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Binding site residues control 
inhibitor selectivity in the human 
norepinephrine transporter but 
not in the human dopamine 
transporter
Jacob Andersen1, Kristoffer B. Ringsted1, Benny Bang-Andersen1,2, Kristian Strømgaard1 & 
Anders S. Kristensen1

The transporters for norepinephrine and dopamine (NET and DAT, respectively) constitute the 
molecular targets for recreational drugs and therapeutics used in the treatment of psychiatric 
disorders. Despite a strikingly similar amino acid sequence and predicted topology between these 
transporters, some inhibitors display a high degree of selectivity between NET and DAT. Here, a 
systematic mutational analysis of non-conserved residues within the extracellular entry pathway 
and the high affinity binding site in NET and DAT was performed to examine their role for selective 
inhibitor recognition. Changing the six diverging residues in the central binding site of NET to the 
complementary residues in DAT transferred a DAT-like pharmacology to NET, showing that non-
conserved binding site residues in NET are critical determinants for inhibitor selectivity. In contrast, 
changing the equivalent residues in the central site of DAT to the corresponding residues in NET 
had modest effects on the same inhibitors, suggesting that non-conserved binding site residues in 
DAT play a minor role for selective inhibitor recognition. Our data points towards distinct structural 
determinants governing inhibitor selectivity in NET and DAT, and provide important new insight into 
the molecular basis for NET/DAT selectivity of therapeutic and recreational drugs.

Transporters for the biogenic monoamine neurotransmitters norepinephrine, dopamine and serotonin 
(NET, DAT and SERT, respectively) are integral membrane proteins that regulate monoaminergic sig-
nalling in the brain by performing sodium- and chloride-coupled uptake of neurotransmitters from the 
extracellular space into neurons1. Inhibitors of the three monoamine transporters (MATs) increase the 
extracellular concentration of monoamines, and are widely used in the treatment of psychiatric diseases 
and as illicit psychostimulant drugs2. The selectivity profile of MAT inhibitors across NET, DAT and 
SERT is critical for their therapeutic profile and/or abuse potential. Specifically, antidepressant medi-
cations, including the selective serotonin reuptake inhibitors and tricyclic antidepressants (TCAs), pre-
dominantly block SERT and/or NET with little or no affinity for DAT3, whereas psychostimulants, like 
cocaine and amphetamines, target all three MATs, albeit their reinforcing properties and abuse potential 
are attributed to blockade of DAT4,5. Interestingly, some compounds show potent inhibition of DAT but 
no cocaine-like behaviour in animal models6–8. This is not fully understood but may be explained by a 
concomitant activity at sigma-receptors, slow binding rate to DAT or conformational selectivity (i.e. bias 
for binding to a distinct conformation of DAT compared to cocaine)9. The lack of stimulant activity could 
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potentially be exploited in the development of treatments of stimulant abuse, and several DAT inhibitors 
have been pursued as pharmacotherapies for cocaine addiction9.

Current structural understanding of human MATs is based on x-ray crystal structures of bacterial 
and invertebrate homologs, which include the bacterial amino acid transporters LeuT and MhsT and 
the Drosophila melanogaster DAT (dDAT)10–13. These structures have established that MATs share a con-
served topology consisting of 12 transmembrane domains (TMs) arranged in a barrel-like bundle with 
the substrate binding site (denoted the S1 site) located in the core of the protein structure (Fig.  1). 
Although x-ray crystal structures of LeuT in complex with antidepressant drugs have suggested that 
some MAT inhibitors potentially bind in a vestibular site (denoted the S2 site) in the extracellular per-
meation pathway14–16, recent x-ray crystal structures of dDAT have shown that the binding site for sev-
eral classical MAT inhibitors overlaps the central S1 site (Fig.  1)13,17,18. Together with mutational19–23, 
biochemical24–27, and computational24,28–34 studies of inhibitor binding in MATs, these structures provide 

Figure 1. The extracellular entry pathway for inhibitors in hNET and hDAT. (a) The extracellular entry 
pathway for inhibitors is illustrated on the nortriptyline-bound dDAT x-ray crystal structure (PDB ID 
4M48). Location of the S1 and S2 sites are indicated by green and blue dashed lines, respectively, and the 
EL4 region is shown in yellow. Nortriptyline is shown as green spheres. (b) Close-up view of the EL4 region 
in dDAT. The 15 non-conserved hNET/hDAT residues in EL4 are shown as sticks (dDAT numbering). (c) 
Close-up view of the S2 site in dDAT. Imipramine is shown as yellow spheres in the site equivalent to the 
imipramine binding site found in LeuT (PDB ID 2Q72). The seven non-conserved hNET/hDAT residues 
within 8Å of the S2 site are shown as blue sticks (dDAT numbering). (d) Close-up view of the S1 site in 
dDAT. Nortriptyline is shown as yellow spheres. The six non-conserved hNET/hDAT residues within 8 Å 
of the S1 site are shown as green sticks (dDAT numbering). (e) Amino acid sequence alignment between 
dDAT, hDAT and hNET showing the non-conserved hNET/hDAT residues within 8 Å of the S1 and S2 
sites and the EL4 region. A complete amino acid sequence alignment between dDAT, hDAT and hNET is 
included in Supporting Figure S1.
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compelling evidence that the high affinity binding site for most, if not all, MAT inhibitors overlaps the 
central S1 site. In contrast, the S2 site has been suggested to harbour an allosteric inhibitor site in human 
MATs35.

Resolving the molecular differences among NET, DAT and SERT that control selective inhibitor bind-
ing is important for structure-based design of MAT inhibitors with fine-tuned selectivity profiles. Within 
the S1 site, non-conserved residues can confer important differences among MATs in the shape and phys-
icochemical properties of the inhibitor binding pocket, and importantly change the number and strength 
of direct interactions with the bound inhibitor molecule. The central location of the S1 site means that 
inhibitors must traverse from the extracellular space through a funnel-like extracellular entrance path-
way, that include the S2 site, to reach the S1 site (Fig.  1). Thus, non-conserved residues in the extra-
cellular entrance pathway, including the extracellular loop 4 (EL4) that is an important gatekeeper for 
inhibitor access to the entrance pathway10,36,37, may confer differential ability among MATs for transient 
interactions with the inhibitor as it travels through the pathway, hereby controlling diffusion rates to and 
from the S1 site. Taken together, non-conserved residues in the S1 site and in the extracellular entrance 
pathway, including the S2 site and EL4, are thus obvious candidates for controlling selective inhibitor 
binding in MATs. Previous studies have shown that it is possible to tweak ligand selectivity by switch-
ing non-conserved S1 residues between MATs and/or related neurotransmitter transporters21,29,33,38–42. 
This implies that inhibitor selectivity is controlled by S1 residues in MATs, and is in accordance with 
the general idea that ligand affinity is mainly determined by specific ligand/protein interactions in the 
primary binding pocket43. In contrast, it was recently demonstrated that some inhibitors have different 
rates of binding (association) to DAT and SERT whereas their rates of unbinding (dissociation) were 
similar, indicating that diffusion of inhibitors through the entry pathway contribute to MAT inhibitor 
selectivity44. Notable, this is in analogy to G protein-coupled receptors, where binding of certain ligands 
is influenced en route to the binding site by residues in distal permeation sites close to the receptor sur-
face45,46. In the context of our current understanding of MAT structure, a complex picture is emerging for 
the mechanism underlying MAT inhibitor selectivity that suggests that selectivity for some inhibitors is 
conferred by differences among MATs in the extracellular entrance pathway, whereas differences within 
the S1 binding site determine selectivity for other inhibitors.

The human NET and DAT (hNET and hDAT, respectively) share a particular high homology with 
almost 80% overall identity in their amino acid sequence (Supporting Fig. 1), and both transporters 
can convey dopamine and norepinephrine across cellular membranes47. Despite the close relationship 
between hNET and hDAT, multiple NET- and DAT-selective inhibitors have been developed. It is note-
worthy that several NET inhibitors have very high selectivity for NET over DAT (up to several orders 
of magnitude), while it has been more challenging to develop inhibitors with equivalent degree of selec-
tivity for DAT over NET48,49. The molecular basis underlying inhibitor selectivity for NET and DAT is 
poorly understood, including the relative contribution of non-conserved residues in the S1 site and the 
extracellular entrance pathway. Early studies employing chimeric NET/DAT constructs identified two 
regions spanning TM 1–3 and TM 5–8, respectively, to contain important determinants for inhibitor 
selectivity50–52. The S1 site is formed by residues on TMs 1, 3, 6 and 8 and both regions thus encom-
pass residues in the central S1 binding site. However, the TM 5–8 region also includes EL4, and it has 
previously been shown that introduction of a single DAT residue into EL4 of NET affect the potency of 
NET inhibitors, suggesting that residues in the extracellular permeation pathway may also play a role for 
inhibitor selectivity in NET and DAT42,53.

In the present study, we systematically examine the role of non-conserved residues in hNET and 
hDAT that are located within the S1 site and in the extracellular permeation pathway, including the 
S2 site and EL4, for selective inhibitor recognition. We find that non-conserved S1 residues in hNET 
are primary determinants for inhibitor selectivity. Surprisingly, the corresponding residues in hDAT do 
not hold an equivalent important role for inhibitor selectivity. This indicates that selective inhibition in 
these two closely related MATs is achieved by distinct mechanisms. Our findings provide new insight 
into the molecular basis for inhibitor selectivity between hNET and hDAT, which may be used in the 
rational design and development of novel therapeutic agents targeting hNET and hDAT with tailor-made 
selectivity profiles.

Results
Determinants for inhibitor selectivity in hNET and hDAT. In previous studies, we examined the 
role of non-conserved residues within the S1 site of human SERT (hSERT) and hNET for inhibitor selec-
tivity by mutating all non-conserved residues to the corresponding residues in the other transporter, and 
thereby in principle transferred the S1 site from hNET into hSERT and vice versa. Hereby, we demon-
strated that non-conserved S1 residues are key determinants for the hSERT/hNET selectivity of the two 
prototypical SERT selective inhibitors, escitalopram and fluoxetine29,38. Encouraged by the results from 
these previous studies, we wanted to perform a similar systematic analysis of non-conserved residues 
in the S1 site and in the extracellular entrance pathway (including EL4 and the S2 site) in hNET and 
hDAT. We defined the S1 site as the nortriptyline binding site in dDAT13 and the S2 site was defined 
as the pocket in dDAT equivalent to the imipramine binding site in LeuT14 (Fig. 1 and Supporting Fig. 
S1). Within this definition, we identified 56 and 36 residues located within 8Å of S1 and S2, respec-
tively, in dDAT. Among these, six residues within the S1 site and seven residues within the S2 site are 
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non-conserved between hDAT and hNET (Fig. 1 and Supporting Fig. S1). A single non-conserved resi-
due (Phe155 in hDAT; Tyr151 in hNET) is located in the S1/S2 interface and was therefore included as 
part of both sites to give a total of 12 non-conserved residues in the S1/S2 binding region. Furthermore, 
15 out of 37 residues within the EL4 region are non-conserved between hNET and hDAT (Fig.  1 and 
Supporting Fig. S1). We mutated all non-conserved residues within S1, S2 and EL4, respectively, in hNET 
and hDAT to the identity of the corresponding residues in the other transporter, and thereby in principle 
transferred these three regions individually between the two transporters (Fig. 2). Similarly, by mutation 
of all non-conserved residues within two or three regions in the same construct, we simultaneously 
transferred S1 and S2 or S1, S2 and EL4 between hNET and hDAT (Fig. 2).

To determine the ability of the resulting hNET and hDAT mutants to express to cell membrane 
with intact transport function, the ten mutated transporter constructs were initially expressed along 
with wild-type (WT) hNET and hDAT in COS-7 cells and assessed for their ability to transport  
[3H]dopamine (Fig. 2, Supporting Table S1). Four of the five hNET mutants showed robust uptake activ-
ity, and only the NET-(DAT S1S2 EL4) mutant, in which S1, S2 and EL4 simultaneously were transferred 
from hDAT into hNET, was devoid of any measurable uptake activity (Fig. 2 and Supporting Table S1). 
For the five hDAT mutants, function was retained in the mutants in which S1 or S2 individually was 
transferred from hNET, whereas simultaneous insertion of the S1 and S2 sites and/or EL4 from hNET 
into hDAT abolished transport function (Fig. 2, Supporting Table S1). We also examined the ability of 
the hNET and hDAT mutants to bind the cocaine analogue [125I]β -CIT using membrane preparations 
from COS-7 cells expressing the ten mutants. All functional hNET and hDAT mutants were capable 
of binding [125I]β -CIT (Supporting Table S1). Furthermore, the non-functional hDAT mutant DAT-
(NET S1S2) displayed [125I]β -CIT binding, whereas the remaining non-functional mutants did not bind  

Figure 2. Uptake kinetics for hNET and hDAT mutants. [3H]dopamine uptake in COS-7 cells expressing 
hNET WT or hNET mutants (a) or hDAT WT or hDAT mutants (b). WT and mutant transporters were 
assayed in parallel, and the uptake of the mutants was normalized to the uptake of WT transporters. 
Data points represent mean ±  s.e.m. from representative experiments carried out in triplicate. Schematic 
illustrations of the hNET (a) and hDAT (b) mutants are shown on the right. hNET mutants are shown on a 
grey background and regions inserted from hDAT are shown in green. hDAT mutants are shown on a green 
background and regions inserted from hNET are shown in grey. The uptake saturation curves shown are 
transformations of the [3H]dopamine competition uptake assays that were used determined dopamine KM 
values. KM and Vmax values for dopamine uptake in addition to the specific point-mutations that are included 
in the hNET and hDAT mutants are summarized in Supporting Table S1.
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[125I]β -CIT (Supporting Table 1). In summary, seven of the ten hNET and hDAT mutants transported 
[3H]dopamine and/or bound [125I]β -CIT and could thus be subjected to pharmacological characteri-
zation to examine the role of non-conserved residues in the S1 and S2 sites and in EL4 for inhibitor 
selectivity.

Role of non-conserved residues for inhibitor selectivity in hNET. To examine the role of 
non-conserved residues within S1, S2 and EL4 for inhibitor selectivity, we selected five NET selective 
inhibitors and five DAT selective inhibitors (Fig.  3). This included inhibitors used in the treatment of 

Figure 3. Inhibitor selectivity between hNET and hDAT. Inhibition of [3H]dopamine uptake by the five 
NET inhibitors (a) and the five DAT inhibitors (b) in COS-7 cells expressing hNET WT (grey circles) or 
hDAT WT (green squares). Data points represent mean ±  s.e.m. from representative experiments carried out 
in triplicate. The inhibitory potency (Ki) for the ten inhibitors are summarized in Supporting Table S2. The 
hDAT/hNET selectivity ratio was calculated as Ki(hDAT WT)/Ki(hNET WT) for the five NET inhibitors and 
were as follows: talopram, 17,531; nisoxetine, 412; imipramine, 1,555; atomoxetine, 160; reboxetine, 6,952. 
The hNET/hDAT selectivity ratio was calculated as Ki(hNET WT)/Ki(hDAT WT) for the five DAT inhibitors 
and were as follows: bupropion, 36; JHW 007, 6; GBR 12,909, 8; rimcazole, 16; cocaine, 2.
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depression (imipramine and atomoxetine) and attention-deficit hyperactivity disorder (atomoxetine), 
a smoking cessation agent (bupropion), a psychostimulant drug (cocaine), and pharmacological tool 
compounds with selectivity for NET (nisoxetine and talopram) or DAT (GBR 12,909, JHW 007 and 
rimcazole). hNET WT and hDAT WT were expressed in COS-7 cells, and the inhibitory potency of the 
ten compounds was determined in [3H]dopamine uptake inhibition assays (Fig. 3 and Supporting Table 
S2). In general agreement with previous findings48,49, inhibitor selectivity between hNET and hDAT were 
more pronounced for the five NET inhibitors (160- to 17,531-fold increased potency for hNET over 
hDAT) compared to the DAT inhibitors. Bupropion, JHW 007, GBR 12,909 and rimcazole had 6- to 
36-fold higher potency towards hDAT compared to hNET while cocaine was equally potent on hDAT 
and hNET (Fig. 3). We also determined the binding affinity of the ten inhibitors at WT transporters by 
displacement of [125I]β -CIT binding from membrane preparations of COS-7 cells, and the binding affin-
ities of the ten inhibitors were comparable with the inhibitory potencies determined in uptake inhibition 
assays (Supporting Table S3).

The effect of mutating non-conserved residues in S1, S2 or EL4 in hNET to their hDAT equiva-
lents on the inhibitory potency of the ten inhibitors is summarized in Fig. 4. If non-conserved residues 
in a specific region are important determinants for inhibitor selectivity, we expected that the potency 
would be shifted towards the potency at hDAT WT. Transferring the S2 site or EL4 from hDAT into 
hNET generally induced only modest changes (< 3-fold) in the inhibitory potency for the ten inhibitors, 
demonstrating that non-conserved residues in the S2 site or in the EL4 region of hNET are not impor-
tant determinants for selective inhibitor recognition. In contrast, transferring the hDAT S1 site into 
hNET revealed a strikingly well-defined pattern of potency changes for the ten inhibitors. Specifically, 
the potency of nine of the ten inhibitors was shifted towards their potency at hDAT WT (Fig. 4). The 
potency of all five NET inhibitors was significantly decreased, whereas the potency was correspondingly 
increased for the DAT inhibitors bupropion, rimcazole, GBR 12,909 and JHW 007. To examine if the 
mutational induced changes in inhibitory potency reflect a concomitant change in binding affinity, we 
determined the affinity of the inhibitors at NET-(DAT S1), NET-(DAT S2) and NET-(DAT EL4) in a 
[125I]β -CIT competition binding assay (Supporting Table S3). Overall, the binding data corroborated 
our findings from the functional uptake inhibition assay. NET-(DAT S1) induced a significant shift in 
the binding affinity for five of the ten inhibitors towards hDAT WT affinity, whereas NET-(DAT S2) and 
NET-(DAT EL4) induced only modest (< 3-fold) changes in the binding affinity of the ten inhibitors 
(Supporting Table S3). Hence, except for bupropion and GBR 12,909, for which NET-(DAT S1) induced 
an unexpected loss of binding affinity (Supporting Table S3), the binding data supported the findings 
from the functional uptake inhibition assay. Together, these data strongly suggest that non-conserved 
residues within the high affinity S1 binding site are key determinants for selective inhibitor recognition 
in hNET, whereas non-conserved residues in the extracellular entrance pathway (i.e. in the S2 site and 
EL4 region) only play a minor role for inhibitor selectivity.

Role of non-conserved residues for inhibitor selectivity in hDAT. Similar to the characterization 
of inhibitor potency at the hNET mutants, we determined the inhibitory potency of the ten inhibitors 
at the functionally active hDAT mutants DAT-(NET S1) and DAT-(NET S2) (Fig.  5). As previously 

Figure 4. Pharmacological characterization of hNET mutants. The inhibitory potency of the five 
NET inhibitors (a) and the five DAT inhibitors (b) were determined in [3H]dopamine uptake inhibition 
assays at hNET WT, NET-(DAT S1), NET-(DAT S2), NET-(DAT EL4) and hDAT WT. The bars represent 
mean ±  s.e.m. determined from 3–18 independent experiments each performed in triplicate. The 
inhibitory potency at hDAT WT is indicated by dashed line. Asteriks indicate that the inhibitory potency 
is significantly different compared to hNET WT (p <  0.05; one-way ANOVA with Dunnett’s multiple 
comparisons test). The Ki values for the ten inhibitors are summarized in Supporting Table S2.
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mentioned, the DAT-(NET EL4) mutant was devoid of both uptake and binding activity (Fig.  2 and 
Supporting Table S1), which precluded this mutant from being examined for its pharmacological prop-
erties. Surprisingly, the potency of the ten inhibitors was generally much less affected by DAT-(NET S1) 
and DAT-(NET S2) compared to the effects observed for the corresponding hNET mutants. Specifically, 
whereas the NET-(DAT S1) mutant induced up to 900-fold change in inhibitor potency, the largest 
effect induced by the hDAT mutants was a 26-fold gain of talopram potency for DAT-(NET S2) (Fig. 5 
and Supplemental Table S2). These results suggest that non-conserved residues in the S1 and S2 sites of 
hDAT hold a less important role for inhibitor selectivity compared to the equivalent residues, particu-
larly in the S1 site, in hNET. Although the hDAT mutants only affected the inhibitors to a modest extent 
compared to the hNET mutants, it is noteworthy that DAT-(NET S2) had a larger effect compared to 
DAT-(NET S1) on five of the inhibitors (talopram, nisoxetine, atomoxetine, bupropion, and cocaine). 
These findings emphasize that non-conserved S1 residues in hDAT are minor determinants for inhibitor 
selectivity (Fig.  5). Interestingly, rimcazole stood out as the only compound in which the inhibitory 
activity was reversed to the level observed in hNET WT by DAT-(NET S1), which suggests that selective 
inhibitor recognition in hDAT can be regulated by residues in different regions for different inhibitors 
(Fig.  5). Determination of the binding affinity of the ten inhibitors at DAT-(NET S1) and DAT-(NET 
S2) using [125I]β -CIT competition binding, showed that the mutational induced effects determined in 
the uptake assay were comparable to the effects determined in the binding assay (Supporting Table S3). 
Furthermore, we determined the binding affinity of the ten inhibitors at the non-functional DAT-(NET 
S1S2) mutant that include mutation of all 12 non-conserved residues in the S1/S2 region of hDAT to 
their hNET equivalents. Generally, the ten inhibitors were not affected more by DAT-(NET S1S2) com-
pared to DAT-(NET S1) or DAT-(NET S2) alone (Supporting Table 3), suggesting that non-conserved 
residues in the S1 and S2 sites do not act in concert to bestow inhibitor selectivity in hDAT. In summary, 
characterization of changes in inhibitor potency induced by transferring the hNET S1 and S2 sites into 
hDAT strongly indicates that non-conserved residues in these regions of hDAT are minor determinants 
for selective inhibitor recognition, which is in stark contrast to what we found for hNET.

Discussion
Pharmacological inhibition of the three MATs modulates monoaminergic neurotransmission in the 
brain and provides foundation for first-line treatments of psychiatric disorders such as depression, anx-
iety and attention-deficit hyperactivity disorder. The selectivity profile of MAT inhibitors across NET, 
DAT and SERT is critical for their therapeutic properties. In particular, balancing DAT affinity versus 
NET and SERT is of special importance due to the potential psychostimulant effect of increasing extra-
cellular dopamine levels through DAT inhibition. However, the molecular basis underlying selective 
inhibitor recognition in the three MATs remains elusive. In the present study, we took advantage of the 
high-resolution structural insight into human MATs that has become available via the x-ray crystal struc-
tures of dDAT to specifically examine the role of non-conserved residues in the extracellular entrance 
pathway and within the central S1 binding site for inhibitor selectivity in hNET and hDAT. Specifically, 
we mutated all non-conserved residues in EL4 and in the S1 and S2 sites to the complementary residues 
in the other transporter, and thereby principally transferred S1, S2, and EL4 either individually or in 

Figure 5. Pharmacological characterization of hDAT mutants. The inhibitory potency of the five NET 
inhibitors (a) and the five DAT inhibitors (b) were determined in [3H]dopamine uptake inhibition assays 
at hDAT WT, DAT-(NET S1), DAT-(NET S2) and hNET WT. The bars represent mean ±  s.e.m. determined 
from 3–37 independent experiments each performed in triplicate. The inhibitory potency at hNET WT is 
indicated by dashed line. Asteriks indicate that the inhibitory potency is significantly different compared to 
hDAT WT (p <  0.05; one-way ANOVA with Dunnett’s multiple comparisons test). The Ki values for the ten 
inhibitors are summarized in Supporting Table S2.
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combination between hNET and hDAT. Pharmacological characterization of ten representative MAT 
inhibitors displaying varying degree of selectivity between hNET and hDAT at the resulting mutants 
revealed that non-conserved residues in S2 and EL4 generally play a minor role for selective inhibitor 
recognition in both hNET and hDAT (Figs  4 and 5). In contrast, changing the six non-conserved S1 
residues in hNET to their hDAT equivalents significantly changed the potency for seven of the ten tested 
inhibitors towards the level observed at hDAT WT; e.g. providing hNET with a hDAT-like pharmacolog-
ical profile (Fig. 4). Hence, selective and high affinity inhibitor recognition in hNET seems to be largely 
controlled by residues in the central S1 binding site. Mapping of the six non-conserved hNET/hDAT res-
idues within the S1 site on inhibitor-bound dDAT x-ray crystal structures shows that these residues are 
scattered around the S1 site in close proximity of bound inhibitors (Fig. 6). Moreover, in most cases the 
side chains of these residues are being directly exposed to the pocket interior, hereby contributing to the 
overall shape of the pocket and potentially provide direct ligand interaction points. This finding corrob-
orates our previous findings, showing that introducing S1 residues from hSERT into hNET transferred 
high-affinity binding of SERT-selective inhibitors, such as fluoxetine and escitalopram, from hSERT to 
hNET29,38. Thus, high-affinity inhibition of hNET is largely determined by the physicochemical nature of 
the S1 binding site. In comparison, inserting hNET residues into the S1 site of hDAT had a much less 
pronounced effect on the potency of the same ten inhibitors (Fig. 6). Specifically, compared to the par-
ent WT transporters, NET-(DAT S1) displayed more pronounced shifts in inhibitor Ki compared to the 
shifts for the corresponding DAT-(NET S1) mutant for all inhibitors except rimcazole (Fig. 6). The most 
pronounced differences were observed for talopram and nisoxetine, for which NET-(DAT S1) induced 
54- and 128-fold loss of potency, respectively, whereas the equivalent DAT-(NET S1) mutant induced 
< 4-fold change in potency for the two NET inhibitors. Additionally, DAT-(NET S1) induced an unex-
pectedly increase in the potency of cocaine and bupropion, whereas the mutant did not affect the potency 
of the DAT inhibitors JHW 007 and GBR 12,909. Together, the mutational data for DAT-(NET S1) show 
that mutating S1 residues in hDAT to their hNET equivalents do not transfer a NET-like pharmacology 
to DAT. It should be noted that rimcazole stood out as the only compound for which the DAT-(NET S1) 
mutant almost fully reversed the selectivity to the level observed at hNET WT (Fig. 5), suggesting that 

Figure 6. Non-conserved S1 binding site residues are key determinants for inhibitor selectivity in hNET 
but not in hDAT. The nisoxetine (a), reboxetine (b) and cocaine (c) binding site in dDAT x-ray crystal 
structures (PDB ID 4XNU, 4XNX, and 4XP4, respectively). The six non-conserved hNET/hDAT residues 
within the S1 binding site are shown as grey spheres (dDAT numbering). Nisoxetine (a), reboxetine (b) 
and cocaine (c) are shown as orange, teal and yellow spheres, respectively. (d,e). Mutational induced effect 
by the NET-(DAT S1) mutant (d) and the DAT-(NET S1) mutant (e) on the five NET inhibitors (shown as 
grey bars) and the five DAT inhibitors (shown as green bars). Asteriks indicate that the mutant induce a 
significant change in inhibitory potency compared to the WT transporter (p <  0.05; one-way ANOVA with 
Dunnett’s multiple comparisons test). Insets show a graphical representation of the mutants. Inhibitor  
Ki values at WT and mutant forms of hNET and hDAT are summarized in Supporting Table S2.
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selectivity for some inhibitors are controlled by non-conserved S1 residues in hDAT. However, the overall 
discrepancy between S1 mutations in hNET and hDAT on the potency of the ten inhibitors examined in 
the present study suggests that selective and high affinity inhibitor binding is obtained through distinct 
molecular mechanisms in the two homologous transporters.

The differential pharmacological effects induced by binding site mutants in hNET and hDAT could 
imply that inhibitors bind to the central S1 site in hNET but to a distinct site in hDAT. However, the 
recent x-ray crystal structures of dDAT in complex with different inhibitors, including nisoxetine, rebox-
etine, and cocaine that were employed in the present study, strongly suggest that the high affinity inhibi-
tor binding site is overlapping the central S1 site in hDAT and hNET (Fig. 6)13,17,18. Thus, while the high 
affinity inhibitor binding site is likely located within the central S1 site in both hNET and hDAT, different 
molecular determinants seems to regulate inhibitor selectivity in the two transporters. It is noteworthy 
that the aromatic ortho-substituents of nisoxetine and reboxetine that confer high specificity towards 
hNET over hDAT, bind in a subpocket of the S1 site lined by Ala117 and Ala428 in dDAT (Fig.  6)17. 
Since these residues are not conserved in hNET and hDAT (Ala117/Ala428 in dDAT are equivalent to 
Ala145/Ala426 in hNET and Ser149/Ser429 in hDAT) this led to the suggestion that specific interactions 
within this subpocket are key determinants for selectivity towards hNET17. This is in accordance with 
our mutational data for hNET showing that mutation of non-conserved S1 residues in hNET, includ-
ing Ala145 and Ala426, to their hDAT equivalents, significantly reduced the potency of nisoxetine and 
reboxetine (up to 168-fold), whereas mutation of non-conserved S1 residues in hDAT, including Ser149 
and Ser429, to their hNET equivalents, induced a markedly smaller effect on nisoxetine and reboxetine 
(up to 4-fold) (Fig. 6). Hence, these data show that inhibitor selectivity cannot simply be explained by 
differential interactions within a specific subpocket of the high affinity binding site in hDAT, as was 
proposed based on inhibitor-bound dDAT structures17.

Our finding that the pharmacological profile of ten MAT inhibitors at hDAT is largely unaffected 
by mutation of non-conserved S1 residues, suggest that residues outside the inhibitor binding site are 
controlling inhibitor selectivity in hDAT. Interestingly, molecular dynamic simulations have revealed 
that high affinity binding for certain ligands in G protein-coupled receptors is regulated in a distal entry 
site located at the receptor surface45,46. Correspondingly, residues in the extracellular entry pathway in 
hDAT could affect the transient binding steps preceding accommodation of the ligand in the target 
binding pocket (i.e. the S1 site), and thus comprise a “selectivity filter” for inhibitors. In kinetic terms, 
the steps preceding ligand binding is reflected in the association rate constant (kon) of binding. Recently, 
differences in kon for some inhibitors, including methylphenidate and desipramine, was shown to be a 
key determinant for their ability to discriminate between hDAT and hSERT44, thus corroborating that 
molecular determinants outside the high affinity binding site can regulate the selectivity among MATs 
for some inhibitors.

The location and identity of the determinants outside the high affinity site that control inhibitor affin-
ity in MATs (for example by influencing the association rate of inhibitor binding) remains enigmatic. 
The extracellular entrance pathway is an obvious candidate, and in the present project we focused on 
the role of non-conserved residues in the S2 and EL4 regions of the extracellular entry pathway. For S2, 
we found that non-conserved residues within this region are minor determinants for inhibitor selectiv-
ity (Fig.  4). Unfortunately, the DAT-(NET EL4) mutant was devoid of any uptake or binding capacity, 
which precluded us from examining the role of non-conserved EL4 residues in hDAT. Importantly, as 
allosteric proteins, MATs are highly dynamic and undergo large-scale conformational changes as part 
of their function. This implies that all regions within MATs in principle could affect the transporter 
conformational equilibrium and thereby allosterically affect the region that forms the inhibitor binding 
site. This has been exemplified in previous studies, showing that disruption of the conformational equi-
librium by mutation of residues outside the S1 site affect the binding affinity of DAT inhibitors, including 
cocaine, GBR 12,909 and bupropion54,55. Therefore, non-conserved hNET/hDAT residues that are located 
in regions that regulate the conformational transporter equilibrium could thus be important determi-
nants for inhibitor binding. Further studies are thus warranted to identify the specific differences among 
hNET and hDAT that affect inhibitors en route to their high affinity binding site, including transient 
transporter-inhibitor interactions in the extracellular entry pathway and conformational transition states, 
that contribute to MAT inhibitor selectivity.

In summary, our findings demonstrate that non-conserved residues within the primary binding site 
in hNET and hDAT have differential roles for selective inhibitor recognition, and thus highlight an 
emerging pattern of a highly complex molecular pharmacology among closely related neurotransmitter 
transporters. Our data provide new insight into the molecular basis for selectivity of therapeutic and 
recreational drugs towards hNET and hDAT, which we believe will be important for future design of 
novel ligands with tailor-made selectivity towards MATs.

Methods
Chemicals. [3H]dopamine (30–90 Ci/mmol) and [125I]β -CIT (2,200 Ci/mmol) was purchased from 
PerkinElmer (Waltham, MA, USA). Talopram, nisoxetine, imipramine, atomoxetine, GBR 12,909, bupro-
pion and rimzazole were available from the H. Lundbeck A/S compound collection. Reboxetine and 
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cocaine were purchased from Sigma-Aldrich (St. Louis, MO, USA), JHW 007 from Tocris Bioscience 
(Bristol, UK) and β -CIT from ABX (Radeberg, Germany).

Molecular biology. As expression vector, a modified version of pCIneo (pCI-IRES-neo) containing the 
gene encoding either hNET (pCI-IRES-neo-NET) or hDAT (pCI-IRES-neo-DAT) was used. Generation 
of point mutations in the S1 and S2 sites of hNET and hDAT was performed by site-directed mutagenesis 
using the QuickChange site-directed mutagenesis kit (Stratagene, Carlsbad, CA, USA). Multiple mutants 
were generated by introducing one or more mutations into existing mutants by site-directed mutagenesis 
using the QuickChange mutagenesis kit. The sequence integrity of the mutants was verified by DNA 
sequencing (GATC Biotech, Cologne, Germany).

For transferring the EL4 region between hNET and hDAT, a unique and silent MfeI restriction site 
was inserted at Asn338 in hNET and Asn341 in hDAT and a unique and silent AgeI restriction site was 
inserted at Thr429 in hNET and Thr432 in hDAT using the QuickChange site-directed mutagenesis kit. 
Synthetic cDNA encoding the region from Asn338 to Thr429 in hNET [in which the sequence encoding 
the EL4 region (Leu365 to Trp404) was substituted for the corresponding hDAT sequence] and Asn341 
to Thr432 in hDAT [in which the sequence encoding the EL4 region (Leu368 to Trp407) was substituted 
for the corresponding hNET sequence] was purchased from GeneArt. The synthetic DNA was digested 
with MfeI and AgeI and then ligated into MfeI/AgeI digested pCI-IRES-neo-NET and pCI-IRES-neo-DAT 
using the Rapid DNA ligation kit (Roche, Mannheim, Germany). The sequence integrity was verified by 
restriction digests and DNA sequencing (GATC Biotech, Cologne, Germany).

Cell culturing and expression of hNET and hDAT. COS-7 cells were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with 10% foetal bovine serum, 100 U/mL penicillin, and 100 μ g/mL  
streptomycin at 37 °C in a humidified 5% CO2 environment. Cells were transfected using TransIT LT-1 
DNA transfection reagent by following the procedure supplied by the manufacturer, and dispensed into 
either poly-d-lysine coated white 96-well plates (for uptake assays) or 150 mm tissue culture Petri plates 
(for membrane preparations).

[3H]dopamine uptake assays. Uptake assays were performed 40–48 h after transfection. Transiently 
transfected COS-7 cells growing in 96-well plates were washed twice with PBSCM buffer (137 mM NaCl, 
2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, 0.1 mM CaCl2 and 0.5 mM MgCl2) on an ELx50 auto-
mated microplate strip washer (BioTek Instruments, Winooski, VT, USA). In all uptake experiments, the 
PBSCM buffer was supplemented with 1 mM ascorbic acid and 1 μ M of the catechol-O-methyltransferase 
inhibitor Ro 41–0960 (Sigma-Aldrich) and pH was adjusted to 7.4.

In inhibition studies (IC50 determinations), cells were preincubated with 40 μ L of PBSCM per well 
with no or increasing concentrations of inhibitor for 30 min before addition of 10 μ L of PBSCM con-
taining [3H]dopamine (final concentration of [3H]dopamine: 25–50 nM). Uptake was allowed to proceed 
for 5 min at room temperature, before uptake was terminated by washing three times with PBSCM. For 
determination of KM values, cells were incubated with increasing concentrations of unlabelled dopa-
mine in PBSCM and 25–50 nM [3H]dopamine at room temperature for 5 min. Uptake was terminated 
as described above. The amount of accumulated [3H]dopamine was determined by solubilising cells in 
scintillant cocktail (MicroScint-20) followed by counting of plates in a Packard TopCounter. Non-specific 
uptake was determined as uptake in non-transfected cells and total uptake was determined in the pres-
ence of PBSCM buffer alone. Assays were carried out in triplicate and repeated at least three times.

Cell membrane preparation and [125I]β-CIT binding assay. Cell membranes were prepared 
40–48 h after transfection. Transiently transfected COS-7 cells growing in 150 mm tissue culture Petri 
plates were washed with PBS supplemented with 1 mM EDTA to detach from the plate. Cell suspension 
was centrifuged (700 × g) for 5 min, and the cell pellet was suspended in cold H2O and frozen at − 20 °C 
for at least 1 h. The suspension was thawed on ice and subjected to 10–15 passages through a 21 gauge 
needle to disrupt cells. Homogenate was transferred to 2 mL tubes and centrifuged at 18.000 × g for 
30 min at 4 °C. Supernatant was aspirated, and the pellet was suspended in PBSCM buffer. Protein con-
centration was determined by the BCA method using Pierce BCA Protein Assay. Membranes were used 
directly for binding assays or stored at − 80 °C until use.

For saturation binding studies, increasing concentrations of [125I]β -CIT diluted 1:20 with unlabelled 
β -CIT and 2–30 μ g total membrane protein was combined in 96-well plates and total volume per well 
was adjusted to 150 μ L with PBSCM. Binding was allowed to equilibrate for 2 h on ice. Subsequently, 
membranes were transferred to 96-well glass fiber filter plates (Unifilter C; PerkinElmer) preincubated 
with 0.1% polyethyleneimine (30 μ L per well) by using a Packard Bell cell harvester and washed four 
times with water. Nonspecific binding was determined in parallel at membranes from nontransfected 
COS-7 cells. Filter plates were dried and soaked in scintillant cocktail (MicroScint-0) followed by count-
ing of plates in a Packard TopCounter. For competition binding assays, 2–30 μ g total membrane protein 
was incubated with 0.2 nM [125I]β -CIT in the presence of no or increasing concentration of inhibitor in 
PBSCM by using the same protocol as for saturation binding experiments. Binding assays were carried 
out in duplicate and repeated at least three times.
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Data analysis. All data analysis was performed using GraphPad Prism version 6.0 (GraphPad 
Software, La Jolla, CA, USA). The inhibitory potency (Ki) for inhibitors were calculated from IC50 values 
determined in functional uptake assays by using the equation: Ki =  IC50/(1 +  ([L]/KM)), where [L] is the 
concentration of [3H]dopamine and KM is the Michaelis-Menten constant for dopamine. The binding 
affinity (Ki) for inhibitors were calculated from IC50 values determined in competition binding assays by 
using the equation: Ki =  IC50/(1 +  ([L]/KD)), where [L] is the concentration of [125I]β -CIT and KD is the 
dissociation constant for β -CIT. All data are expressed as mean ±  s.e.m. from at least three independent 
experiments carried out in triplicate (for uptake assays) or duplicate (for binding assays). Statistical anal-
yses were performed by using one-way analysis of variance (ANOVA). Values of p <  0.05 were considered 
statistically significant.
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