

2. The 50 Hz power line frequency and other electromagnetic interferences.
Electromagnetic interferences are artefacts that are caused by alternating current (AC)
devices in the vicinity of very sensitive EEG measurement devices. These primarily arise
from the 50 Hz (in European countries) alternating current sources such as light and device
supply nets. Another problem involves a bad grounding of the subject. A capacitive effect
is caused by electrical currents in the laboratory wall and other devices near the subject.
Typical sources include radio and microwaves. These do not appear in low frequency
EEG, but are converted to a small low frequency voltage in the amplifiers, in a process of
demodulation.

3. Electrostatic interference is caused by rubbing static electricity, causing large electrical
potentials on the subject. These can lead to artefacts in EEG, when a ground current
between a subject and recording equipment arises.
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METHODS
Each individual person is very different. Each of us thinks differently. Each of us has
different brain ‘‘signal’’ strength. Due to this individuality every user must have his/her
own individual profile best describing his physical ‘‘signal generating’’ capabilities. These
capabilities of course are still variable and not completely universal (one can produce
different signal on different days, physical status, mood, stress, sleep time, etc.). Ten
(10) people participated in our experiment (nine males (subjects no. 1–9), one female
(subject no. 10), aged from 24 to 31). All participants claimed to be physiologically and
psychologically healthy.

We have used both EEG devices for the measurement and evaluation of attention and
meditation levels, as well for blinking recognition. The methods used are detailed below.

Recognition of attention and meditation states
Wehave tried tomeasure individual waveforms and produce some insights on the following
conditions:

• A person is concentrating. As our test was a simple control task (just one command) we
have asked to look at a picture(s) with a simple random calculus task and think of an
answer. A task was of varying difficulty based on a time we wanted a participant to be
concentrated (e.g., calculating linear equations in the formof 5x–10= 0, 5x2−4x−1= 0,
etc.). To verify that a person was really concentrated on calculating we have asked to say
a result when they have it (no measurement was done during the ‘‘reveal of result’’ due
to impacts on signal to working motorics, etc.)
• A person is relaxed. This data set was recorded when a person was not doing anything.
In the case of control task - no command was produced at this stage (think as idle state).

The EEG device provides two metrics: attention and meditation. These two signals are
derived from the EEG signal using proprietary techniques. The attention value reflects the
intensity of a user’s level of mental ‘‘focus’’ or ‘‘attention’’ during increased mental effort,
while the meditation value point to user’s mental ‘‘calmness’’ or ‘‘relaxation.’’ Each metric
provides a relative measure of state from 0 to 100, these are not absolute values, where a
value from 1 to 20 indicates ‘‘strongly lowered’’ levels of the state, and a value from 80
to 100 points to heightened levels of that state. Note that simply relaxing muscles may
not result in increased meditation level as meditation is a person’s mental condition. Chi,
Jung & Cauwenberghs (2010) noted that dry electrodes, such as the one in the Mindset, are
limited to niche, nonmedical/scientific applications like toys, neurofeedback games and
fitness monitoring. There are even fewer studies done using a single-channel EEG device.
Most of the existing literature based on the Neurosky Mindwave was published just a few
years ago, primarily on the proprietary attention and meditation signals.

The organization of the experiment is detailed in Fig. 2. A perceived mental status
(stressed/relaxed) of a subject is selected by computing the average intensity value (provided
by standard functions in both manufacturers’ SDKs) and the standard deviation of the
approximated EEG signal. Data has been indexed according to estimated values based on
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Figure 2 Organization of the experiment.

the profile condition (individually trained for each of the participants) as described below:

SF (u)=

{
1, if T (u)<µ±δu
0, otherwise

SR(u)=

{
1, if T (u)>µ±δu
0, otherwise

here: SF , focused; SR, relaxed; µ, trained threshold; T (u), measured approximated signal;
δu, standard deviation.

Subject profiles were made before each session, logging approximated values every 1 s,
by asking each participant to concentrate on mathematical task or relax for 5 min before
each of the experiments. Data gathered over the course of the experiment was compared
with each value sets using the K-nearest neighbor (KNN) method.

Blinking recognition
The consumer-grade EEG devices are often used for electromyography (EMG). The most
often and easy to read and reproduce signal is an eye blink. Tested devices have a coded
function for ‘‘strength’’ of a blink, but after a blink a numeric value is returned very
second, but remains constant till a new blink (even a minor one) is detected. There was
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a problem for some participants that after a ‘‘strong and fast’’ blink some high value was
reached but afterwards blinks were ‘‘weaker’’ reaching its limitations and not capturing
(not function outputting as such) minor blinks. To overcome this, we have dropped a built
in functionality and have made additional profiling for blinking, by asking each participant
to blink for approximately 100 times (blink continuously for two minutes) and registering
raw signal. Raw signal analysis allowed determining specific blinking patterns for each of
the participants and avoiding fake signal cases such as head movement (often registered as
a blink when using built-in functions). A measured blinking level was compared with an
individual profile during the experiments. A gaze tracking device (EyeTribe) was used to
monitor and verify if a person has blinked or not as it was faster than a human person and
more accurate to detect fast and natural blinks of a user.

As there is no known methodology on how often a signal must be queried to get a
reliable approximation we have chosen various signal fixation times. We have decided
that to confirm one command 10 readings must be taken (from the initial concentrated
mindset catch) at approximations calculating every 1, 2 and 5 s. We believe that longer
time intervals are impractical for control tasks if one command takes longer than a minute
to produce.

RESULTS
Our experimental results are presented for two research experiments. The first one
considered the measurement and evaluation of attention and meditation levels, while the
second experiment focused on blinking recognition.

Recognition of attention and meditation states
The mean threshold attention and meditation recognition levels obtained using the
methodology described in ‘Recognition of attention and meditation states’ (user profiling)
with the Emotiv and Neurosky devices are presented in Figs. 3 and 4, respectively.

The mental state recognition accuracy (mean values) when performing concentration
and relaxation tasks are summarized in Figs. 5 and 6, for attention and meditation states
respectively.

The descriptive statistics of the Neurosky and Emotiv data for attention and meditation
levels is presented in Table 1. Note high skewness results (>1) of attention recognition data
using the Neurosky device. Positive skewness of 1.2865 indicates a piling of the values at
the left side of the distribution for the Neurosky data, giving an indication of low values in
the distribution. That result can be explained by low responsiveness from the users while
using the device.

The results of a test of normal distribution showed that the data is not normally
distributed (Shapiro–Wilk test (alpha = 0.95), mean p< alpha). The reasons for non-
normality of the data may be extreme values in the data due to measurement errors,
more than two processes generating data are overlapping (which could indicate strong
noise signal added to the EEG signal), accumulation of round-off errors or the use of the
measurement device with poor resolution, or that data follows a different distribution than
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Figure 3 Mean threshold levels of attention obtained using Neurosky (A) and Emotiv EPOC (B).

Table 1 Descriptive statistics of attention vs. meditation data.

Metric Min Max Mean Std. Skewness Shapiro–Wilk normality test

W p

Neurosky MindWave
Attention 0.05 74.79 19.05 12.95 1.2865 0.8780 0.1131
Meditation 0.31 49.79 25.35 17.75 −0.0150 0.9435 0.1405

Emotiv EPOC
Attention 50.00 79.79 65.20 8.57 0.0028 0.8836 0.1878
Meditation 20.21 89.86 55.92 20.78 −0.0535 0.9394 0.1261

normal. These results are contrary to the ones reported by Rebolledo-Mendez et al. (2009)
for the NeuroSky MindBuilder device.

A Q–Q plot is a plot of the quantiles of two distributions against each other, which is
used to compare the two distributions. Figure 7 illustrates the Q–Q plot for this sample
suggesting that the data follow a nonlinear pattern, suggesting that the data are not
distributed as a standard normal.

The probability density function (PDF) plot of attention and meditation shows that
both data overlap significantly for the Neurosky device making separation of user’s mental
states very difficult (Fig. 8, left). However, for the Emotiv device data, the separation is
larger making it easier to separate (Fig. 8, right). Furthermore, meditation may have a
bi-modal PDF indicating that the signal may have more than one independent source.

As a criterion for estimating the separation between PDFs of attention and meditation,
we use the Jaccard distance metric, which measures dissimilarity between sample sets. Here
we use Jaccard to measure distance between overlapping and total areas under curve of
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Figure 4 Mean threshold levels of meditation using Neurosky (A) and Emotiv EPOC (B).

Figure 5 Mean recognition accuracy of attention state using Neurosky (A) and Emotiv EPOC (B).

PDF as follows:

J (f1,f2)=
∫
|f1(x)− f2(x)|dx∫

f1(x)dx+
∫
f2(x)dx

, (1)

here, f1 and f2 are the PDFs of attention and meditation data, respectively.
The results presented in Fig. 8 show that the Jaccard distance between PDFs of attention

and meditation data for the Neurosky data is 0.2890, while the distance for the Emotiv
data is 0.4924 (using trapezoidal method for numerical integration), which means that the
attention and meditation data is separable more easily in case of the Emotiv data.

To evaluate if attention and mediation data are significantly different from each other,
we perform the Student’s two-sample unpaired t -test. The t -test performed on all data
indicates that the hypothesis is rejected with p= 4 · 10−8 for the Neurosky data and
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Figure 6 Mean recognition accuracy of meditation state using Neurosky (A) and Emotiv EPOC (B).

Table 2 Correlation between attention andmeditation.

Device Correlation between
same-subject mean values

Correlation between
same-subject mean values
for subjects with rejected
t -test hypothesis (h= 1)

Correlation between
same-subject mean
values for subjects
with confirmed t -test
hypothesis (h= 0)

Neurosky −0.1932 −0.0245 0.79
(p= 0.5927) (p= 0.9688) (p= 0.1072)

Emotiv EPOC 0.1913 0.5985 0.7340
(p= 0.5966) (p= 0.2863) (p= 0.1579)

p= 2.5 ·10−12 for the Emotiv data. The results of the t -test performed on the individual
user data in presented in Fig. 9. The hypothesis is rejected for Subjects 1, 5, 6, 7 & 9 and
confirmed for Subjects 2, 3, 4, 8 & 10 when using the Neurosky device. The hypothesis is
rejected for Subjects 1, 2, 3, 4 & 6 and confirmed for Subjects 5, 7, 8, 9 & 10 when using
the Emotiv device.

The relationship between attention and meditation values can be assessed using
correlation. Table 2 presents the correlation results. The results show that there is a
significant (weakly significant at p= 0.10) positive correlation (0.79) between attention
and meditation levels of subjects for whom the hypothesis about difference of attention
and meditation data has been confirmed.

When analysing the attention vs. meditation data (Fig. 10), we can clearly see that
two groups of subjects identified using t -test and confirmed by correlation can be clearly
identified in the attention vs. meditation plot. We claim that these two groups of subjects
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Figure 7 Q–Q plot: Neurosky (A, B) and Emotiv (C, D): attention (A, C) andmeditation (B, D).

represent subjects, who were not able to master the BCI interface (in red) vs. subjects who
have learned to use the BCI interface (in blue).

An important measure is cross-correlation between mental states of different subjects.
Given the same conditions and settings of the experiment, we assume that the results of
subjects who have successfully mastered the BCI interface will have a more significant
correlation than the results of BCI illicit users. In the case of the latter, the signal will
be meaningless. The result of cross-correlation between subjects is presented in Fig. 11.
Using the Neurosky device, cross-correlation for meditation is weak for all subjects, which
means that all subjects were not able to achieve the relaxed state (the weakest for Subject 7
(ρ= 0.019)). For the attention state, the strongest absolute cross-correlation was achieved
by subject 9 (ρ= 0.4984) and the weakest—for Subject 5 (ρ= 0.1749). Using the Emotiv
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Figure 8 Probability density of attention andmeditation data: Neurosky (A) and Emotiv (B).

Figure 9 Results of t -test: Neurosky data (A) and Emotiv data (B).

device, cross-correlation for attention and meditation is weak for all subjects, which means
that all subjects were not able to achieve the relaxed state.

In order to determine if difference between values of attention and meditation were
statistically significant, we applied the Wilcoxon rank-sum test with the hypothesis that the
medians of two variables differ. The results of the Wilcoxon rank-sum test performed on
the individual user data in presented in Fig. 12. The hypothesis is rejected for Subjects 1,
6 & 9 and confirmed for Subjects 2, 3, 4, 5, 7, 8 & 10 when using the Neurosky data. The
hypothesis is rejected for Subjects 5, 7, 8, 9 & 10 and confirmed for Subjects 1, 2, 3, 4 & 6
when using the Emotiv data. These results confirm the results of t -test (see Fig. 9) though
the significance values differ.
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Figure 10 Levels of attention vs. meditation: Neurosky data (A) and Emotiv data (B).

Table 3 Descriptive statistics of blinking recognition results.

Metric Min Max Mean Std Skewness

Neurosky MindWave
Blinking 0.0213 99.8073 49.6616 28.7706 0.0143

Emotiv EPOC
Blinking 50.1252 99.9896 75.6249 14.6053 −0.0359

Blinking recognition
The blinking recognition measurement results are presented in Fig. 13. The descriptive
statistics of data are presented in Table 3. The results of Wilcoxon rank-sum test show that
Emotiv EPOC is significantly better than Neurosky MindWave in recognizing eye blinking.

The results show that blinking recognition failed when using the Neurosky device with
mean recognition accuracy of 49.6%, while the Emotiv device has achieved a satisfactorily
recognition accuracy of 75.6%. The probability density functions of the Neurosky and
Emotiv data (see Fig. 14) clearly illustrate the advantage of the Emotiv device in blinking
recognition. Note the bi-modality of both data.

To test if the distribution of data is unimodal or bi-modal, we perform the Hardigand
Dip Test. The Dip Test measures multimodality in a sample by the maximum difference,
over all sample points, between the empirical distribution function, and the unimodal
distribution function that minimizes that maximum difference. The Dip Test results show
that the probability of the distribution is not unimodal.

Finally, we use the Friedman test to compare the data returned by both devices. The
Friedman test checks if themeasured average ranks are significantly different from themean
rank that is expected under the null-hypothesis. The results of the test p= 5 ·10−37< 0.05
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Figure 11 Inter-subject cross-correlation plot for Neurosky (A, B) and Emotiv (C, D): attention (A, C) andmeditation (B, D).

show that the performance of both devices as judged by their accuracy of recognizing
blinking is significantly different.

DISCUSSION
Overall recognition accuracy of both the concentration (attention) and relaxation
(meditation) mental states of subjects were 60.5% (for the Emotiv device) and only
22.2% (for the Neurosky device), which is not very usable in a practical sense. Attention
was recognized more accurately than meditation, by 4–15% (mean= 9.3%) for the Emotiv
device and by 3–11% (mean = 6.3%) for the Neurosky device. These results agree with
the results achieved by other authors (e.g., see Liu, Chiang & Chu, 2013; Larsen, 2011). The
reasons for that may be the similarity of features of attentive EEG data between subjects,
while the meditation features are much more individual and are difficult to generalize. For
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Figure 12 Results ofWilcoxon rank-sum test: Neurosky data (A) and Emotiv data (B).

Figure 13 Mean accuracy of blinking recognition using Neurosky (A) and Emotiv EPOC (B).

the blinking recognition task, the Neurosky device achieved mean recognition accuracy of
less than 50%, while the Emotiv device has achieved a satisfactorily recognition accuracy
of more than 75%. We have also noticed that further into testing of different devices, the
overall recognition accuracy increased by a few percent due to familiarization of subjects
with both the devices and experiment conditions.

It is also very important to note that it is actually very hard for a person to produce a
stable control signal (thus a command, by either focusing or relaxing). The process itself is
very tiring and over excessive time has a significant input on recognition accuracy. Based
on the above, we might argue that no matter what marketing material might tell you—a
consumer EEG device is only suitable for a beginner level brain signal measurement and
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Figure 14 Probability density functions of Neurosky and Emotiv data in blinking recognition.

research and usable as a control device via its direct function—brain reading—only if a
person has really no other mean of signal input (like in a complete locked-in paralysis
state), otherwise other means of command recognition (be it gaze tracking, blinking,
sound, video, etc. recognizers) are much more viable.

The results of measurement of blinking (signals) via a consumer EEG device are also not
very promising. There is an obvious factor of external disturbances and signal itself is not
very stable, especially when compared with devices built for this purpose and capabilities
of sensors placing near the working field of eye muscles. The overall recognition accuracy
ranges from around 50% for devices with low number of sensors (such as MindWave)
to around 75% for devices with larger number of sensors (such as EPOC), overall in our
opinion still too low for any practical control applications. On the other side, we noticed
that a gaze tracking device was faster and more accurate than both EEG and EMG devices.

Other problems with the Emotiv EPOC are as follows: electrodes mounted on plastic
springs are prone to shift along scalp. The EPOC also lacks EOG inputs normally used in eye
artifact suppression. Furthermore, the impedance of saline solution electrodes is unstable
due to drying. A common problem of both devices reported by subjects was external
distractions such as the people standing around, which produced unwanted results from
the lack of concentration, confirming the same observation also reported by other authors
(e.g., see Vourvopoulos & Liarokapis, 2014).
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Participants also noted discomfort after wearing the headset for an extended period of
time. Therefore, we tried to limit the amount of time which participants wore the headset
to reduce this discomfort. This discomfort is most likely due to the sideways pressure that
holds the headset in place. Other studies also noted participants experienced discomfort
(Haapalainen et al., 2010).

Given these limitations and the lack of conclusive findings, we would deem this device
to be unsuitable for use in serious applications, which agrees with conclusions of other
researchers (see, e.g., Harrison, 2013).

The problem of BCI illiteracy is especially acute with customer grade devices, as the low
number of sensors, low quality of electrodes and inability to place the sensors accurately
on the scalp reduces the quality of EEG data obtained thus hindering the establishment of
effective feedback between the user and the system. Further studies are needed to better
understand the underlying cause of BCI illiteracy and identify new BCI training procedures
that will alleviate the BCI illiteracy.

Our findings, however, must be considered with the limitations of the study in mind:
the number of subjects was small (only 10), there was no gender balance (nine males and
only one female), all subjects were young people, all subjects were considered healthy, but
there was no formal medical examination of their health condition done.

CONCLUSIONS
We have performed usability testing of the NeuroskyMindWave and Emotiv EPOC devices
for tasks that require concentration and relaxation of subjects as well as for the blinking
recognition task. The results showed that the Emotiv EPOC device has performed better (as
measured by the recognition accuracy) for all tasks (∼9% better using attention/meditation
data and ∼25% better for eye blinking recognition).

Using consumer-grade EEG devices, BCI illiteracy is a significant problem due to
technical limitations of devices and weak feedback. Our research shows that up to 50% of
users may be BCI-illicit when using low-cost EEG devices to perform control tasks based
on mental state (attention and meditation) recognition. Thus, the results of experiments
can be seriously affected, because if the user is not able to produce stable and distinct EEG
patterns, then no machine learning method or classification algorithm would be able to
recognize them. Improving BCI universality (that is, reducing BCI illiteracy) should be a
top priority in BCI research focus on non-medical applications. Improved environment
setup, training and subject instructions can make BCIs more universal, to some extent.

We suggest performing pre-screening of users by using statistical tests (Student’s paired
t -test or Wilcoxon rank-sum test) to address the BCI illiteracy problem before performing
validation of the BCI-based control methods. Very careful setting up of the experiment
and proper motivation environment must be set up for EEG device usage, e.g., it is almost
impossible to achieve the mental state of meditation if the surrounding environment
is noisy.

High variability and non-normality of attention and meditation data imposes new
challenges for developers who wish to use levels of attention and meditation as input
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to control or alter interfaces. The baseline levels of attention and meditation must be
established for each user individually. For effective use, the combination of EEG readings
with other input modalities should be established. Work for the future includes the
combination of EEG readings with such as gaze, body posture and facial expressions
should be considered. In future work, more research will be performed using different kind
of experimental setting, e.g., the Stroop Colour-Word Interference Test (Stroop, 1935), a
well-known psychological test of selective attention.
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