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Background. Diabetic nephropathy (DN) is a common and serious complication of diabetes, but without a satisfactory treatment
strategy till now. Liuwei Dihuang pills (LDP), an effective Chinese medicinal formula, has been used to treat DN for more than
1000 years. However, its underlying mechanism of action is still vague.Methods. Active compounds and corresponding targets of
LDP were predicted from the TCMSP database. DN disease targets were extracted from the OMIM, GeneCards, TTD, DisGeNET,
and DrugBank databases. Subsequently, the “herbal-compound-target” network and protein-protein interaction (PPI) network
were constructed and analyzed via the STRING web platform and Cytoscape software. GO functional and KEGG pathway
enrichment analyses were carried out on the Metascape web platform. Molecular docking utilized AutoDock Vina and PyMOL
software. Results. 41 active components and 186 corresponding targets of LDP were screened out. 131 common targets of LDP and
DNwere acquired. Quercetin, kaempferol, beta-sitosterol, diosgenin, and stigmasterol could be defined as five crucial compounds.
JUN, MAPK8, AKT1, EGF, TP53, VEGFA, MMP9, MAPK1, and TNF might be the nine key targets. 3e enrichment analysis
showed that common targets were mainly associated with inflammation reaction, oxidative stress, immune regulation, and cell
apoptosis. AGE-RAGE and IL-17 were the suggested two significant signal pathways. Molecular docking revealed that the nine key
targets could closely bind to their corresponding active compounds. Conclusion. 3e present study fully reveals the multi-
compound’s and multitarget’s characteristics of LDP in DN treatment. Furthermore, this study provides valuable evidence for
further scientific research of the pharmacological mechanisms and broader clinical application.

1. Introduction

Diabetes mellitus, like COVID-19, is a wicked problem [1]. It
may affect 693 million adults by 2045, according to the
prediction of the International Diabetes Federation [2].
Diabetes mellitus has emerged as the leading cause of dia-
betic nephropathy (DN), which is the leading cause of the
end-stage renal disease (ESDR) [3]. Epidemiological studies

have shown that more than 30% of diabetic patients may
develop DN [4]. In some parts of the world, ESDR caused by
DN accounts for over 50% of renal replacement therapeutic
patients [5]. 3e current therapies strategies for DN mainly
include controlling blood glucose, reducing proteinuria, and
managing merging symptoms [6]. However, the under-
standing of DN continues to increase, and current treatment
methods for DN are still not effective enough. Many patients
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with DN have a poor prognosis, especially those with ad-
vanced DN are still unsatisfactory [7]. 3erefore, novel
therapeutic drugs for DN are urgently required. Fortunately,
Liuwei Dihuang pills (LDP) may be a potential comple-
mentary and alternative therapy medicine for DN.

LDP, a classical prescription first described in Xiaoer
Yaozheng Zhijue, has been used to treat DN for more than
1000 years by Chinese people. Qian Yi formulated LDP
during the Song dynasty. It is composed of 6 herbs, including
Rehmanniae Radix Preparata (Shudihuang), Cortex Moutan
(Mudanpi), Rhizoma Dioscoreae (Shanyao), Cornus offici-
nalis (Shanzhuyu), Alisma (Zexie), and Poria Cocos (Fuling).
LDP is considered to have the efficacy of nourishing the yin
and kidney. In recent years, more and more researchers’
interest has been focused on LDP to treat DN. Xu et al. [8]
have reported that LDP can protect glomerular mesangial
cells and prevent renal fibrosis in the treatment of rats of DN.
Lin et al. [9] have documented that Western medicine has
better therapeutic efficacy in treating DN when combined
with LDP. Shi et al. [10] also have found that LDP has a
practical therapeutic effect on diabetic nephropathy. Ameta-
analysis including 14 RCTstudies and 918 study participants
has reported that LDP categorized formulas are safe and
effective in treating DN proteinuria [11]. However, because
of the characteristics of multicompound and multitarget,
exploring the underlying molecular mechanism of tradi-
tional Chinese medicine (TCM) through cellular or animal
studies is relatively tricky [12]. Until now, the pharmaco-
logical mechanism of LDP in DN treatment is still vague,
which greatly limits its extensive application.

Because of the holism concept of TCM, Chinese me-
dicinal formulas are usually treated diseases through several
components and targets rather than a single one [13].
Network pharmacology can abstract the interaction rela-
tionship of drugs and targets into a networkmodel and study
them via a holistic perspective, consistent with the concept
of holism in TCM [14]. In recent years, it has been recog-
nized as an efficient method to study TCM. 3erefore, our
study was set out to reveal the mechanism of LDP in treating
DN via the pharmacology network and molecular docking
combination approach. It can provide valuable evidence for
further basic research and clinical applications. 3e flow-
chart of network pharmacology research on LDP in treating
DN is shown in Figure 1.

2. Methods

2.1. Herbal Compounds and Corresponding Targets in LDP
Extraction. Traditional Chinese Medicine System Pharma-
cology Database (TCMSP, https://tcmspw.com/tcmsp.php/
), a systematic pharmacology database, provides information
about the active herbal components and related targets [15].
We searched the TCMSP database to acquire the active
compounds in LDP. Oral bioavailability (OB) means the rate
and percentage of pharmaceutical agents orally absorbed
into the systemic circulation [16]. Drug-likeness (DL) is a
concept based on existing drugs’ physical and chemical
properties and can be used to estimate compounds whether
reaching the conditions to become new drugs [16]. 3e

active compounds in LDP were further screened with the
criteria that OB≥ 30% and DL≥ 0.18.3en, we also screened
the targets related to these herb compounds from the
TCMSP database. Taking “Reviewed” and “Human organ-
isms” for filtering conditions, we acquired the related gene
symbols of these targets from the UniProt database (https://
www.uniprot.org/) [17]. In this study, the compounds that
cannot find corresponding gene symbols were excluded.

2.2.DNTargetsDetermination. For the purpose of obtaining
a target list associate with DN, “diabetic nephropathy” was
set as a keyword to search five disease database: Online
Mendelian Inheritance in Man (OMIM) database (https://
omim.org/) [18], GeneCards database (https://www.
genecards.org/) [19], 3erapeutic Target (TTD) database
(http://db.idrblab.net/ttd/) [20], DisGeNET database
(https://www.disgenet.org/home/) [21], and DrugBank da-
tabase (https://go.drugbank.com/) [22]. After combining the
acquired targets and removing the duplicate data, the
candidate targets for the treatment of DN were obtained.

2.3. “Herbal-Compound-Target” Network Construction.
After intersecting the acquired targets of formula and disease
by using R language software, the common targets of LDP in
treating DN were screened out. 3en, we used Cytoscape
3.8.0 software to construct a “Herbal-compound-target”
network [23]. 3e relationship between the active com-
pounds and the anti-DN targets in LDP can be visualized
easily on this network.

2.4. Protein-Protein Interaction (PPI) Network Construction.
3e STRING (https://string-db.org/, version 11.0) is a data
platform that collects almost all known and predicted in-
teractions between the expressed proteins [24].We uploaded
the acquired therapeutic targets to this web platform. 3e
species parameter was set as “Homo sapiens,” and the
confidence score was limited to “>0.7,” hide discrete targets,
the PPI network was built, and the date of the network was
exported.

2.5. Screening of Key Targets in the PPI Network.
Cytoscape3.8.0 software was utilized to visualize and analyze
the PPI network data. We then used the Cytoscape plugin
CytoNCA [25] to screen critical targets in the PPI network.
Betweenness centrality, closeness centrality, and degree
centrality were chosen as the parameters to calculate to-
pological features of the PPI network. Betweenness centrality
was used to assess how much the shortest paths must pass
through a given node [26]. Nodes with higher betweenness
can be understood as connected to many nodes transmitting
information [27]. Closeness centrality indicates the average
distance between the nodes in the network [28]. Degree
shows the number of edges to node [29]. Nodes with larger
degree values are more crucial in the network [30]. 3e
median of the three parameters was set as the thresholds for
filtering central nodes to screen key targets.
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2.6. Enrichment Analysis. Metascape (http://metascape.
org) is an enrichment analysis platform updated
monthly rather than longer to keep the data up to date
[31]. To further illustrate the underlying mechanism of
LDP for treating DN, we uploaded the acquired 131
common targets to Metascape online platform. 3en, we
performed GO and KEGG enrichment analyses on this
platform. 3e “Min Overlap � 3,” “Min
Enrichment � 1.5,” and “P value cutoff <0.01” were set as
significant thresholds. Biological processes (BP), cellular
components (CC), and molecular function (MF) are
included in GO terms. After analysis, the top 10 terms of
BP, CC, MF, and KEGG pathways were chosen to be
visualized.

2.7. Molecular Docking. 3e binding capability of nine key
targets and their corresponding active compounds were
evaluated by molecular docking. To ensure the accuracy of
the data, we used the UniProt database to find the UniProt
ID of the key targets. According to the Uniport ID, the 3-
dimensional (3D) protein structures related to the nine key
targets were downloaded from the RCSB PDB online tools
(http://www.rcsb.org/) [32]. 3e water molecules and small
molecule ligands of the 3D protein structure were removed
by PyMOL 2.4.0 software. 3e 2-dimensional (2D) struc-
tures of the compounds corresponding to the nine key
targets were acquired from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) [33].3en, the 2D structures of
active compounds were converted into 3D structures by
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Figure 1: 3e flowchart of LDP in treating DN.
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ChemBio3D 14.0 software. AutoDockTools 1.5.6 software
was used to convert the “PDB” format file of 9 proteins and
their corresponding active compounds into “pdbqt” format
and define the location of their active pocket. At last, we
performed molecular docking with AutoDock Vina 1.1.2
software.

3. Results

3.1. Active Compounds in LDP. A total of 41 active com-
pounds of 6 herbs in LDP were acquired from the TCMSP

database after screening (Table 1), including 2 compounds in
Rehmanniae Radix Preparata (Shudihuang), 6 compounds
in Cortex Moutan (Mudanpi), 12 compounds in Rhizoma
Dioscoreae (Shanyao), 13 compounds in Cornus officinalis
(Shanzhuyu), 7 compounds in Alisma (Zexie), and 6
compounds in Poria cocos (Fuling).

3.2. Target Prediction. In total, 186 corresponding targets of
active compounds in LDP were screened out (Supplemen-
tary Table S1). 3e number of related targets in Rehmanniae

Table 1: 41 active compounds information in LDP.

Mol ID Compound Drug OB
(%) DL

MOL000273
(2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-Dihydroxy-4,4,10,13,14-

pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-
yl]-6-methylhept-5-enoic acid

Fuling 30.93 0.81

MOL000275 Trametenolic acid Fuling 38.71 0.8
MOL000283 Ergosterol peroxide Fuling 40.36 0.81
MOL000279 Cerevisterol Fuling 37.96 0.77
MOL000296 Hederagenin Fuling 36.91 0.75
MOL000282 Ergosta-7,22E-dien-3beta-ol Fuling 43.51 0.72
MOL000098 Quercetin Mudanpi 46.43 0.28
MOL000211 Mairin Mudanpi 55.38 0.78
MOL000422 Kaempferol Mudanpi 41.88 0.24
MOL000492 (+)-Catechin Mudanpi 54.83 0.24
MOL007374 5-[[5-(4-Methoxyphenyl)-2-furyl]methylene]barbituric- acid Mudanpi 43.44 0.3
MOL000322 Kadsurenone Shanyao 54.72 0.38
MOL000546 Diosgenin Shanyao 80.88 0.81
MOL000953 CLR Shanyao 37.87 0.68
MOL001559 Piperlonguminine Shanyao 30.71 0.18
MOL001736 (−)-Taxifolin Shanyao 60.51 0.27
MOL005430 Hancinone C Shanyao 59.05 0.39
MOL005435 24-Methylcholest-5-enyl-3belta-O-glucopyranoside_qt Shanyao 37.58 0.72
MOL005438 Campesterol Shanyao 37.58 0.71
MOL005440 Isofucosterol Shanyao 43.78 0.76
MOL005458 Dioscoreside C_qt Shanyao 36.38 0.87
MOL005465 AIDS180907 Shanyao 45.33 0.77

MOL000449 Stigmasterol Shanyao, Shanzhuyu,
Shudihuang 43.83 0.76

MOL005531 Telocinobufagin Shanzhuyu 69.99 0.79
MOL000358 Beta-sitosterol Shanzhuyu 36.91 0.75
MOL005481 2,6,10,14,18-Pentamethylicosa-2,6,10,14,18-pentaene Shanzhuyu 33.4 0.24
MOL001495 Ethyl linolenate Shanzhuyu 46.1 0.2
MOL005503 Cornudentanone Shanzhuyu 39.66 0.33
MOL002879 Diop Shanzhuyu 43.59 0.39
MOL002883 Ethyl oleate (NF) Shanzhuyu 32.4 0.19
MOL001771 Poriferast-5-en-3beta-ol Shanzhuyu 36.91 0.75
MOL005530 Hydroxygenkwanin Shanzhuyu 36.47 0.27
MOL001494 Mandenol Shanzhuyu 42 0.19
MOL008457 Tetrahydroalstonine Shanzhuyu 32.42 0.81
MOL000831 Alisol B monoacetate Zexie 35.58 0.81
MOL000849 16β-Methoxyalisol B monoacetate Zexie 32.43 0.77
MOL000853 Alisol B Zexie 36.76 0.82
MOL000856 Alisol C monoacetate Zexie 33.06 0.83

MOL000862
[(1S,3R)-1-[(2R)-3,3-Dimethyloxiran-2-yl]-3-[(5R,8S,9S,10S,11S,14R)-11-

hydroxy-4,4,8,10,14-pentamethyl-3-oxo-1,2,5,6,7,9,11,12,15,16-
decahydrocyclopenta[a]phenanthren-17-yl]butyl] acetate

Zexie 35.58 0.81

MOL002464 1-Monolinolein Zexie 37.18 0.3

MOL000359 Sitosterol Zexie, Mudanpi,
Shanzhuyu, Shudihuang 36.91 0.75
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Radix Preparata (Shudihuang), Cortex Moutan (Mudanpi),
Rhizoma Dioscoreae (Shanyao), Cornus officinalis (Shanz-
huyu), Alisma (Zexie), and Poria cocos (Fuling) was 27, 152,
62, 54, 5, and 19, respectively. As for the disease targets, 22
DN-related targets were acquired in TTD, 1189 in Dis-
GeNET, 109 in DrugBank, 3319 in GeneCards, and 68 in
OMIM. After removing duplicates, 3701 targets were
identified (Figure 2(a) and Supplementary Table S2). Finally,
131 common targets of LDP and DN were obtained by
intersecting the acquired targets (Figure 2(a), Supplemen-
tary Table S3).

3.3. “Herbal-Compound-Target” Network Construction. A
“herbal-compound-target” network (Figure 3), including
172 nodes (41 active compound nodes of herb and 131
common target nodes) and 293 edges, was constructed. We
obtained the “degree” parameter of the herbal-compound-
target network by using an analysis network tool in Cyto-
scape software. After the network analysis, we found that the
MOL000098 (quercetin, degree� 104), MOL000422
(kaempferol, degree� 42), MOL000358 (beta-sitosterol,
degree� 16), MOL000546 (diosgenin, degree� 16), and
MOL000449 (stigmasterol, degree� 13) were the top 5
compounds in the 41 active compounds. 3ese five com-
pounds may play the most significant role in treating DN.
3is result indicates that LDP played anti-DN roles mainly
through these compounds. Overall, the relationships among
herbs, active compounds, and disease targets can be ob-
served through the network graph.

3.4. PPI Network Construction and Key Targets Analysis.
For the purpose of further elucidating the mechanisms of
LDP treatment of DN in vivo, we introduced 131 common
targets into the STRING online service platform, and the
date and figure of a PPI network were acquired (Figure 4).

3e PPI network data were visualized and analyzed via the
“Analysis network” tool in Cytoscape 3.8.0 software. 122
nodes and 914 edges were included in the PPI network
(Figure 5(a)). We tried to find the key targets by the to-
pological features and set the median of betweenness,
closeness, and degree centrality as the screening criteria. 3e
thresholds of the first screening were
betweenness≥ 38.641242955, closeness≥ 0.445673703, and
degree≥ 11. A new network including 43 nodes and 440
edges was acquired after the first screening (Figure 5(b)).
Subsequently, betweenness≥ 13.17520385, close-
ness≥ 0.65625, and degree≥ 20 were set as the thresholds of
second screening. A center network that includes 20 nodes
and 155 edges was constructed (Figure 5(c)). For the purpose
of finding the most critical targets in the PPT network,
betweenness≥ 3.3646742145, closeness≥ 0.826086957, and
degree≥ 15 were set as the last screening thresholds.
Eventually, JUN, MAPK8, AKT1, EGF, TP53, VEGFA,
MMP9, MAPK1, and TNF were screened as the key targets
of the PPI network (Figure 5(d)).

3.5. Enrichment Analysis. GO and KEGG enrichment ana-
lyses of 131 common targets were performed on the
Metascape data platform. 3is study found 2231 GO terms,
including 2008 BP terms, 83 CC terms, and 143 MF terms.
3e top 10 most important terms of BP, CC, and MF are
shown in Figure 6(a). BP terms mainly include response to
the apoptotic signaling pathway, oxygen levels, lipopoly-
saccharide, wounding, organic cyclic compound, and ni-
trogen compound. CC terms were mainly enriched in
membrane raft, protein kinase complex, vesicle lumen,
transcription factor complex, plasma membrane protein
complex, ficolin-1-rich granule lumen, organelle outer
membrane, and cell body. MF terms mainly involved cy-
tokine receptor binding, antioxidant activity, protein do-
main specific binding, transcription factor binding, nuclear
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Figure 2: Venn diagram. (a) DN disease targets. (b) 3e intersection of LDP and DN disease targets.
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receptor activity, protein homodimerization activity,
repressing transcription factor binding, and protein kinase
binding.

339 pathways were acquired through the KEGG pathway
enrichment analysis. 3e top 10 most important terms of the
KEGG pathway enrichment analysis were chosen for the
visual analysis (Figure 6(b)). 3e potential targets of LDP in
treating DN were principally enriched in pathways in cancer,
AGE-RAGE signaling pathway in diabetic complications, and
L-17 signaling pathway. Besides, MAPK, HIF-1, platinum
drug resistance, cellular senescence, hepatitis C, and leish-
maniasis pathways were also included. 3e AGE-RAGE

signaling pathway is closely connected with inflammatory
response and diabetic complications and is selected to be
further visualized as an example. 3e pink labeled nodes are
the common targets of LDP and DN (Figure 7). It suggests
that the AGE-RAGE signaling pathway is significant in LDP’s
anti-DN efficacy. More details of the GO functional and
KEGG pathway analyses results are shown in additional file 1.

3.6. Molecular Docking. For the purpose of validating the
study results of the network analysis, the molecular docking
between the nine key targets (JUN, MAPK8, AKT1, EGF,
TP53, VEGFA, MMP9, MAPK1, and TNF) and their
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corresponding active compounds was performed. When the
binding energy is <0 kJ mol, the small molecule ligand can
spontaneously bind to the protein receptor. If the binding
energy is <−5.0 kJ mol or lower, it indicates that the two have
the better binding ability [34].3rough docking simulations,
16 pairs of docking results were yielded (Table 2). 3eir
binding energy is all <−5 kJ mol, which means all of them
can bind very well. 3e detailed information of the four best
molecular docking targets and their corresponding active
compounds is shown in Figure 8. Quercetin and JUN
docking and quercetin and MAKP1 docking had the lowest
binding energy (−8.8 kcal/mol), whereas the kaempferol and
JUN docking (−8.7 kcal/mol) and quercetin and AKT1
docking (−8.4 kcal/mol) pairs with the second-and third-
lowest binding energy. 3is molecular docking result

indicates that their combination might have an essential role
in treating DN with LDP.

4. Discussion

DN is a common diabetic complication that threatens the
health and lives of diabetic patients. Unfortunately, most
diabetic patients cannot obtain good treatment effects with
routine therapies. Growing evidence has suggested that LDP
may be a potential adjuvant or alternative medicine for DN
[8–11]. However, the detailed mechanism of action remains
obscure. As a relatively new approach in drug discovery,
network pharmacology can illustrate the interaction be-
tween diseases, drugs, and targets [35, 36]. To some extent,
the characteristics of network pharmacology coincide with

Figure 4: PPI network of LDP and DN common targets.
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the “multi-compounds, multi-targets, and multi-pathways”
theory of traditional Chinese medicinal formula. 3erefore,
we explored the mechanism of action of the Chinese
medicine formula LDP as an adjuvant treatment of DN
through a network pharmacology approach. Moreover, the
inner links between LDP and DN were further verified via
molecular docking. 3e present study improves the un-
derstanding of the molecular mechanism of LDN in treating
DN, which is of great importance for further basic research
and clinical application.

Based on the results of the network analysis, quercetin,
kaempferol, beta-sitosterol, diosgenin, and stigmasterol can
be defined as the crucial compounds of LDP in treating DN.
It is reported that quercetin could inhibit inflammatory cell
infiltration, alleviate renal oxidative stress injury, relieve the
pathological damage of the kidney, and improve renal
function in DN [37]. Kaempferol has anti-inflammatory,
antioxidant, and antifibrotic properties in DN [38, 39]. Beta-

sitosterol has been identified as a potential herbal nutra-
ceutical for DN because it has anti-inflammatory, lipid-
lowering, antioxidant, and antidiabetic activities [40].
Diosgenin plays a protective role in DN through lowering
oxidative stress and inflammation [41]. Stigmasterol has the
function of regulating the glucose metabolism [42]. 3ese
main LDP compounds collectively exert anti-inflammation,
antioxidant, antifibrotic, antihyperglycemic, and anti-
hyperlipidemic effects which can form a pharmacological
basis for the anti-DN function of LDP.

3rough the PPI network analysis, JUN, MAPK8, AKT1,
EGF, TP53, VEGFA,MMP9, MAPK1, and TNFwere the key
targets of LDP in treating DN. 3ese targets are mainly
connected with inflammation, vascular permeability, and
oxidative stress. In some ways, this is consistent with the
disease characteristics and pathogenesis of DN. To further
reveal LDP’s possible anti-DN molecular mechanism, we
conducted molecular docking of 9 key targets with their
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Figure 6: GO functional and KEGG pathway enrichment analyses. (a) 3e top 10 terms of BP, CC, and MF in GO functional enrichment
analysis are shown.3e height of the column in each part is closely related to the counts of potential targets. (b)3e top 10 KEGG terms were
closely associated with LDP in the treatment of DN. 3e redder the color, the larger the −log10 (P value). 3e bigger the size, the more
potential targets are involved in the pathways.
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Figure 7: AGE-RAGE signaling pathway in diabetic complications. 3e pink nodes are the common targets of DN and LDP, and the blue
nodes are others in the pathway.

Table 2: Molecular docking results of nine key genes with their corresponding compounds in LDP.

PDB ID Key targets Compounds Binding energy (kcal/mol)
5T01 JUN Quercetin −8.8
3ZU7 MAPK1 Quercetin −8.8
5T01 JUN Kaempferol −8.7
2UVM AKT1 Quercetin −8.4
2UVM AKT1 Kaempferol −8.1
4QAF VEGFA Diosgenin −8.1
4H82 MMP9 Quercetin −8.1
2TNF TNF Quercetin −8.1
2NO3 MAPK8 Kaempferol −8.0
4QAF VEGFA Quercetin −7.9
2TNF TNF Kaempferol −7.9
2UVM AKT1 Diosgenin −7.7
5T01 JUN Beta-sitosterol −7.7
2RUK TP53 Diosgenin −7.6
2RUK TP53 Quercetin −6.9
2KV4 EGF Quercetin −6.9
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corresponding active compounds. Study results have shown
that the nine key targets have an excellent ability to bind
their related active compounds in LDP. Among them, JUN,
MAKP1, and AKT1 had a more stable binding ability than
others. A recent study showed that c-Jun could be pro-
gressively elevated, and it could activate the expression of
TGFβ1 via ross-activation and autoregulation during renal
fibrosis in DN [43]. MAPK1 can increase many inflam-
matory and adhesion factors in glomerular cells and exac-
erbate the damage in the pathological state of DN [44]. AKT1
is closely associated with the immune regulation and in-
flammation reaction of DN. It plays a vital role in basement
membrane thickening, mesangial proliferation, and podo-
cyte injury [45].

3e GO functional enrichment analysis of the 131
common targets was carried out (Figure 6(a)). 3e 10 most
meaningful enriched BP terms were principally associated
with apoptosis, response to oxygen levels, and response to
lipopolysaccharide. Related research demonstrated that the
initiation and progression of DN are closely associated with
apoptosis, oxidative stress, and lipopolysaccharide level
[46, 47]. MF terms mainly included transcription factor
binding, protein homodimerization activity, cytokine re-
ceptor binding, and antioxidant activity. 3e targets pri-
marily enriched in the above MF terms were JUN, TNF,
VEGFA, SOD1, DPP4, and AKT1. 3ey are principally
included in inflammatory regulation, immune response, and
oxidative stress. Inflammation and immune response play

essential roles in the progression of DN [48]. CC terms were
mainly enriched in membrane raft, protein kinase complex,
extracellular matrix, transcription factor complex, and
vesicle lumen. 3e key targets, such as TNF, MAPK1, and
VEGFA, were included in these terms. 3ese finds indicated
that DN is very complex, and the LDP could be used to treat
DN by interfering with various molecular functions and
cellular components.

Associated with the GO enrichment analysis, we found
out that the main pathways of LDP on DN might be the
AGE-RAGE signaling pathway and IL-17 signaling pathway
based on the enrichment results of KEGG. As we all know,
the AGE-RAGE signaling pathway is of great significance to
diabetic complications. 3e upregulation of AGEs levels and
RAGE expression can aggravate the progression of DN [49].
When the kidney is subjected to long-term stimulation of
glycosylation of reducing sugars, the AGEs are gradually
accumulated and increase the risk of extracellular matrix
migration, renal tubular dysfunction, and glomerular pro-
liferative lesion. Furthermore, AGEs can bind to RAGE
receptors to cause chronic inflammation reaction, oxidative
stress, kidney tissue damage, and the loss of kidney function
[50]. Sharma et al. have reported that AGE-RAGE inter-
action promotes DN’s progression because of the release of
fibronectin, TGF-β, and inflammatory cytokines [51]. If the
IL-17 pathway is activated in many kidney diseases, it can
promote inflammatory cytokines [52]. Inflammatory cyto-
kines can cause glomerulosclerosis and kidney tissue damage

quercetin act on JUN
(Affinity=-8.8 kcal/mol)

(a)

quercetin act on MAPK1
(Affinity=-8.8 kcal/mol)

(b)

kaempferol act on JUN
(Affinity=-8.7 kcal/mol)

(c)

quercetinl act on AKT1
(Affinity=-8.4 kcal/mol)

(d)

Figure 8: Four best molecular docking results. Molecular docking results between quercetin and JUN, quercetin and MAKP1, kaempferol
and JUN, quercetin and AKT1, respectively.
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in DN via inflammatory response [53]. Mohamed et al. have
shown that low-dose recombinant IL-17 might prevent and
reverse DN [54].

To some extent, our results are supported by the previous
studies, which made them more reliable. However, there are
also some limitations in this study. For example, it is difficult
to ensure that the drug’s active ingredients are identical to
those absorbed into the patient’s bloodstream; We are still
vague about the interaction effects of different nodes in the
network analysis. 3e functions and pathways highly
researched may cause departures from expected results.
3us, further experimental and clinical studies are war-
ranted to verify our theoretical prediction.

5. Conclusion

3is research proved that the therapeutic mechanism of LDP
on DN might be realized by multitargets, multiactive
compounds, and multipathways. We found that quercetin,
kaempferol, beta-sitosterol, diosgenin, and stigmasterol can
be defined as five crucial compounds. JUN, MAPK8, AKT1,
EGF, TP53, VEGFA, MMP9, MAPK1, and TNF may be the
nine most important therapeutic targets. AGE-RAGE and
IL-17 are two key signal pathways of LDP for the treatment
of DN. 3e potential pharmacological mechanism mainly
associates with inflammation reaction, oxidative stress,
immune regulation, and cell apoptosis. Also, some active
compounds, target genes, and pathways in our study have
few reports, which may be the clues for further research in
the mechanism of LDP in treating DN. In summary, our
study provides valuable evidence for further basic research
and clinical applications.
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