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Abstract

Traditional drug development for Alzheimer’s disease (AD) is costly, time consuming and

burdened by a very low success rate. An alternative strategy is drug repositioning, redirect-

ing existing drugs for another disease. The large amount of biological data accumulated to

date warrants a comprehensive investigation to better understand AD pathogenesis and

facilitate the process of anti-AD drug repositioning. Hence, we generated a list of anti-AD

protein targets by analyzing the most recent publically available ‘omics’ data, including

genomics, epigenomics, proteomics and metabolomics data. The information related to AD

pathogenesis was obtained from the OMIM and PubMed databases. Drug-target data was

extracted from the DrugBank and Therapeutic Target Database. We generated a list of 524

AD-related proteins, 18 of which are targets for 75 existing drugs—novel candidates for

repurposing as anti-AD treatments. We developed a ranking algorithm to prioritize the anti-

AD targets, which revealed CD33 and MIF as the strongest candidates with seven existing

drugs. We also found 7 drugs inhibiting a known anti-AD target (acetylcholinesterase) that

may be repurposed for treating the cognitive symptoms of AD. The CAD protein and 8 pro-

teins implicated by two ‘omics’ approaches (ABCA7, APOE, BIN1, PICALM, CELF1,

INPP5D, SPON1, and SOD3) might also be promising targets for anti-AD drug develop-

ment. Our systematic ‘omics’ mining suggested drugs with novel anti-AD indications,

including drugs modulating the immune system or reducing neuroinflammation that are

particularly promising for AD intervention. Furthermore, the list of 524 AD-related proteins

could be useful not only as potential anti-AD targets but also considered for AD biomarker

development.

Introduction

Alzheimer’s disease (AD) is the most common form of dementia (6% of people above age 65

[1]), affecting ~48 million people worldwide in 2015 according to the world health organiza-

tion. AD brain pathology is characterized by neuronal tau inclusions and amyloid plaques,
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mainly consisting of Aβ40/42 peptides generated by the cleavage of APP protein. Aβ42 peptide is

occurring in a tenth of the amount of Aβ40, but aggregates faster than Aβ40 and is more toxic

in cell culture assays [2]. The Aβ accumulation is an early event that could trigger downstream

events (e.g., misprocessing of the tau protein and brain inflammation) [3]. AD is one of the

most costly chronic diseases, with a global cost of $605 billion as estimated by the World Alz-

heimer’s Association. So far, there are 5 FDA approved drugs on the market according to the

Alzheimer’s Association, but none of them can cure AD. There is an urgent need to develop

novel anti-AD therapies, however traditional drug development takes a long time (10–17

years), requires massive financial investments, and yet is burdened by a very low success rate

(~0.4% for AD from year 2001 to 2012 [4, 5]). Drug repositioning (repurposing) is used to

redirect approved and clinical trial drugs for treating another disease [6]. It is an attractive

strategy to pursue for AD [7] that can dramatically reduce drug development time, cost and

safety risk, because drug toxicity data are often available from former phase I/II clinical trials.

Previous studies have applied various methods of analyzing ‘omics’ data to identify promis-

ing drugs for repurposing, including comparison analyses of gene expression patterns (con-

nectivity maps) [8], text mining [9], network analyses [10], exploration of data from genome

wide association studies (GWASs) [11] and the analysis of pathogenesis knowledge from the

Online Mendelian Inheritance in Man (OMIM) database [12]. In addition, computational

methods have been used to predict drug-protein interactions [13], drug off-targets [14], drug

side effects [15] and drug-disease associations [16]. Our group recently developed a compre-

hensive drug repositioning strategy based on mining genomic, proteomic and metabolomic

data that revealed 9 drugs with new anti-diabetes indications [6]. In the current study, we used

an improved approach that added epigenomic data and a ranking strategy for anti-AD drug

repositioning.

Most AD patients have sporadic late-onset disease, and are free from rare mutations in

known causal AD genes (APP, PSEN1 and PSEN2) [3]. Sporadic AD is associated with multiple

genetic variations of small effect (e.g., most GWAS loci) or moderate effect (e.g., APOE-ε4 [17]

and TREM2 rs75932628 T-allele [18, 19]), and could be influenced by other risk factors (e.g.,

head trauma [20], diabetes [21] and aging [22]). The complex interactions between genetic

and environmental factors lead to alterations in proteins, metabolites and epigenetic modifica-

tions in the brain tissue and/or body fluids of AD patients.

The large amount of biological data accumulated to date warrants comprehensive investiga-

tion to better understand AD pathogenesis and facilitate the process of anti-AD drug reposi-

tioning. Hence, the current study aimed to systematically analyze AD-related ‘omics’ data to

discover potential anti-AD drug targets, develop an algorithm to rank these drug targets, and

suggest a priority for repurposing existing drugs as potential anti-AD therapies.

Materials and Methods

Database search for potential anti-AD targets

We searched the NHGRI-EBI GWAS Catalog (http://www.ebi.ac.uk/gwas) to extract AD-asso-

ciated genetic variations; and the Human Metabolome Database (HMDB) to extract AD-

related metabolites. To shortlist AD-related proteins and epigenetic changes, we searched the

PubMed database up to June 2016 using the keywords: “Alzheimer’s disease and proteomics”,

“Alzheimer’s disease and protein/proteomics”, “Alzheimer’s disease and DNA methylation”,

“Alzheimer’s disease and epigenetics”. We incorporated this literature in our study according

to the following criteria: 1) all samples (e.g., serum, plasma, urine or tissue) had to be human;

2) the disease diagnosis had to be “Alzheimer’s disease” or “Late-onset Alzheimer’s disease”;

and 3) for proteins, all samples had to be CSF.

Drug Repositioning for Alzheimer’s Disease
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For the GWASs, we extracted information on 1) genes; 2) SNPs; 3) initial sample size; 4)

replication sample size; 5) p-value; 6) effect size: odds ratio (OR) or beta-coefficients; 7)

PubMed ID. For the epigenetic studies, we extracted information on 1) protein ID; 2) gene ID;

3) patient status; 4) sample size; 5) platform; 6) PubMed ID. For the proteomics studies, we

extracted information on 1) protein name; 2) gene name; 3) Uniprot ID; 4) sample type; 5)

patient status; 6) sample size; 7) platform; 8) PubMed ID. For the metabolomics studies, we

extracted information on 1) metabolite; 2) sample type; 3) concentration in patients; 4) patient

status; 5) age; 6) gender; 7) PubMed ID.

Mapping AD-related metabolites to proteins and visualizing the

metabolite-protein network

We extracted the names of proteins that linked to AD-related metabolites based on the HMDB

database. To visualize the association between these metabolites and the proteins affecting

them, we constructed a metabolite-protein network using Cytoscape software v3.3.0 (www.

cytoscape.org) [23].

Mapping AD-related proteins to existing drugs

We selected a panel of AD-related proteins retrieved from GWASs, epigenetic and proteomics

studies, as well as proteins linking to�2 AD-related metabolites retrieved from the HMDB.

To establish a link between these AD-related proteins to drugs, we used two public databases:

the Therapeutic Target Database (TTD version 4.3.02) containing information on the 236 tar-

gets of 20,667 approved, clinical trial and experimental drugs [24], and the DrugBank database

(www.drugbank.ca) containing 4,800 drug entries including >1,350 FDA-approved small

molecule drugs, 123 FDA-approved biotech (protein/peptide) drugs, 71 nutraceuticals and

>3,243 experimental drugs [25]. To focus on the most promising drugs that might be repur-

posed for treating AD, only target-drug pairs comprising drugs that were either approved or

had been examined in clinical trials were selected. From these two drug databases, we extracted

information on 1) drug target name; 2) drug name; 3) original drug indication; 4) drug stage;

and 5) drugs’ modes of action.

Information on pathogenesis and the drugs’ modes of action for anti-AD

drug repositioning

We extracted knowledge about pathogenesis of potential anti-AD targets from the OMIM

database (http://www.omim.org) and a PubMed literature search. We obtained information

on the gain of function (GOF) or loss of function (LOF) roles of the drug targets in humans or

animal models. Target pathogenesis information together with the drugs’ modes of action

retrieved from the drug databases were used to rationally shortlist promising anti-AD drugs.

The ranking algorithm of anti-AD drug targets

To prioritize potential anti-AD drug targets, we developed an algorithm to score the targets.

To calculate the target score, a weighted sum model [26] was used that employed three criteria:

1) the level of change of the AD-related proteins that were presented by fold changes of pro-

teins or the OR of minor alleles; 2) the number of citations of the paper that reported the AD

pathogenesis of the target based on Google scholar; 3) the number of publications that

reported the target in connection to AD based on the PubMed search. To more comprehen-

sively consider both the confidence of disease-target association (criteria 1 and 3) and the

strength of evidence in support for AD pathogenesis (criteria 2); we gave each criterion equal
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weighted values. For the targets retrieved from metabolomics, we estimated the fold change of

the target based on the fold changes of the corresponding metabolites adjusted to the total

number of metabolites connected to that target, assuming other linked metabolites did not

change. We also used internal controls to adjust the target scores to known AD-related pro-

teins/genes: 1) the fold changes of proteins were adjusted to the fold change (2.37) of Aβ42 in

CSF of AD patients [27]; 2) the OR of risk alleles were adjusted to the OR (3.7) of APOE-ε4

allele vs. ε3 allele (ALZforum); 3) the number of citations was adjusted to the number of times

the first paper reporting the segregation of an APP mutation with familial AD [28] was cited

(4092, up to Feb 2016); 4) the number of publications was adjusted to the number of articles

with both APP and AD as keywords (11294, up to Feb 2016). We used the equations (Eqs 1, 2

and 3) to estimate the target scores of those targets retrieved from metabolomics (TSm), prote-

omics (TSp) and genetics (TSg).

TSm ¼ 0:33�

Pn
i¼1
jFij þN � n

N� 2:37
þ

0:34� C
4092

þ
0:33�H

11294
; ð1Þ

TSp ¼ 0:33�
jFj

2:37
þ

0:34� C
4092

þ
0:33�H

11294
; ð2Þ

TSg ¼ 0:33�
OR
3:7
þ

0:34� C
4092

þ
0:33�H

11294
; ð3Þ

where F = fold change of the proteins or metabolites between AD and normal controls (posi-

tive if the AD group is higher than the control group, negative if the AD group is lower than

the control group); N = total number of proteins connected to the metabolite, n = number of

proteins connected to the AD-related metabolite; C = the number of citations of the target

pathogenesis paper; H = the number of publications reporting both AD and the target;

OR = the odds ratio of the risk allele.

Bioinformatics analyses

Protein-protein interactions of AD-related proteins were analyzed using the String tool

(http://string-db.org) by selecting “experiments” as active prediction method. Cytoscape soft-

ware v3.3.0 was used to visualize the protein-protein interaction network. The pathway enrich-

ment analysis was conducted using the David online tool (https://david.ncifcrf.gov/) by

selecting the KEGG database. Benjamini corrected p-values <0.05 were considered significant.

Computational analysis of candidate drug targets and repurposed drugs

To validate the anti-AD drug targets derived from our ‘omics’ mining method, we used the

Toppgene tool (https://toppgene.cchmc.org), which ranks candidate genes based on functional

similarity to the training genes, and the Toppnet tool (https://toppgene.cchmc.org), which

ranks candidate genes based on topological features in protein-protein interaction networks

and their similarity to the training genes [29]. In the current study, we used 5 training genes

selected based on the strongest AD risk-effect (APP, PSEN1, PSEN2, APOE, and TREM2).

We also used two online resources (Connectivity Map (Cmap), http://portals.broadinstitute.

org/cmap/; and C2Maps, http://rdc02.uits.iu.edu:7777/pls/apex/f?p=208:1:2695462252197431::

NO) to analyze the small molecule drugs of the repurposed drugs. Using Cmap, we analyzed

whether the change in the pattern of gene expression is similar between the repurposed drugs

and known anti-AD drugs (memantine and galantamine) [6]. While C2maps assessed the anti-

Drug Repositioning for Alzheimer’s Disease

PLOS ONE | DOI:10.1371/journal.pone.0168812 December 22, 2016 4 / 15

http://string-db.org
https://david.ncifcrf.gov/
https://toppgene.cchmc.org
https://toppgene.cchmc.org
http://portals.broadinstitute.org/cmap/
http://portals.broadinstitute.org/cmap/
http://rdc02.uits.iu.edu:7777/pls/apex/f?p=208:1:2695462252197431::NO
http://rdc02.uits.iu.edu:7777/pls/apex/f?p=208:1:2695462252197431::NO


AD drug and gene association; based on network mining, literature mining, and drug effect

annotation [30].

Results

Systematic mining of ‘omics’ data revealed potential AD-related proteins

We analyzed 4 epigenetic, 7 proteomic and 18 metabolomic studies, as well as 31 GWASs; and

retrieved 14 epigenetic events associated with AD, as well as 98 proteins and 86 metabolites

that were reported to be significantly altered in AD patients, and 244 genetic variations associ-

ated with AD implicating 220 genes (Fig 1, S1–S4 Tables). Based on the HMDB, 200 proteins

were linked to�2 AD-related metabolites (1179 metabolite-protein pairs). The AD-related

metabolite-protein network (Fig 2) shows highly interconnected metabolic pathways of vari-

ous metabolites.

Fig 1. Flow-chart of the drug repositioning strategy for AD based on ‘omics’ data mining. We searched the GWAS Catalogue,

PubMed, and HMDB database, and extracted 244 genetic variations, 14 epigenetic modifications, 98 proteins and 86 metabolites

associated with AD. We also extracted 1179 protein-metabolite interactions based on the HMDB database and found 200 proteins

linked to�2 AD associated metabolites. In total, we shortlisted 524 AD-related proteins, 8 of which were revealed by 2 ‘omics’

approaches. By using the TTD and DrugBank database, we extracted information on drugs, targets and the drugs’ mode of action.

Considering AD pathogenesis together with the drugs’ mode of action, we found 19 targets of 92 drugs with anti-AD indication that

may be repurposed. We then scored these targets and found CD33 and MIF to be the two highest ranked targets. A protein-protein

interaction analysis of 524 AD-related proteins detected a novel network of 11 proteins with CAD as a hub protein (functional

enrichment analysis revealed that 5 of these 11 proteins are involved in the “Alanine, Aspartate and Glutamate Metabolism” pathway

presented in Fig 3).

doi:10.1371/journal.pone.0168812.g001
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In total, ‘omics’ data revealed 524 unique AD-related proteins, including 8 proteins that

showed alterations in two platforms (S5 Table). Among them, ABCA7, APOE, BIN1 and

PICALM had reports on AD-related functional studies, while findings related to CELF1,

INPP5D, SPON1 and SOD3 encourage further analysis regarding their roles in AD

pathogenesis.

The protein-protein interaction analysis of 524 AD-related proteins detected two core hub

proteins: APP (encoded by causal AD gene) and CAD (Fig 3A). CAD links to another 10 pro-

teins, all of which are associated with AD-related metabolites. The pathway enrichment analy-

sis revealed that these 11 proteins are significantly enriched in the “Alanine, Aspartate,

Glutamate metabolism” pathway (Benjamini corrected p-value = 0.000002) (Fig 3B), with 5

proteins (GAD1, GAD2, GFPT1, GFPT2 and CAD) involved in this pathway.

Drugs with possible anti-AD indication based on knowledge of drugs’

modes of action and AD pathogenesis

Searching the TTD and DrugBank databases using Uniprot IDs for the aforementioned 524

protein targets revealed that 19 of them (with information on AD pathogenesis) were linked to

92 approved or clinical trial drugs (with data on drugs’ modes of action), supporting their

potential anti-AD roles, such as reducing cognitive impairment or increasing neuron protec-

tion and Aβ clearance [Table 1, S6 Table]. Two of these 19 proteins, acetylcholinesterase

Fig 2. AD related protein-metabolite network. 1179 protein-metabolite interactions were indicated from the HMDB database. The

zoomed-in inset shows that acetylcholinesterase (P22303), a known anti-AD target, interacts with 2 AD-related metabolites (Choline and

Acetylcholine). The nodes with yellow color represent metabolites that were altered in AD patients, the nodes with purple color represent

proteins that linked to AD associated metabolites, and the nodes with green color represent proteins that linked to�2 AD associated

metabolites.

doi:10.1371/journal.pone.0168812.g002

Drug Repositioning for Alzheimer’s Disease

PLOS ONE | DOI:10.1371/journal.pone.0168812 December 22, 2016 6 / 15



Fig 3. A) Protein-protein interaction analysis of 524 AD-related proteins revealed two large protein clusters:

the APP network (14 yellow nodes) and the CAD network (11 red nodes). B) The functional enrichment

analysis found that five proteins (labeled with red stars) of the CAD network are involved in the “Alanine,

Aspartate and Glutamate Metabolism” pathway (CAD, GAD1, GAD2, GFPT1, GFPT2). The figure was

generated based on the results obtained by the David online tool and the KEGG database.

doi:10.1371/journal.pone.0168812.g003
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(ACHE) and APP, are known anti-AD drugs targets, corresponding to 17 existing drugs

[Table 1, S6 Table], including three approved drugs for AD treatment (galantamine, rivastig-

mine and donepezil). This validates the ability of our strategy to detect known anti-AD drugs

and supports its potential to discover novel anti-AD indications of existing drugs. Apart from

APP, we found 18 potential anti-AD targets with 75 existing drugs that might have a novel

anti-AD indication [S6 Table]. Of note, 7 drugs targeting acetylcholinesterase were not previ-

ously used for treating AD symptoms and could be repurposed for anti-AD therapy.

The ranking algorithm revealed two promising anti-AD drug targets

We developed a ranking algorithm to prioritize the anti-AD targets (APP was set as an internal

control with a target score of 1); and determine which of the drugs targeting these proteins are

the most promising to pursue in validation studies. We evaluated our algorithm using three

known anti-AD drug targets, acetylcholinesterase, TREM2 and APOE, which revealed a

medium/high target score of 0.384, 0.459 and 0.887, respectively [S7 Table]. The mean target

score for the 17 novel anti-AD targets is 0.235, ranging from 0.143 to 0.782 [S7 Table]. There

are two targets with scores greater than that of acetylcholinesterase: CD33 (0.782) and MIF

(0.438), both of which are linked to microglial activation and neuroinflammation [Fig 4]. Anti-

bodies/inhibitors targeting CD33 and MIF were originally tested in clinical trials for the treat-

ment of acute myelogenous leukemia (AML) or solid tumors [S6 Table]. Our results suggest

that they might also be good candidates for treating AD-related neuroinflammation [Fig 4].

Another two targets (HIF and CACNA1G) had medium target scores of 0.345 and 0.319.

Ten small molecule drugs targeting these two proteins might also be repurposed for treating

AD [S6 Table], and warrant further validation.

Table 1. ’Omics’ data mining revealed potential anti-AD drug targets from existing approved and clinical trial drugs.

Uniprot ID Database Target name Target score Target source Number of drugs

P20138 TTD Myeloid cell surface antigen CD33 0.715 GWAS 6

P14174 TTD Macrophage migration inhibitory factor 0.438 Proteomics 1

P22303 TTD/DrugBank Acetylcholinesterase* 0.384 Metabolomics 10

Q96KS0 TTD Hypoxia-inducible factor-prolyl hydroxylase 0.319 Metabolomics 4

O43497 TTD Voltage-dependent T-type calcium channel alpha-1G subunit 0.291 GWAS 6

P00747 TTD/DrugBank Plasminogen 0.192 Proteomics 7

P21728 TTD/DrugBank Dopamine D1 receptor 0.171 Metabolomics 13

P00325 DrugBank Alcohol dehydrogenase 1B 0.159 Metabolomics 1

P01009 TTD Alpha-1-antitrypsin 0.155 Proteomics 3

P35228 TTD Nitric oxide synthase, inducible 0.146 Metabolomics 3

P05164 TTD Myeloperoxidase 0.144 Metabolomics 2

P15692 TTD Vascular endothelial growth factor A 0.144 Proteomics 2

P15121 TTD/DrugBank Aldose reductase 0.139 Metabolomics 6

O76074 TTD CGMP-specific 3’,5’-cyclic phosphodiesterase 0.138 Metabolomics 6

O14939 DrugBank Phospholipase D2 0.137 Metabolomics 1

P21917 DrugBank Dopamine D4 receptor 0.133 Metabolomics 3

P21964 TTD/DrugBank Catechol-O-methyl-transferase 0.13 Metabolomics 3

P10635 TTD Cytochrome P450 2D6 0.128 Metabolomics 1

P05067 TTD Amyloid precursor protein* 1.000 Proteomics 14

* Represents known anti-AD target

doi:10.1371/journal.pone.0168812.t001
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Computational analysis validated top ranked anti-AD drug targets

Medium/high Toppgene scores (>0.6) and Toppnet scores (>1E-05) were observed for 8 of

the top 10 anti-AD drug targets (S7 Table), suggesting that our ranking algorithm corresponds

well to other ranking methods. Toppgene scores for the top 3 targets are 0.67 (CD33), 0.71

(MIF) and 0.83 (ACHE). The Toppnet scores for the top 3 targets are 6.7E-05 (CD33), 1.4E-05

(MIF) and 2.8E-05 (ACHE).

The evaluation of our top candidate drugs (antibodies targeting CD33 and MIF) is impor-

tant but lacks the appropriate computational methods to rank antibody drugs. Here, we used

two online resources (Cmap and C2maps) to analyze the small molecule drugs of the repur-

posed drugs. Using Cmap, we found that only one drug (edrophonium) showed positive corre-

lation to memantine (enrichment score = 0.62, p = 0.05). Other drugs had non-significant

results or no gene expression information in Cmap. Using C2maps, we found that only one

drug (physostigmine) had a high protein ranking score of 0.99 and low enriched drug p-value

(p = 2E-23). C2maps also validated 3 known anti-AD drugs, including galantamine (protein

ranking score = 0.99, enriched drug p = 4.7E-4), rivastigmine (protein ranking score = 0.99,

enriched drug p = 1.2E-10) and donepezil (protein ranking score = 0.99, enriched drug

p = 5.8E-9). The scores of other drugs are not available in C2maps.

Discussion

In the current study, we improved our ‘omics’-based drug repositioning strategy [6] by adding

epigenetic data into the search for drugs to be repositioned for AD. Epigenetic modifications,

especially DNA methylation, have been reported to be associated with aging [31], [32], AD

[33], and Parkinson’s disease [34]. Furthermore, genetic variations that modulate DNA meth-

ylation age may control biological aging [35], which is the strongest risk factor for AD. Overall,

we revealed 524 AD-related proteins, 18 of which are targets for 75 existing drugs making

them novel candidates for repurposing as anti-AD treatments. Importantly, 8 AD-related pro-

teins were implicated by two ‘omics’ approaches, suggesting their priority as anti-AD targets

[S5 Table]. Of note, 4 of them (CELF1, INPP5D, SPON1 and SOD3) do not have information

on AD pathogenesis and need to be further investigated in functional studies.

Fig 4. The top two anti-AD targets, MIF and CD33, affect microglial activation. Both CD33 and the MIF

receptor (CD74) are expressed on the microglial cell surface. Antibodies/inhibitors of MIF and CD33 may be

assessed for their effects in modulating AD-related neuroinflammation.

doi:10.1371/journal.pone.0168812.g004
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The list of 524 AD-related proteins could be useful not only as potential anti-AD targets,

but also considered for developing AD biomarkers. Moreover, the protein-protein interactions

among these 524 proteins point to a core hub CAD protein connected to 10 proteins, each of

which is associated with�2 AD-related metabolites. A pathway analysis of the CAD hub sug-

gested an enriched “Alanine, Aspartate, Glutamate metabolism” pathway. Further investiga-

tions may be initiated to design drugs targeting CAD to modulate the AD-related imbalance in

neurotransmitters (e.g., glutamate [36] or GABA [37]). The comprehensive analyses of multi-

ple “omics” data provide a unique opportunity to understand the most-relevant biomarkers/

risk factors related to AD, thereby facilitating the process of identifying protein targets and

drugs for repurposing.

We also improved our ‘omics’-based drug repositioning strategy by developing a ranking

algorithm to prioritize the drug targets. Previous scoring algorithms, such as calculating the

confidence of drug-protein interactions [38] and disease–disease, drug–drug and target–target

relationships (constructed based on their similarities) [16], evaluated the strength of the associ-

ation but not the therapeutic rationale based on pathogenesis information of the target and the

action mode of the drug. The current study employed a ranking algorithm that considered

both the strength of the target-disease association and the quality of the study related to AD

pathogenesis of a particular protein (based on number of citations), therefore providing a tar-

get score considering therapeutic rationale. To validate our ranking method, we used the

online tools, Toppgene and Toppnet, to analyze the targets’ functional and topological similar-

ity to known AD genes. The results of our ranking algorithm are reliable, because 8 of our top

10 targets had medium/high scores from Toppgene and Toppnet.

Using a computational method to evaluate our top repurposed drugs (antibodies targeting

CD33 and MIF) is difficult, because most available computational tools are used for small mol-

ecule drugs. Cmap and C2maps revealed two drugs of interest: edrophonium and physostig-

mine, both of which are ACHE inhibitors. Other repurposed small molecule drugs cannot be

properly evaluated using Cmap and C2maps, because these two methods used the only known

anti-AD target (ACHE) to assess similarity, and thereby may have limitations when evaluating

other targets that have quite different pathogenic mechanisms. In the future, experimental vali-

dation is needed to evaluate the efficacy and toxicity of the repurposed drugs in cell and animal

models.

CD33 is a transmembrane receptor mainly expressed in myeloid lineage cells, especially in

most leukemic blast cells, so it was a drug target for the treatment of AML [39]. In brain, it is

mainly expressed on the surface of microglia. It may constitutively repress monocyte-derived

pro-inflammatory cytokines [40]. The CD33 rs3865444 risk C-allele was associated with

increased CD33 expression, decreased Aβ42 uptake and an increased number of activated

microglia that fail to clear the amyloid plaques in AD patients [41]. Hence, it might be worth-

while to explore if the repurposing of anti-CD33 antibodies/inhibitors developed for treating

acute myelogenous leukemia (Gemtuzumab ozogamicin, Vadastuximab talirine, Lintuzumab,

BI-836858, HuM195/rGel and HuM-195-Ac-225) are also effective for AD. Notably, Gemtuzu-

mab ozogamicin carries a toxic calicheamicin-g1 derivative that may cause severe side effects

in some patients of AML and was withdrawn from the US market in 2010 but is still on the

market in Japan on the basis of a marginally favorable risk-benefit assessment [42]. This exam-

ple speaks to the need of careful patient selection (e.g., based on the AD risk allele in CD33).

Also, it is anticipated that an optimization of antibody conjugates would be needed before the

benefit of anti-CD33 antibodies could be explored in AD clinical trials. Of note, another anti-

CD33 antibody (Lintuzumab) was proved to be safe in human [43].

MIF is the second top ranking anti-AD target that was previously found to be elevated in

the CSF of AD patients [44, 45]. As a pro-inflammatory cytokine, MIF is essential for
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promoting microglial activation [46]. An MIF receptor (CD74) was also documented to be ele-

vated in microglia of AD cases [47]. Importantly, MIF interacts with Aβ and the inhibition of

MIF was shown to reduce Aβ-induced toxicity in cells [45]. Therefore, existing anti-MIF anti-

bodies might be repurposed for treating AD. If the anti-MIF antibody (clinicaltrial.gov identi-

fier: NCT01765790) in phase I clinical trial turns out to be safe for humans, another clinical

trial may be initiated to test its efficiency in AD patients with elevated MIF levels in CSF.

In addition to CD33 and CD74 [40, 47], other AD genes (ABCA7 and TREM2) are also

expressed in microglia [48, 49], suggesting that the modulation of microglial function may be

a promising mechanism-based strategy for AD intervention. An immune checkpoint protein

(PD-1) plays an important role in down regulating the immune system. Recently, a PD-1

immune checkpoint blockade was shown to reduce pathology and improve memory in AD

mouse models [50], suggesting that PD-1 blocker drugs (e.g., Nivolumab and Pembrolizumab)

might be repurposed as AD therapies.

Integrated analysis of AD-related ‘omics’ data and electronic health records would be

required for better understanding AD pathogenesis and facilitating anti-AD drug repositioning.

Also other databases of references, substances and reactions in chemistry (such as SciFinder)

could be utilized to improve the current drug repositioning strategy. Quantitative approaches

need to be developed to evaluate changes in (i) biomarkers, (ii) the effect size of risk factors, (iii)

the strength of the disease-drug association, and (iv) the confidence in AD pathogenesis data.

Meanwhile, integrated machine learning algorithms (such as those implemented in the IBM

Watson Discovery Advisor) can be developed to automatically conduct text mining, data

extraction, and computational analyses to guide the selection of drugs and their targets. Finally,

it is clear that personalized medication is the future, given the high heterogeneity found in AD

patients (even in subjects carrying the same genetic mutations [51, 52]).

In conclusion, systematic analyses of ‘omics’ data revealed 18 protein targets linked to 75

existing drugs, including 7 drugs inhibiting a known anti-AD target (acetylcholinesterase) that

may be repurposed for treating the cognitive symptoms of AD. CD33 and MIF emerged in this

analysis as particularly strong candidates on the basis of high target scores and the availability

of seven existing drugs. Thus, our data has added to an increasing body of research identifying

the modulation of the immune system and neuroinflammation as a promising area for anti-

AD drug development. Finally, the current study highlighted the CAD protein and its link to

disturbances in glutamate/GABA neurotransmitters; as well as 8 AD-related proteins detected

by two ‘omics’ approaches as promising for anti-AD drug development.
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