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Janus amphiphilic graphene oxide (JAGO), modified by dodecylamine on one side of

graphene oxide (GO), was investigated for its novel use as a shale inhibitor. JAGO

was synthesized by the Pickering emulsion template technology and was characterized

by the Fourier-transform infrared spectra, UV-vis spectra, and transmission electron

microscopy. Compared to KCl (5%), polyether diamine (2%), and pristine GO (0.2%),

JAGO’s highest shale recovery rate (75.2% at 80◦C) and lowest swelling height of

Mt-pellets (2.55mm, 0.2%) demonstrated its excellent inhibitive property. Furthermore,

JAGO acted as a perfect plugging agent and greatly reduced filtration loss. Based on

the results of X-ray diffraction, contact angle measurements, and pressure transmission

tests, we proposed that the 2D nano-sheet amphiphilic structure of JAGO, which enabled

it to be effective both in chemical inhibition and physical plugging, was responsible for its

remarkable inhibition performances.

Keywords: graphene oxide, Janus amphiphilic nano-sheets, shale inhibitor, plugging agent, inhibition mechanism

INTRODUCTION

The global consumption of oil and gas has increased steadily in the past decades. In order
to meet the enormous demand for energy, it has become necessary to exploit unconventional
shale reservoirs (Mohr and Evans, 2010). Shale is mainly composed of clay materials, including
montmorillonite, illite, illite/smectite formation, and kaolinite, and is extremely sensitive to water
(Lishtvan et al., 2009; Labani and Rezaee, 2015). On contact with water, shale expands multiple
times and disperses into the drilling fluids (Oort, 2003). The intensive chemical and mechanical
interaction between shale and water can cause serious problems in drilling operations, such as
stuck pipes, bit balling, tight holes, caving, and even loss of wells (Zeynali, 2012; Gholami et al.,
2018; Lv et al., 2020). Therefore, proper selection of drilling fluids is vital in the exploitation of shale
reservoirs. Oil-based drilling fluid is used in extreme cases; however, its high cost and the damage
it causes to the environment restricts its application to some extent (Patel et al., 2007; Shivhare
and Kuru, 2014). Researchers are focused on developing high-performance water-based drilling
fluid (WBDF) by adding certain additives (shale inhibitors) to inhibit the swelling and hydration
of shale.
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A variety of chemicals have been used as shale inhibitors,
including inorganic salts, ionic liquids, polymers, organic amines,
and ammonium compounds (Shadizadeh et al., 2015; Barati
et al., 2017; Jia et al., 2019a, 2020). All these chemicals are
capable of inhibiting the swelling and hydration of shale to
different degrees but show little ability in controlling the fluid
loss in shale formations. As nanopores of shale have ultralow
permeability, the fluid loss agent cannot pass through to form
the filter cake (Zhang et al., 2008; Tang et al., 2014). Thus,
water molecules can still enter the shale formation to weaken
the effectiveness of shale inhibitors. To address the problem
of water invasion, that is to reduce the filtration loss volume,
many nanoparticles (NPs) have been used to plug the nanoscale
pores and cracks in shale formation, such as nano-silica (Sensoy
et al., 2009), aluminum salt (Liu et al., 2015), nano-emulsion (Xu
et al., 2018a), and graphene (Aftab et al., 2016). Furthermore,
much of the research has tended to focus on modified NPs
that can largely reduce the swelling and hydration of shale
through chemical interaction as well as physical plugging
(Mao et al., 2015; Xu et al., 2018b; Zhong et al., 2018).

Graphene is the first two dimensional (2D) crystallinematerial
with a single atom thickness, which was discovered by Geim
and Novoselov (Novoselov, 2004). Graphene has a unique
structure consisting of a single layer of carbon atoms, and it
has been widely applied to various fields (Stoller et al., 2008;
Xu et al., 2008; Wu et al., 2010). In the case of the drilling
fluids industry, Aftab et al. (2016) reported that graphene could
improve the rheological and filtration properties of WBDF at
low temperatures and low-pressure conditions. Ridha et al.
(2018) further proved the remarkable ability of graphene in
filtration control at high temperatures. Moreover, An et al.
(2016) demonstrated the high performance of ethylenediamine-
modified graphene to plug nanopores and inhibit clay hydration.
Previous investigations have indicated that graphene-based
materials can effectively plug nanopores of shale to prevent water
invasion. Thus, the inhibition of clay hydration could be achieved
with modified graphene.

In this study, we investigate the potential application of
Janus amphiphilic graphene oxide (JAGO, Scheme 1) as a shale

SCHEME 1 | The structure of JAGO.

inhibitor. JAGO refers to the graphene oxide nano-sheets that
show hydrophilicity on one side and hydrophobicity on the other
side, which is usually modified by an alkylamine (Wu et al., 2015).
The amphiphilic property of JAGO enables its application in
nanofluids as a flooding agent or emulsion stabilizer to enhance
oil recovery (Luo et al., 2017; Chen et al., 2018). The inhibition
and filtration control performance of JAGO was evaluated
and compared with conventional inhibitors using laboratory
experiments. The inhibition mechanism of JAGO was proposed
based on the interaction analysis between JAGO and clay at the
micro and macro scales.

EXPERIMENT

Materials
Dodecylamine (98%), paraffinwax (melting point ranges between
58 and 60◦C), ethanol (97%), and silicon dioxide (99.5% 15 nm)
were purchased from Aladdin Chemical Company, China.
Chloroform (99%), KCl (99.8%), and NaCl (99.5%) were bought
from Sinophram Chemical Reagent Co. Ltd., China. Graphene
oxide was obtained from Turing Evolution Technical Company,
China. Polyether diamine (PA) was provided by the Magcobar
Mud Co. Ltd., China. Montmorillonite (Mt) and drilling fluid
sodium bentonite (Na-bent) were purchased from the Weifang
Huawei Company. The shale samples were provided by CNPC
Chuanqing Drilling Engineering Company, which were obtained
from the Weiyuan area, Sichuan Province, China. The shale
compositions are listed in Table 1. Polytetrafluoroethylene film
was the product of the Secco Experimental Equipment Company.
All chemical reagents were used without further purification.

Synthesis of JAGO
A detailed modification process of JAGO can be found in a report
by Wu et al. (2015). A simplified description is as follows: First,
graphene oxide (GO) was dispersed in deionized (DI) water at
a concentration of 1 mg/mL with intensive sonication. Then a
mixture of GO solution (200mL), DI water (100 g), and paraffin
wax (80 g) with 1%NaCl was heated to 75◦C and stirred at 10,000
rpm with a FJ200-S homogenizer for 10min. After cooling this
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TABLE 1 | Mineralogical composition of the shale samples.

Component Content Component of Relative

(wt%) clay mineral content (wt%)

Quartz 43.2 Illite/semctite 43.6

Calcite 4.4 Illite 32.6

Feldspar 6 Chlorite 13.6

Dolomite 7.4 Kaolinite 10.2

Clay mineral 39

down to an ambient temperature, the emulsion was filtered to
obtain the GO-coated wax microspheres. Furthermore, the GO-
coated wax was added to the ethanol solution of dodecylamine,
and the dispersion was magnetically stirred for 12 h at 30◦C.
After washing with ethanol, the wax was dissolved by chloroform,
following which, JAGO was obtained through centrifugation.

Characteristics of JAGO
Fourier-transform infrared spectra (FTIR) analyses of GO and
JAGO were conducted with a PerkinElmer Spectrum Two
spectrometer (PerkinElmer, USA). UV–vis spectra of GO and
JAGO were recorded by Cary 8454 UV-spectrophotometer
(Agilent, USA). Transmission electron microscopy (TEM)
images of GO and JAGO were obtained with a JEOL JEM-1400
transmission electron microscope (JEOL, Japan).

Hot-Rolling Recovery Tests
Shale was crushed into small cuttings with sizes ranging between
2 and 5mm. A certain amount of shale cuttings (M1) were
added to a container filled with different inhibitor solutions.
Then, the sealed container was rolled in a rolling oven at various
temperatures for 16 h. After cooling it down to an ambient
temperature, the remaining shale in the containers was washed
with water and sieved through 40 mesh to get the recovered
shale cuttings, which were weighted (M2) after being dried at
105◦C for 4 h. Hot-rolling recovery rates were calculated using
the following equation: A recovery=M1/M2.

Linear Swelling Tests
Firstly, Mt-pellets were prepared by compressing 10 g Mt at
10 MPa for 10min, and their initial heights were measured
(H0). Then, the Mt-pellets were put in CPZ-2 expansion
instruments (Qingdao, China), after which different inhibitor
solutions at a certain concentration were poured into the
expansion instruments. The Mt-pellets were found to expand
with increasing time. The variation in height with respect to
time was recorded. The final expansion rate was the value of the
ultimate height divided by H0.

Filtration Tests
A base slurry—which consisted of a dispersion of Na-bent in DI
water, having a concentration of Na-bent at 4%, and Na2CO3

at 0.3%—was added to improve the hydration of Na-bent. After
stirring for 2 h, the dispersion was subjected to pre-hydration
for 24 h. Following this, different inhibitors were added at

FIGURE 1 | FTIR spectra of GO and JAGO.

certain concentrations and static filtration tests were carried out
following the API standard practice (APIRP 13B-1, 2009) at an
ambient temperature and at a pressure of 0.69 MPa (APIRP 13B-
1, 2009). The surface of the filter cakes was observed by scanning
electron microscopy (SEM, JEOL JSM-6700F) after platinum
sputter coating.

Inhibition Mechanism Analysis
The hybrids of GO/Mt and JAGO/Mt were prepared according to
the following procedure: First, 0.7 g of GO or JAGOwas dissolved
in 350mL DI water by sonication. Then, a mass of 7 g Mt was
added to the GO and JAGO solutions, respectively. After stirring
for 2 h, the dispersion was centrifuged at 8,000 rpm for 10min
and was washed thrice with DI water to collect the precipitate.

A small part of the wet precipitate was used for X-ray
diffraction (XRD) analysis (X’pert PRO MPD diffractometer,
Netherlands). Then, the precipitate was dried at 105◦C and
ground to a powder for the XRD measurement of dry samples.
The powder of GO/Mt and JAGO/Mt was compressed under
10 MPa for 10min to make pellets. A contact angle goniometer
(JC2000D5M, Zhongchen., China) was used to determine the
wettability of the pellet surface.

Pressure transmission tests were conducted for various
shale inhibitors to evaluate their physical plugging ability. The
plugging fluids were the base slurry incorporated with different
inhibitors. The procedure of this experiment was based onHuang
et al. (2018). The experimental apparatus was the product of
Jinzhou Modern Petroleum Science & Technology Co., Ltd.

RESULTS AND DISCUSSION

Characterization of JAGO
JAGO was modified according to the Pickering emulsion
template technology reported by Wu et al. (2015). The successful
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modification was verified by the FTIR (Figure 1) and UV-vis
spectra (Figure 2). As depicted in Figure 1, the spectrum pattern
of JAGO presented distinguished differences to that of GO.
Specifically, the intensive peaks (in the range of 3,100–2,800
cm−1), which were attributed to the C-H stretching vibration of
the alkyl group as well as the weaker peaks at 1,463 and 1,380
cm−1, which were assigned to –CH2 and –CH3 (Acik et al., 2010;
Huang et al., 2018), were observed in JAGO and not in GO.
This was proof for the introduction of dodecylamine to GO. The
weakened peaks at 1,728 and 1,225 cm−1, which referred to C=O
and C–O–C, respectively, indicated the reaction sites on GO. The
variation between UV-vis spectra of GO and JAGO (Figure 2)
also supported the expected conjunction of dodecylamine onto
GO. After modification, the peak at 302 nm, which was attributed
to the n–π∗ transitions of C=O vanished in the spectrum pattern
of JAGO, and the peak standing for the π-π∗ transitions of C=C
shifted from 233 to 265 nm (Guardia et al., 2012). The increase in
π-conjugation network could be responsible for the absorbance
change (Choudhary et al., 2012).

FIGURE 2 | UV-vis spectra of GO and JAGO.

As shown in Figure 3, the TEM images of GO and JAGO
presented a 2D structure. The lateral size was barely affected
by the modification, whereas the conjunction of dodecylamine
caused the overlap of JAGO to an extent (Figure 3b).

The amphiphilic property of JAGO was confirmed using a
facile method. After shaking the mixture of the JAGO aqueous
solution with oleic phase, such as octane, an interfacial film was
formed at the oil/water interface (Figure S1). The generation of
the interfacial film was attributed to the amphiphilic property
of JAGO, which facilitated its interfacial adsorption and the
construction of the interfacial film (Luo et al., 2016).

Hot-Rolling Recovery Tests
The hot-rolling recovery test is the most common method used
to evaluate the inhibitive performances of the shale inhibitor.
This method simulates the interaction between shale debris and
water in drilling processes. Figure 4 presents the recovery rates
of shale cuttings in different inhibitor solutions after rolling at 80,
120, and 160◦C. The low recovery rates of shale in water (<20%)
reflected the shale that was easily dispersed in water. However,
the dispersion of shale was inhibited to different degrees with the
addition of shale inhibitors. The pristine GO (0.2%) exhibited
a weaker inhibitive capacity than PA (2%) and KCl (5%). The
introduction of dodecylamine on one side of JAGO imbued it
with an excellent inhibitive performance that was much better
than found with GO and other conventional inhibitors. Seventy-
five point two percentage of shale was recovered using JAGO
(0.2%) at 80◦C and the recovery rate was still over 70% at 160◦C,
which denoted the remarkable temperature tolerance of JAGO.

Linear Swelling Tests
Linear swelling tests were also conducted to evaluate the
inhibitive properties of JAGO. The final height of Mt-pellets
in water, GO, JAGO, KCl, and PA solutions were 10.25,
8.02, 2.55, 4.27, and 3.29mm, respectively (Figure 5), which
yielded the corresponding reduction rates of 21.76, 75.12,
58.34, and 67.90%. Great improvement in the inhibitive
performance was achieved by the asymmetric modification of
JAGO with dodecylamine, which was owing to its 2D nano-
sheet amphiphilic structure. The hydrophilic side of JAGO
spontaneously adsorbed onto the hydrophilic surface of clay,
while the hydrophobic side faced outward. Thus, a hydrophobic

FIGURE 3 | TEM images of GO (a) and JAGO (b).
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FIGURE 4 | Hot-rolling recovery rates of shale cuttings in different inhibitor

solutions at various temperature.

FIGURE 5 | Linear swelling curves of Mt-pellets in different inhibitor solutions.

shield formed over the clay to prevent water from entering the
interlayer of clay. A detailed mechanism analysis is given in the
following sections.

Filtration Tests
Decreasing the filtration volume of drilling fluids is essential
to reduce the hydration and swelling of shale. In order to
evaluate the ability of JAGO to plug the nanopores in shale
formation, we used the polyetrafluoroethylene membrane with
nanoscale pores as the filter paper, instead of a normal paper with

FIGURE 6 | Filtration volumes of drilling fluids with the addition of various

inhibitors.

FIGURE 7 | SEM image of the filter cake in the filtration test of JAGO.

micropores. The filtration volume of the base slurry was 26mL;
moreover, the addition of GO and JAGO reduced the volume to
9 and 7mL, which was much lower than PA (21mL) and KCl
(42mL) (Figure 6). The performances of GO and JAGO were
better than silica oxide (14mL), the commonly used physical
plugging agent. The SEM image of the filter cake revealed that the
adsorption of JAGO onto the membrane fabricated the tight film
(Figure 7), which sealed the nanopores in the shale formation
to greatly prevent the invasion of drilling fluids. In addition, the
hydrophobic exterior of the JAGO film on the membrane further
impeded the invasion of water.
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Inhibitive Mechanism Analysis
XRD

The XRD patterns of Mt, Mt/GO, and Mt/JAGO hybrids,
including wet and dry samples are presented in Figure 8. For dry
samples, the interlayer space (d001) of Mt, Mt/GO, andMt/JAGO
were 12.03, 15.56, and 15.94 Å, respectively. The increased value
of d001 indicated that GO and JAGO successfully intercalated into
the interlayer of Mt. In the case of wet samples, the interlayer
space of the fully hydrated Mt was as large as 19.09 Å. After
the intercalation of JAGO, the value of d001 was greatly reduced
to 16.34 Å, whereas the intercalation of GO did not exert a
significant effect on d001. The hydrophobic side of JAGO expelled
water molecules from the interlayer in order to reduce the
clay interlayer. The XRD results of the wet samples were in
accordance with those in hot-rolling recovery tests and linear
swelling tests.

Contact Angle Measurement
The contact angles of Mt interacting with JAGO are shown in
Figure 9. With increasing concentrations of JAGO, the contact
angle increased rapidly and dramatically, such that 0.2% JAGO
could alter the Mt surface form strong water-wet to intermediate
wettability with a contact angle of 91.2◦. The wettability alteration
verified our previous speculation that JAGO nano-sheets could
adsorb onto the surface of clay with the hydrophobic side facing
outward. The driving force of the adsorption derived from
two aspects. On the one hand, the hydrophilic side of JAGO
was rich in hydroxyl, carboxyl, and epoxy groups which could
form hydrogen bonds with the oxygen atom and hydroxyl at
the clay surface (McCoy et al., 2019). On the other hand, the
hydrophobic side also facilitated the movement of JAGO toward
the clay. Hence, JAGO adsorbed on the clay surface constructed
a hydrophobic shield to effectively inhibit the hydration and
swelling of clay.

Pressure Transmission Tests
The plugging ability of GO, JAGO, KCl, PA, and silica oxide
were assessed by pressure transmission tests. The upstream
pressure was fixed at 10 MPa and the downstream pressure

was monitored by injecting plugging fluids. Variations in the
downstream pressure compared to the injection time for different
plugging fluids is exhibited in Figure 10. In the case of KCl
and PA, the downstream pressure reached a constant value of
upstream after 2.5 and 15 h, respectively, which indicated that
KCl and PA had little plugging effects, leading to the penetration
of fluids throughout the shale cores. Nevertheless, the pressure
variation in the plugging fluids that contained nanoparticles
displayed different tendencies. The downstream pressures of GO,
JAGO, and SiO2 were at atmosphere pressure at the initial stage
but began to increase after 14, 16.5, and 4.6 h, respectively. The
ultimate downstream pressure of GO, JAGO, and SiO2 were 1.86,
1.07, and 3.99 MPa, respectively. The variation in downstream
pressure demonstrated that JAGO was a perfect plugging agent,
whereas GO was slightly weaker. Moreover, the aggregation of

FIGURE 9 | The contact angles of Mt after interacted with JAGO at different

concentrations.

FIGURE 8 | XRD patterns of Mt, Mt/GO and Mt/JAGO: dry samples (A); wet samples (B).
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SiO2 might be responsible for its poor performance as it could
degrade the property of SiO2 to plug nanopores.

Inhibitive Mechanism of JAGO
There are two essential mechanisms of shale inhibitors: chemical
inhibition and physical plugging. Chemical inhibition is usually
related to the chemical interaction of the inhibitor and clay,
including adsorption, ion exchange, and intercalation into the
interlayer space (Zaltoun and Berton, 1992; Jia et al., 2019b;
Liu et al., 2019). The primary approach of physical plugging is
plugging the pores, cracks, and natural flow channels to prevent
drilling fluid invasion (Cai et al., 2012; Akhtamanesh et al., 2013).

FIGURE 10 | Pressure transmission tests of various plugging fluids.

Based on the analysis of the above mechanisms, JAGO performed
well in terms of chemical inhibition as well as physical plugging,
as illustrated in Figure 11. Above all, due to the amphiphilic
structure of JAGO, the hydrophilic side could spontaneously
adsorb onto the clay surface, and the outward hydrophobic
side formed a hydrophobic shield that impeded the interaction
of clay and water. Furthermore, JAGO could intercalate into
the interlayer space of clay to expel water molecules. Then, as
the JAGO adsorbed onto shale, the 2D nano-sheets overlapped
to construct a tight film on the shale, which perfectly sealed
the nanopores in shale formation. The unmodified GO was a
great physical plugging agent, whereas the chemical inhibition
property, resulting from the conjunction of dodecylamine,
enabled the JAGO to be an excellent shale inhibitor.

CONCLUSION

This work innovatively introduced JAGO as a high-performance
shale inhibitor that displayed both chemical inhibition and
physical plugging properties. The inhibitive performance of
JAGO was evaluated and compared with KCl (5%), PA
(2%), and pristine GO (0.2%) by hot-rolling recovery tests
and linear swelling tests, wherein JAGO (0.2%) achieved
the highest recovery rate (75.2% at 80◦C) and the lowest
swelling height (2.55mm). Chemical inhibition was attributed
to the spontaneous adsorption of JAGO on a clay surface.
Specifically, the hydrophilic side of JAGO adsorbed onto the
clay surface via hydrogen bonds, and the hydrophobic side of
JAGO faced outward. As a result, the fabricated hydrophobic
shield greatly prevented water invasion, which was verified
by contact angle measurements. In addition, the variation in
clay interlayer spacing with and without JAGO indicated that
JAGO intercalated into the interlayer of clay and expelled water
molecules. In the case of the physical plugging property, JAGO

FIGURE 11 | The proposed inhibitive mechanism of JAGO.
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reduced the filtration volume to 7mL in the filtration tests
and kept the downstream pressure at a relatively low value
of 1.07 MPa with a constant upstream pressure at 10 MPa in
the pressure transmission tests. The adsorbed 2D nano-sheet
JAGO overlapped to construct a tight film, which effectively
sealed the nanopores in shale formation. In summary, the
difunctional JAGO, having excellent chemical inhibition and
physical plugging properties, exhibited its potential application
as a shale inhibitor. Nevertheless, further research is needed on
issues such as the effect of JAGO on the rheological property
of drilling fluids, its economic analysis, and different kinds of
Janus amphiphilic nano-sheet shale inhibitors. Other 2D nano-
sheet structure materials, including CuO sheet, TiO2 flakes, and
certain nano-composites materials, could also be considered as
shale inhibitors in future studies.
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