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The auditory system converts the physical properties of a sound waveform to neural activities and processes them for recognition. During
the process, the tuning to amplitude modulation (AM) is successively transformed by a cascade of brain regions. To test the functional
significance of the AM tuning, we conducted single-unit recording in a deep neural network (DNN) trained for natural sound recognition.
We calculated the AM representation in the DNN and quantitatively compared it with those reported in previous neurophysiological
studies. We found that an auditory-system-like AM tuning emerges in the optimized DNN. Better-recognizing models showed greater
similarity to the auditory system. We isolated the factors forming the AM representation in the different brain regions. Because the model
was not designed to reproduce any anatomical or physiological properties of the auditory system other than the cascading architecture,
the observed similarity suggests that the AM tuning in the auditory system might also be an emergent property for natural sound
recognition during evolution and development.
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Introduction
Natural sounds such as speech and environmental sounds exhibit
rich patterns of amplitude modulation (AM) (Fig. 1a) (Varnet et
al., 2017). For example, humans can recognize speech content
and identify daily sounds based on their AM patterns even if the
fine temporal structure is substantially degraded (Dudley, 1939;
Shannon et al., 1995; Gygi et al., 2004). The AM rate (i.e., the
number of AM cycles per second) is one of the most important
physical dimensions in auditory perception (Fig. 1b) (Houtgast

and Steeneken, 1985). Psychophysical studies suggest that the
sensitivity of the auditory system to AM can be accounted for by
filtering mechanisms in the AM rate domain (Viemeister, 1979;
Bacon and Grantham, 1989; Houtgast, 1989; Dau et al., 1997).

The auditory system converts the physical properties of a
sound stimulus to neural activities and processes them through a
cascade of brain regions (see Fig. 30 –12 in Kandel et al., 2000).
Neurophysiological studies have found a number of neurons and
neural populations that tune to the AM rate (Giraud et al., 2000;
Joris et al., 2004; Liégeois-Chauvel et al., 2004; Sharpee et al.,
2011). Some neurons fire synchronously with the stimulus AM
waveform and the degree of synchrony depends on the AM
rate (temporal coding of AM rate), whereas others encode the
AM rate with their firing rates (rate coding of AM rate). Inter-
estingly, the characteristics of AM tuning in temporal and rate
coding transform systematically along the processing stages
from the periphery to the cortex (Joris et al., 2004; Sharpee et
al., 2011): the AM rate with which neurons synchronize grad-
ually decreases and the number of neurons that perform rate
coding gradually increases (a phenomenon known as time-to-
rate conversion).
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Significance Statement

This study suggests that neural tuning to amplitude modulation may be a consequence of the auditory system evolving for natural
sound recognition. We modeled the function of the entire auditory system; that is, recognizing sounds from raw waveforms with
as few anatomical or physiological assumptions as possible. We analyzed the model using single-unit recording, which enabled a
fair comparison with neurophysiological data with as few methodological biases as possible. Interestingly, our results imply that
frequency decomposition in the inner ear might not be necessary for processing amplitude modulation. This implication could not
have been obtained if we had used a model that assumes frequency decomposition.
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Neurophysiological and theoretical
studies have revealed how the auditory
system works by exploring the neural
mechanisms of the transformation of AM
tuning (Hewitt and Meddis, 1994; De-
pireux et al., 2001; Zhang and Kelly, 2003;
Guérin et al., 2006; Dicke et al., 2007; Ma-
hajan et al., 2014). However, the func-
tional significance of the transformation
remains unknown. In other words, we still
face the question of why the system has to
be organized in that way.

Functional model of sensory systems
A computational approach with machine
learning techniques is effective for ex-
plaining functional significance in sensory
systems (Olshausen and Field, 1996; Le-
wicki, 2002; Terashima and Okada, 2012;
Młynarski and McDermott, 2017). The
architectures and parameters of the mod-
els are trained to process natural stimuli
for behaviorally relevant objectives with few assumptions regard-
ing anatomical or physiological properties. Therefore, the trained
model is expected to provide an effective representation of natu-
ral stimuli and if the representation is similar to that observed in
a real sensory system, it is highly likely that the sensory system is
also adapted to effectively processing sensory information for
survival. In particular, a deep neural network (DNN) is one of the
most successful models for both automatic data processing (Hin-
ton et al., 2012; Krizhevsky et al., 2012; Schmidhuber, 2015) and
explaining a neural representation of sensory information
(Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014;
Horikawa and Kamitani, 2017; Zhuang et al., 2017; Cueva and
Wei, 2018; Kell et al., 2018). A DNN consists of a cascade of layers
with multiple units and a unit in a layer integrates the activations
in a lower layer, which makes the model suitable for explaining
the functions of cascaded brain regions.

In the present study, we optimized a DNN for natural sound
recognition. To make a direct comparison of AM sensitivity in
the DNN and that in the auditory system reported in a number of
neurophysiological studies, we characterized the AM sensitivity
of the DNN using standard neurophysiological methods by treat-
ing the DNN as if it were a biological brain. We showed the
qualitative and quantitative similarities of the DNN to the audi-
tory system.

Materials and Methods
Task. The task of the DNN was sound recognition. Specifically, the task was
to estimate the sound category at the last time frame of a sound of a certain
duration (0.19 s for natural sounds and 0.26 s for speech). Classification
accuracy is defined as the average correct classification rate for each category,
namely the number of time frames correctly estimated as a particular cate-
gory divided by the total number of time frames in the category.

Datasets. Two datasets were used to train the DNNs. The first consisted
of nonhuman natural sounds and is a subset of ESC-50 (Piczak, 2015).
The original dataset contains 50 sound categories with 40 sounds for each
category. From the original dataset, we used 18 categories of sounds not
produced by human activity. Each entry in the original dataset contains a
sound waveform with a length of �5 s and the sound category. In this
study, we excluded silent intervals, resulting in a total length of 53.9 min.
The original dataset is divided into five folds for cross-validation. We
used fold #5 for validation and the other folds for training. The sound
format was converted to 44.1 kHz 16-bit linear PCM.

The second dataset consisted of speech sounds (Garofolo et al., 1993).
Each entry in the dataset contains the sound waveform of a single spoken
sentence, categories of vocal elements, and the time intervals of each
element. There were originally 61 categories. We merged some categories
in accordance with previous studies (Lee and Hon, 1989; Lopes and
Perdigao, 2011), resulting in 39 categories. The average and total dura-
tions of the sound were 3.1 s and 3.3 h, respectively. The data were
originally divided into a validation set and a training set. In this study, we
followed the original division. The validation and training sets contain
the speech of 24 and 462 speakers, respectively. The speakers and sen-
tences in the two divisions do not overlap. The sound format was 16 kHz
16-bit linear PCM.

Network architecture. Our DNN consisted of a stack of dilated convo-
lutional layers (van den Oord et al., 2016) (Fig. 2), in which convolu-
tional filters were evenly dilated in time. Convolution was conducted
along the time axis. Each layer performed a dilated convolution on the
activations of the previous layer and applied an activation function. The
activation function was an exponential linear unit (Clevert et al., 2016).
The first layer took samples of raw waveforms directly as an input. Each
layer contained multiple units. All of the layers contained the same num-
ber of units for simplicity. The units in the highest layer were connected
to the classification layer without convolution. The number of units in
the classification layer was the same as the number of categories. The
classification layer was omitted from the physiological analysis.

We used DNNs with 13 layers, each containing 128 units, for nonhu-
man sound and DNNs with 12 layers, each containing 64 units, for
speech. The number of layers and the number of units in each layer were
determined based on a pilot study and fixed throughout the study. In the
pilot study, DNNs with various numbers of layers and units were trained
using a random portion of the training set. The filter length was 2 and the
dilation length was 2 to the power of the layer number (van den Oord et
al., 2016). The number of layers and the number of units in each layer
that gave the best classification accuracy on the other portion of the
training set were used in the following study.

We tested multiple architectures with random filter sizes and dilation
lengths in each convolutional layer and selected the DNN that achieved the
best classification accuracy on the novel dataset (Table 1). The filter size and
dilation length were randomly chosen for each layer with certain constraints,
namely that the filter size did not exceed 8 and the total input length for the
whole DNN, which is equal to the length of the input time window of the
topmost layer, did not exceed 8192 (�0.19 s) for nonhuman sound and 4096
(�0.26 s) for speech. The number of layers and the number of units in each
layer were fixed as mentioned in the previous paragraph.

Optimization. The DNNs were trained on the training set and the
classification accuracy was calculated for the validation set. The initial

a b

Figure 1. Rich repertoires of AM in natural sounds. a, Examples of sound waveforms (gray) and their amplitude envelopes
(black) of natural sounds. Sounds of speech (top) and rain (bottom) are shown. b, Modulation spectra showing the distributions of
the AM components of the sounds in a. The modulation spectrum was calculated as the RMS of the filtered envelope with a
logarithmically spaced band-pass filter bank. Each modulation spectrum was normalized by its maximum value. The lower and
upper peaks in the modulation spectrum of speech (top) probably contain information about the speech content and the speaker,
respectively. The modulation spectrum of the rain sound (bottom) appeared different from that of speech.
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filter weights were randomly sampled and the biases were set at 0 in
accordance with a previous study (He et al., 2015). The filter weights and
biases were updated using the Eve algorithm (Koushik and Hayashi,
2016) with softmax cross entropy as the cost function. The number of
iterations for a parameter update was determined as the value that gave
the best classification accuracy on a random portion of the training set
trained on the rest of the training set.

Experimental design: physiological analysis of a DNN. For a physiolog-
ical analysis of a DNN, a sound stimulus was fed to the DNN and the
values of each unit were recorded. The root mean square (RMS) of the input
sound was adjusted approximately to the RMS of the training set. Before the
analysis, 1 was added to the values of all the units because the minimum
possible value of the activation function is �1 (Clevert et al., 2016).

The stimulus was 8 s of sinusoidally amplitude-modulated white
noise. In physiological studies, tuning to an AM rate is measured using
sinusoidally amplitude-modulated tones with carriers at the neurons’
best acoustic frequency (AF, frequency of a sound waveform itself but not
its amplitude envelope), sinusoidally amplitude-modulated white

noises, or click trains. We did not use tones as carriers because many units
showed multiple troughs in the AF tuning curves or nonmonotonic re-
sponses to the input amplitude, making it difficult to define the best AFs.

The synchrony to the stimulus and the average activity was calculated
from the activations of each unit. The synchrony to the stimulus was
quantified in terms of vector strength (Goldberg and Brown, 1969).
When dealing with spike timing data recorded in neurons, each spike is
represented as a unit vector with its angle corresponding to the modula-
tor phase at that time and the vector strength is defined as the average
length of these unit vectors. Equivalent operations were applied to the
continuous output of the DNN unit to derive the vector strength (Eq. 1).
The vector strength had a value between 0, indicating no synchrony, and
1, indicating perfect synchrony, as follows:

Vector strength �

�� �t
a�t�cos�2�fmt/fs��2

� ��t
a�t�sin�2�fmt/fs��2

�t
a�t�

, (1)

where t is an index of the time frame, a(t) is the unit activation, fs is the
sampling rate, and fm is the stimulus AM rate. The average activity was
defined as the temporal average of the values, which could be considered
as the DNN version of an average spike rate. The synchrony and the
average activity were averaged for 16 instances of the carrier white noise
to reduce the effect of stimulus variability. A temporal modulation trans-
fer function (tMTF) and a rate MTF (rMTF) were defined as the syn-
chrony and average activity as functions of the AM rate, respectively. In
physiology, an MTF is usually defined only at the AM rates at which the
unit shows a statistically significant synchrony or spike rate. Because a
statistical test on the results of a deterministic model such as our DNN
makes no sense, we considered the synchrony or average activities below
a certain threshold as “nonsignificant” and excluded them from the fol-
lowing analysis. The threshold was arbitrarily set at 0.01 for the syn-
chrony and at 0.01 above the average activity in response to unmodulated
white noise for the average activity.

An MTF was classified as one of the following four types: low-pass,
high-pass, band-pass, or flat. A low-pass type MTF was defined as one
that had no values smaller than 80% of its maximum for AM rates smaller
than the peak rate. A high-pass type MTF was defined as one that had no
values smaller than 80% of its maximum for rates larger than the peak
rate. A flat MTF was defined as one that had no values smaller than 80%
of its maximum or one with a peak to peak range of �0.1. The band-pass
MTF was defined as being other than the above.

The best modulation frequencies (BMFs) were calculated from the
band-pass type MTFs and the upper cutoff frequencies (UCFs) were
calculated from the low-pass and band-pass type MTFs. The BMFs of
low-pass, high-pass, or flat MTFs and the UCFs of high-pass or flat MTFs
were considered to be impossible to define. The BMF was defined as the
modulation rate at the peak of the MTF. If there were multiple peaks with
the same height, the geometric mean of the rates was taken. The UCF was
calculated in two different ways: one for qualitative visualization as
shown in Figure 7a and the other for quantitative comparisons with
specific physiological data for neurons found in the literature. The UCF
for visualization was defined as the rate at which the MTF crosses 80% of
its maximum value. If an MTF had multiple such rates, the geometric
mean of the rates was used. The threshold of the UCF used for a quanti-
tative comparison with the auditory system varied according to the ref-
erence physiology study. The thresholds were 50% (Eggermont, 1998;
Zhang and Kelly, 2006), 80% (Rhode and Greenberg, 1994; Kuwada and
Batra, 1999), and 70% (�3 dB) (Joris and Yin, 1992, 1998; Joris and
Smith, 1998) of the maximum, 90%:10% interior division of its mini-
mum and maximum (Krishna and Semple, 2000), an absolute value of
0.1 (Rhode and Greenberg, 1994; Zhao and Liang, 1995), and the highest
rate that gives significant responses (Batra et al., 1989; Kuwada and Batra,
1999; Krishna and Semple, 2000; Lu and Wang, 2000; Lu et al., 2001;
Liang et al., 2002; Batra, 2006; Bartlett and Wang, 2007; Scott et al., 2011).
If there was no rate at which the MTF crossed the threshold, then the UCF
was considered to be impossible to define.

Figure 2. DNN architecture. Our DNN consists of a stack of one-dimensional dilated convo-
lutional layers. The figure shows the architecture of the DNN for natural sounds. Each layer
contains 128 units and performs dilated convolution followed by a nonlinear activation func-
tion. The first layer takes a raw sound waveform as an input and the highest layer is connected
to the classification layer, which was excluded from the analysis. The output is the category label
assigned to the classification unit with maximum activation. We tested multiple architectures
with random filter and dilation lengths in each convolutional layer and selected the DNN that
achieved the best classification accuracy on the novel dataset. The filter and dilation lengths in
all the layers are shown in Table 1. The numbers of layers and units in each layer were chosen in
the pilot experiment.

Table 1. DNN architecture

Layer no.
No. of
channels

Dilation
width

Filter
width

13 128 109 6
12 128 594 3
11 128 167 8
10 128 180 6

9 128 564 3
8 128 204 6
7 128 70 5
6 128 68 8
5 128 4 8
4 128 6 4
3 128 226 3
2 128 123 6
1 128 174 3
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The stimuli we used for calculating AF tun-
ing were tones with various AFs and ampli-
tudes. The activation of each unit was
temporally averaged to obtain the response to a
particular stimulus. The tuning curve was de-
fined for each AF as the smallest amplitude in-
ducing a response larger than a certain
threshold. In physiological studies, thresholds
are usually determined arbitrarily. Figure 15
shows tuning curves with thresholds of 0.001,
0.01, and 0.1.

Comparison with auditory system. We ex-
tracted the BMF and UCF distributions re-
ported in previous physiological studies by
digitizing the figures. If multiple figures were
available, then we chose the clearest figure or
that with the most neurons. The extracted val-
ues were used for a qualitative visualization in
Figure 7c and a quantitative comparison with
the DNNs. For the visualization, we averaged
the distributions of all the subregions and
all the neuron types in each region in each
study. Then, the distributions in all the papers
were averaged for each region. The resulting
distributions were smoothed with a Gaussian
filter with a width of 0.136 on a logarithmic
scale of base 10. For quantitative comparison
with a DNN, we calculated the similarity of
each extracted distribution to the distribution
of each layer in the DNN. As the measure of
similarity, we used the Kolmogorov–Smirnov
statistic subtracted from 1 because it is nonparametric and does not
depend greatly on the bin widths of the histogram. For each BMF and
UCF for each rate and temporal coding, we averaged the similarities in
the same regions in a single study and then averaged the similarities in the
same region in different studies. Averaging the four pairwise similarities
(tBMF, tUCF, rBMF, and rUCF), we derived the final layer–region pair-
wise similarity matrix. Because no distribution of tBMF has been re-
ported in auditory nerves (ANs); no distribution of rBMF has been
reported in ANs, cochlear nucleus (CN), or superior olivary complex
(SOC), and no distribution of rUCF has been reported in AN or CN, their
similarities were set at 1 if there was no unit with a definable BMF or UCF
and set at 0 otherwise. For regions other than these, the similarity was set
at 0 if there was no unit with a definable BMF or UCF.

Evaluation of a pairwise similarity matrix. The similarity of the entire
cascade and that of each layer were calculated from a pairwise similarity
matrix. We wanted to evaluate the pairwise similarity matrix in a way in
which high scores are obtained by a DNN with its lower, middle, and
upper layers being similar to the peripheral, middle, and central brain
regions, respectively. To realize this evaluation concept, we defined the
cascade similarity as the weighted mean of the pairwise similarity matrix.
The weight at the cell (i, j) was proportional to the following:

1 � 2� i � 1

Ni � 1
�

j � 1

Nj � 1
� ,

where Ni and Nj are the number of brain regions (7) and the number of
DNN layers, respectively. The weight was scaled so that the squared mean
of the weight matrix was 1. The weight was maximal on the diagonal line
and minimal in the top left and bottom right corners. The layerwise
similarity was defined as the mean obtained in each layer.

Control experiments. In the first control experiment, the category labels
of the sounds in the training set were randomly shuffled. The validation
set was not modified. A parameter update was conducted for the same
number of iterations as the original nonrandom condition. In the second
control experiment, the waveform in each sound in the training set was
randomly permuted, resulting in a noise-like input waveform maintain-
ing only the marginal distribution of the amplitudes. The third control
experiment was a waveform following task that involved copying the

amplitude value of the last time frame of the input sound segment. To
make the result directly comparable to those of the classification tasks,
the target amplitude was quantized and we used a softmax cross entropy
cost function (van den Oord et al., 2016). The waveform was nonlinearly
transformed with a �-law companding transformation before quantiza-
tion (van den Oord et al., 2016). The number of bins was equal to the
number of sound categories in the original classification task.

Sharpness of a tMTF. The Q factors of tMTFs were calculated as in a
previous physiological study (Rodríguez et al., 2010) as follows:

Q �
Centroid

Bandwidth
,

Centroid � �fmr� fm�dfm,

Figure 3. Confusion matrices of classification of validation data. There are 18 categories. The labels of the true categories are
shown in the ordinates and those of the predicted categories are shown in the abscissas. The value in each cell is calculated as the
time frame fractions classified as a particular category among the total number of time frames with the true category. Cells with a
high classification rate are in the diagonal of the matrices, indicating high classification accuracy. The classification accuracy was
defined as the mean values in the diagonal of the matrix.

Figure 4. Importance of the deep cascade. Classification accuracy of DNNs with various
numbers of layers with random filter and dilation lengths. Models with 1, 3, 5, 7, 9, 11, and 13
layers were tested. We tested 32 (blue circles), 64 (orange triangles), and 128 (green squares)
channels. DNNs with 13 layers and 32 or 64 channels were not tested because they were ex-
cluded by the pilot study. The deeper the DNN, the higher the classification accuracy appeared to
be. The result indicates the importance of the deep cascade.

5520 • J. Neurosci., July 10, 2019 • 39(28):5517–5533 Koumura et al. • Cascaded AM Tuning for Natural Sound Recognition



Bandwidth � 2��� fm � Centroid�2r� fm�dfm,

where fm and r( fm) denote the AM rate and tMTF, respectively. Integra-
tion was calculated with the trapezoidal rule. Q factors were calculated
only in units with a band-pass tMTF.

Statistical analysis. Spearman’s rank correlation coefficients were cal-
culated with the recognition performance and the cascade similarity. The
sample size was 100 when comparing them in relation to optimization
progress and 39 when comparing them across different model
architectures.

Data availability. The datasets used for the training and validation of
the model are available from the cited studies (Garofolo et al., 1993;
Piczak, 2015). The model architecture is available in Table 1. Source
codes for training, evaluation, and physiology of DNNs are available at
https://github.com/cycentum/cascaded-am-tuning-for-sound-recognition.
Trained models and recorded activities are available at https://doi.org/10.
6084/m9.figshare.7914611.

Results
Functional model of the auditory system
The DNN was trained to classify raw sound data (i.e., amplitude
waveforms) of nonhuman natural sounds consisting of animal
vocalizations and environmental sounds. Therefore, the model
covers the entire range of auditory processes from the stage in the
ear to the final recognition (Fig. 2). This makes our model suit-
able for explaining the entire cascade of the auditory system with
as few assumptions as possible. This is in contrast to typical au-
ditory studies, which assume frequency-decomposed inputs such
as spectrograms. The classification accuracy of the optimized
DNN was 45.1% (Fig. 3). We confirmed that a deep cascade is
necessary to achieve high classification accuracy (Fig. 4). Al-
though the classification accuracy was not as good as that re-
ported in other studies (Aytar et al., 2016), this difference in

a d

cb

Figure 5. Single-unit recording in the DNN. a, Illustrations of single-unit recording in a brain (top) and in a DNN (bottom). In physiological experiments, neural activities are recorded while
presenting an AM sound stimulus to the animal. We simulated the method and recorded the unit activities of the DNN while feeding it an AM sound stimulus. b, Examples of AM stimuli with 1, 10,
100, and 1000 Hz AM rates. The carrier was white noise. Temporally magnified plots are shown on the right. c, Examples of responses to the AM stimuli in b in a single unit. A unit in the eighth layer
is chosen as an example. d, An example of tMTF (top) and rMTF (bottom) in the same unit as in c. A tMTF and an rMTF are defined as synchrony with the stimulus AM rate and the average activity
as functions of AM rate, respectively. The unit exhibited the low-pass type tMTF and the band-pass type rMTF.
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performance is reasonable when we consider that the previous
studies used much longer sound segments than ours.

Emerging tuning to AM rate
To enable a direct comparison of our DNN and the auditory
system, we simulated the experimental approaches of typical neu-
rophysiological studies. Specifically, we conducted “single-unit
recording” for each unit in the DNN while presenting a sinusoi-
dally amplitude-modulated sound stimulus (Fig. 5a,b). A single
unit responded differently to stimuli with different AM rates (Fig.
5c shows examples). We characterized the tuning of the units’
activities to AM rate in terms of temporal and rate coding with
tMTF and rMTF (Joris et al., 2004), namely the synchrony and
the average activity as functions of the AM rate, respectively (Fig.
5d).

Figure 6a shows MTFs of representative units in the first, fifth,
ninth, and 13th layers. As in typical physiological experiments,
we classified the MTFs into low-pass, band-pass, high-pass, or
flat types according to certain criteria. Most units exhibited low-
pass, band-pass, or flat MTFs (Fig. 6b). All of the MTFs in the first
layer were flat, indicating that the first layer did not tune to AM
rates. In the fifth layer, units with low-pass or band-pass tMTFs
appeared and a very small number of units with low-pass rMTFs

were observed. In the ninth and higher layers, the tMTF magni-
tude generally increased and the number of units with low-pass
or band-pass rMTFs also increased. Heat maps of all tMTFs nor-
malized by their peaks reveal a downward shift of the distribution
of the preferred AM rates from the fifth layer to the highest layer
and distinct tuning in the rMTFs appearing in the ninth layer and
above (Fig. 6c).

Comparison with the auditory system
As in typical neurophysiological studies, the MTF of a unit was
characterized by its BMF, the AM rate at which a neuron exhibits
the largest synchrony or average activity, and its UCF, the AM
rate at which the synchrony or average activity starts to decrease.
The BMF and UCF of temporal and rate coding are denoted
tBMF/tUCF and rBMF/rUCF, respectively. In the first and sec-
ond layers, no BMFs or UCFs were definable because all MTFs
were flat (Fig. 7a,b). In the third and fourth layers, some units
exhibited definable tBMFs and tUCFs, but no rBMFs or rUCFs
were definable. In the fifth layer, the tBMFs and tUCFs appeared
to be high and a small number of units exhibited definable rBMFs
and rUCFs. When ascending the layer cascade from the fifth layer,
the mode tBMF/tUCF decreased and the number of units with de-
finable rBMFs/rUCFs increased. In summary, the distributions of

a c

b

Figure 6. Emergent AM tunings in the DNN. a, Examples of tMTFs (left), and rMTFs (right) in the first, fifth, ninth, and 13 th layers. The layers are sorted vertically from bottom to top. One example
of a low-pass (solid green line), a band-pass (dashed red line), and a flat (dash-dotted gray line) MTF is shown for each layer. b, Number of units with the low-pass (solid green lines with circles),
band-pass (dashed red lines with crosses), high-pass (dotted black lines with triangles), and flat (dash-dotted gray lines with squares) type tMTFs (left) and rMTFs (right). c, Heat maps of all tMTFs
(left) and rMTFs (right) in the first, fifth, ninth, and 13 th layers. The MTFs are normalized by their peak values for better visualization. The units are sorted vertically by their peak AM rates. In some
layers, distinct peaks and notches appeared commonly across different units at particular AM rates (observed as vertical lines in tMTFs). We have no clear explanation for these features, but they are
probably due to artifacts of discrete convolutional operation.
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the tBMFs and tUCFs shifted toward lower AM rates when ascend-
ing from the middle to the high layers (Fig. 7a, left) and the units that
code AM rate by their average activities appear only in the higher
layers (Fig. 7a, right, 7b).

The transformation of the BMF/UCF distributions reminds
us of the well known characteristics of the auditory pathway,
namely the decrease in synchronizing AM rate and the time-to-
rate conversion of AM coding (Joris et al., 2004; Sharpee et al.,
2011). Figure 7c depicts the distributions of BMFs and UCFs in
the auditory system by combining previously reported distribu-
tions for each of the seven brain regions: ANs (Joris and Yin,
1992; Rhode and Greenberg, 1994), the CN (Frisina et al., 1990;
Rhode and Greenberg, 1994; Zhao and Liang, 1995; Joris and
Smith, 1998; Joris and Yin, 1998), the SOC (Joris and Yin, 1998;
Kuwada and Batra, 1999), the nuclei of the lateral lemniscus
(NLL) (Huffman et al., 1998; Batra, 2006; Zhang and Kelly,
2006), the inferior colliculus (IC) (Müller-Preuss, 1986; Langner
and Schreiner, 1988; Batra et al., 1989; Condon et al., 1996;

Krishna and Semple, 2000), the medial geniculate body (MGB)
(Preuss and Müller-Preuss, 1990; Lu et al., 2001; Bartlett and
Wang, 2007), and the auditory cortex (AC) (Müller-Preuss, 1986;
Schreiner and Urbas, 1988; Bieser and Müller-Preuss, 1996;
Schulze and Langner, 1997; Eggermont, 1998; Lu and Wang,
2000; Liang et al., 2002; Scott et al., 2011; Yin et al., 2011). In the
peripheral regions, the tBMFs and tUCFs cluster around high AM
rates and, as they ascend toward the central region, the mode
rates decrease. rBMFs are only reported in the NLL or above and
rUCFs are reported in the SOC or above. This meta-analysis sug-
gests that the distributions of the BMF and UCF in the DNN and
those in the auditory system are qualitatively similar.

Next, we compared those distributions quantitatively. For
each tBMF, tUCF, rBMF, and rUCF, we calculated the similarity
between the distribution in each layer of the DNN and the distri-
bution in each region in the auditory system (Fig. 8a) and aver-
aged them to yield the layer–region pairwise similarity (Fig. 8b).
Pairs consisting of a DNN layer and a brain region with a large

a b

c

Figure 7. Similar distributions of MTF shapes in the DNN and those in the auditory system. a, Histograms of BMF (filled blue bars) and UCF (hatched orange bars) of temporal (left) and rate (right)
coding in each layer. The layers are sorted vertically from bottom to top. b, Number of units with a definable BMF (filled blue circles) and UCF (open orange triangles) of temporal (solid lines) and rate
(dashed lines) coding. c, Distributions of BMF (filled blue areas) and UCF (hatched orange areas) of the temporal (left) and rate (right) coding in each region in the auditory system. Regions are sorted
vertically from the peripheral region (bottom) to the central region (top). No distribution is drawn where none is reported.
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similarity appeared in the diagonal direc-
tion, indicating that lower, middle, and
higher DNN layers are similar to the pe-
ripheral, middle, and central brain re-
gions, respectively. This similarity of the
entire cascade is more clearly observed if
we normalize the pairwise similarity by
the maximum value in each brain region
(Fig. 8c).

Relationship with optimization
The similarity of the entire cascade could
be due to the convolutional architecture
inherent to the DNN (Saxe et al., 2011) or
to optimization for sound recognition. To
test these possibilities, we measured the
MTFs in the DNN before and during op-
timization. Before optimization, no unit
exhibited clear selectivity in regard to AM
rate and there was no transformation of
the MTFs across layers (Fig. 9a, left).

As the optimization progressed, the
classification accuracy increased as ex-
pected (Fig. 9b, top). Auditory-system-
like AM tuning gradually emerged in
parallel (Fig. 9a). We evaluated the simi-
larity over all the cascades by measuring
the degree of diagonality of the pairwise
similarity matrix (Fig. 10) and we refer to
this as the cascade similarity. A large cas-
cade similarity value indicates that, in the
pairwise similarity matrix, cells around a
diagonal line exhibit a large similarity and
cells around the top left and bottom right
corners exhibit a small similarity. The cas-
cade similarity increased as the optimiza-
tion progressed (Fig. 9b, bottom) and correlated very well with
the classification accuracy (Spearman’s rank correlation coeffi-
cient � 0.84, p � 8.57 	 10�28, n � 100). The results indicate
that the AM representation in the DNN emerged during the
optimization.

Because the classification accuracy of a DNN generally de-
pends on its architecture (Bergstra and Bengio, 2012; Bergstra et
al., 2013), so could its cascade similarity (Yamins et al., 2014; Kell
et al., 2018). We trained DNNs with various architectures and
examined them using the same physiological analysis. The
classification accuracy of these DNNs varied between 28.2%
and 45.1%. The patterns of the layer–region pairwise similar-
ity also varied among the architectures (Fig. 11a) and the cas-
cade similarity correlated with the classification accuracy (Fig.
11b; � � 0.51, p � 8.08 	 10 �4, n � 39). The results indicate
that AM representation in better-recognizing DNNs have a
greater similarity to that in the auditory system. The similarity
to the auditory system correlated with the classification accu-
racy across both different model parameters and different
architectures, which suggests that the auditory AM represen-
tation is strongly related to task optimization but not to the
convolutional operation alone.

Different factors for different regions
The development of the layer–region pairwise similarity during
optimization indicates that an auditory-system-like AM repre-
sentation is initially exhibited only in the lower layers and that, as

the optimization progresses, it first emerges in the upper layers
and then in the middle layers (Fig. 9a). This pattern was more
clearly seen when we calculated the similarity to the auditory
system in each layer, which we refer to as layerwise similarity
(Figs. 9c, 10). The results imply that multiple factors can un-
derlie these across-layer differences in the developmental pat-
terns. To isolate the possible factors in each region, we
conducted three control experiments expecting to see differ-
ent degrees of similarity emerge in different layers depending
on the control conditions.

The first two control experiments tested the effect of the data
structure. It has been shown that a DNN is capable of learning the
input– output correspondence even when trained on data with
random category labels or data without natural statistics (Zhang
et al., 2017). Under the first condition, the input– output corre-
spondence was destroyed by shuffling the category labels. Under
the second condition, the structure of the input waveform was
destroyed by shuffling the amplitude values of each waveform.
Under this condition, the DNN was able to classify the novel
sounds with some accuracy probably because the shuffled
waveform retained its overall amplitude distribution, al-
though both the frequency and temporal statistics were
completely destroyed. The DNNs trained under these two
conditions exhibited an auditory-system-like AM representa-
tion in the lower and upper layers, but not in the middle layers
(Fig. 12a,b, orange triangles and green squares). When the
DNN was trained on shuffled labels, very few units in the

a

b c

Figure 8. Similarity to the auditory system throughout the entire cascade revealed by the layer–region pairwise similarity. a,
Layer–region pairwise similarities of BMF (top) and UCF (bottom) of temporal (left) and rate (right) coding. The four pairwise
similarities were averaged to yield the final layer–region pairwise similarity shown in b. In all of them, the lower, middle, and
upper layers appeared to be similar to the peripheral, middle, and central brain regions, respectively, although the similarities are
not as smooth or clear as their average. b, Layer–region pairwise similarity of the AM representation in the DNN layers (horizontal
axis) and that in the regions in the auditory system (vertical axis). c, Layer–region pairwise similarity normalized by the maximum
value of each brain region.
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middle layers appeared to exhibit AM tuning (Fig. 12a, left
column). When the DNN was trained on shuffled waveforms,
units in the middle layers appeared to exhibit some AM rate
tuning, but they synchronized with a much higher AM rate

than neurons in the auditory system, resulting in the upper
layers being similar to the middle brain regions (Fig. 12a,
middle column). The results indicate that a midlevel AM rep-
resentation requires a natural data structure, although low-

a

b c

Figure 9. Development of AM representation in the DNN during optimization. a, From top to bottom: heat maps of all tMTFs (left) and rMTFs (right) in the first, fifth, ninth, and 13 th layers (as in Fig. 6c); the
numberofunitswithlow-pass,band-pass,high-pass,andflatMTFs(as inFig.6b);histogramsofBMFsandUCFsoftemporal (left)andrate(right)coding(as inFig.7a);numberofunitswithdefinabletBMF,tUCF,
rBMF, and rUCF (as in Fig. 7b); and layer–region pairwise similarity (as in Fig. 8b). The progress of the optimization and the classification accuracy is shown at the top of each column. Auditory-system-like AM
tuning gradually emerged as optimization progressed. b, Classification accuracy (top) and cascade similarity (bottom) as functions of the progress of optimization. The progress of optimization, shown on the
horizontal axis, is linearly scaled so that the value is 1 at the end of the optimization. Colored markers indicate the points at which the layerwise similarities were calculated in c. c, Layerwise similarity at four
intermediate snapshot instances during optimization. Colors, markers, and lines indicate the progress of optimization as indicated by the legend and in b.
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level and high-level representations could emerge even by
optimization with unnatural data.

The third control experiment examined the effect of the opti-
mization objective. A DNN can be optimized for behaviorally
irrelevant objectives such as a waveform following task (Fig. 12c).
Animals do not usually follow a stimulus amplitude waveform
precisely and the task is also trivial in the sense of signal process-
ing. The AM representations in the middle to upper layers were to
some degree similar to those of the middle brain regions, but no
layers exhibited an AM representation similar to that of the cen-
tral brain regions (Fig. 12a,b, red crosses). In the upper layers,
only small numbers of rMTFs exhibited clear tuning and the
tBMFs and tUCFs were higher than those of the central brain
regions (Fig. 12a, right column). The result indicates that the
emergence of auditory-system-like AM tuning in the upper layers
requires natural objectives and the waveform-following task did
not induce such a representation even if the input data consisted
of natural sounds.

Together, the modification of the category labels, the sound
statistics, and the optimization objective caused the auditory-
system-like AM representations in the middle layers and above to
deteriorate. Lower layers never exhibited AM tuning consistently
across all conditions, probably because of the nature of the cas-
cading architecture. The middle layers exhibited auditory-
system-like AM tuning when trained on natural input sounds
and the proper sound– category correspondence. The upper lay-
ers exhibited auditory-system-like AM tuning when optimized
for the categorization task but not for the waveform following
task (Table 2).

Generality across datasets
As a DNN trained on one dataset recognizes another dataset very
well with only a slight modification (Yosinski et al., 2014), it may
be possible that AM tuning can also be generalized across data-
sets. Previous studies provide positive pieces of evidence: a ma-
chine learning model trained for substantially different sound
datasets has exhibited a similar representation of AF (Smith and
Lewicki, 2006). To test the generality of the finding that we report
in the present study across datasets, we conducted neurophysiol-

ogy in a DNN optimized for the recognition of vocal elements in
speech (Fig. 13a).

The speech dataset provided essentially the same conclusions
as those obtained with animal and environmental sounds. The
layer–region pairwise similarity matrix exhibited a diagonal pat-
tern (Fig. 13b). The lower, middle, and upper layers were similar
to the peripheral, middle, and central regions, respectively. The
similarity emerged during the optimization (Fig. 13c; Spearman’s
rank correlation coefficient � 0.83, p � 3.76 	 10�27, n � 100)
and was weak under control conditions (Fig. 13d). The similari-
ties in the DNNs with various architectures correlated with the
classification accuracy (Fig. 13e; � � 0.33, p � 3.91 	 10�2, n �
39). The results indicate that auditory-system-like AM tuning
emerged robustly across different datasets.

Sharpness of the tMTF
Thus far, we have focused on the BMF and UCF for characteriz-
ing the MTF. Another aspect often considered is the sharpness of
a tMTF, which is represented by quality factors (Q factors). Here,
we calculated the Q factors of the unit tMTFs as in a previous
physiological study (Rodríguez et al., 2010). The distribution of
Q factors appeared different in different layers and, within a layer,
they were confined to a narrow range (Fig. 14). This is demon-
strated by the small standard deviations of the distributions
(shown on the right in the histograms). Also, in most layers, the Q
factors were �1. These results indicate the emergence of broadly
tuned tMTFs with a relatively constant sharpness, which is con-
sistent with the Q values in animals reported in previous studies
(Ewert and Dau, 2000; Lorenzi et al., 2001; Rodríguez et al.,
2010).

Tuning to acoustic frequency
We also examined tuning to the AF, which is the most frequently
measured characteristic in auditory science (Pickles, 2012). We
presented sinusoids with various AFs and amplitudes to the DNN
and characterized the single-unit responses with the temporal
average of the units’ activities (Fig. 15a). The responses generally
increased as the input amplitude increased, but some units in the
upper layers exhibited nonmonotonic responses to the input am-

Figure 10. Evaluation of the similarity of the entire cascade. The cascade similarity was defined as the weighted mean of the pairwise similarity matrix. The weight was designed to be larger near
the diagonal line and smaller in the top left and bottom right corners. The layerwise similarity was defined as the mean calculated across brain regions within each layer.
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plitude. As in the neurophysiological studies, a unit was charac-
terized by an AF tuning curve, namely the minimum stimulus
amplitude that provides a response larger above a certain thresh-
old (Fig. 15a, gray and black lines, 15b). Tuning curves from the
first to third layers exhibited many troughs (or local minima).
Those around the fifth layer exhibited a small number of major
troughs and many minor troughs. The major trough of a unit can

be interpreted as exhibiting a band-pass property. The center
frequencies of the major troughs of the unit population spanned
a wide AF range (Fig. 15b), which may be interpreted as a band-
pass filter bank. The tuning curves in higher layers were more
complex without clear band-pass-like tunings. The overall results
were in contrast to those for the auditory system, where neurons
across many regions usually exhibit AF tuning with a relatively

a

b

Figure 11. Cascade similarity of DNNs with various architectures correlated with their classification accuracy. a, Heat maps showing the layer–region pairwise similarity sorted in terms of
classification accuracy, which is shown at the top of each panel. The top left panel is identical to Figure 8b. Pairwise similarities along a diagonal line appeared larger in DNNs with high classification
performance. b, Cascade similarities of DNNs with various architectures plotted against their classification accuracies. A single circle represents a single architecture.
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Figure 12. AM representation in DNN with control conditions. a, AM representation in a DNN trained on shuffled category labels (left column), on shuffled waveform (middle column), and
optimized for the waveform following task (right column). Colored symbols and lines by the panel titles indicate the types of control condition as in b. Other conventions are the same as in Figure
9a. b, Layerwise similarity in the control experiments. The similarities under the original condition (yellow diamonds and solid line) are also shown. (Figure legend continues.)
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sharp single peak. This property is likely to originate from AF
decomposition occurring in the cochlea. We did not explicitly
implement the spectral decomposition of the input sound but
directly fed raw waveforms to the DNN. The results suggest that
AF decomposition in the cochlea may be essential for auditory-
system-like AF tuning, but not for auditory-system-like AM
tuning.

Discussion
We found that a DNN optimized for natural sound recognition
exhibits an AM tuning similar to that of the auditory system
throughout the entire cascade of layers. Because our DNN was
not designed or trained to reproduce any physiological or ana-
tomical properties of the auditory system, the results should re-
flect only the nature of the task and the data. Therefore, AM
tuning in the auditory system might also emerge during evolu-
tion and development via optimization to sound recognition in
the real world.

Physiology in a DNN
Although DNNs have explained sensory representation in several
modalities (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et
al., 2014; Horikawa and Kamitani, 2017; Zhuang et al., 2017;
Cueva and Wei, 2018; Kell et al., 2018), to the best of our knowl-
edge, this is the first report of the similarity throughout the entire
cascade of sensory processing. This could be realized by single-
unit recording, which is a highly general neurophysiological tech-
nique, on a DNN performing sound recognition from a raw
sound waveform. The generality of single-unit recording enabled
us to take advantage of the long-accumulated neurophysiological
knowledge of AM representation in a variety of brain regions and
modeling the entire auditory process enabled us to map all the
stages of the process to the corresponding brain regions. Al-
though this study focused on AM representation, the neural rep-
resentation of any domains of stimulus parameters can be
explored using the same paradigm as long as the property of
interest can be measured with single-unit recording.

From the perspective of machine learning, our results suggest
the effectiveness of analyzing DNNs with physiological methods.
To date, various methods have been proposed for analyzing rep-
resentation in a DNN (Montavon et al., 2018). Most of them rely
on the differentiability of the DNN and use backpropagation to
estimate the optimal input for each unit assuming such an input
exists. By contrast, there is a long history regarding the develop-
ment of a physiological method for explaining biological neu-
rons, to which backpropagation cannot be applied (Sharpee et al.,
2011). The success of our paradigm opens up the future possibil-
ity of using well established physiological methods to explore the
stimulus representation of a DNN and other complex machine
learning models.

AM representation in different regions
The result showing that there was little tuning in the peripheral
region may be due to the architecture in which simple operations
are cascaded. Computing the AM rate requires at least envelope
extraction and the frequency decomposition of the envelope. A
small number of peripheral brain regions are probably incapable
of such nontrivial computation.

Midlevel neural processing may be a necessary step if the brain
is to form a proper stimulus representation for further processes
in various tasks. Because lower layers do not tune to an AM rate,
the middle layers are effectively the first layers that process AM
signals. It is reasonable to think that the first stage of the data
process is affected by the data structure and is critical for later
recognition.

A higher representation may be directly used for the final
recognition process. In other words, whatever the stimulus rep-
resentation is, the role of the central auditory regions is to derive
appropriate outputs for the specific task.

Reduction in temporal resolution
Both of the prominent characteristics of auditory AM coding,
namely a decrease in synchronizing AM rate and time-to-rate
conversion, involve a reduction in a signal’s temporal resolution.
Why is such a scheme beneficial for sound recognition? With our
model, as in a typical recognition task with a DNN, the final
output at each time frame is the category label assigned to the unit
with the maximum activation at the time in the classification
layer (the layer above the 13th layer). If the units synchronize
with a fast AM, then the output category will be temporally un-
stable. Conversely, if the activation of a classification unit is large
all the time, then the DNN will output a constant category over
time. The latter case is preferable for the classification of sounds
of a reasonable duration.

Strictly speaking, by avoiding the pooling operation that is
often included in typical DNNs, the layers in our DNN do not
necessarily down-sample the input. However, even without pool-
ing, it is still possible that successive integration by convolution
and half-wave rectification could bias the DNN toward implicitly
extracting relatively clean temporal properties such as envelopes.
From the result of the waveform following experiment (Fig. 13d),
at least we can conclude that proper setting for optimization is
necessary for down-sampling properties to emerge in the DNN.
Although we avoided making explicit assumptions on DNN pa-
rameters by learning them for sound recognition, the architec-
ture of the DNNs with cascaded nonlinearity could induce some
significant biases regarding the temporal properties of the ex-
tracted signals. Future experiments without half-wave rectifica-
tion or convolution may reveal the effect of these operations.

Sharpness of a tMTF
In neurophysiological and psychophysical studies, tMTFs have
also been characterized by their sharpness. One study has shown
that most of the neurons recorded in the central nucleus of the IC
exhibit Q factors between 0.5 and 1.5 (see supplemental figure
S3A in Rodríguez et al., 2010). Interestingly, layers 7–9 in our
DNN, which exhibited IC-like sharpness distributions, were also
similar to the IC in terms of BMF/UCF distributions (Fig. 8c).
Also, although unitwise Q factors may not be directly comparable
to those of psychophysical tMTFs, most Q values in our DNN
were �1 and thus fall in the range suggested by psychophysical
studies (Ewert and Dau, 2000; Lorenzi et al., 2001). These results
suggest that the broad tuning to the AM rate, which is seen in the
auditory system, may be effective for natural sound recognition.

4

(Figure legend continued.) c, Schematic illustration of recognition and waveform following
tasks. In both tasks, the DNN operated on a short sound segment. The sound recognition task
was to estimate the category of the input sound. The waveform following task was to copy the
amplitude value of the last time frame of the input segment.

Table 2. Major factors for AM representation in different regions

Regions Major factor

Higher Optimization objective
Middle Data naturalness
Lower Cascading architecture
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AF tuning
Unlike neurons in the auditory system, our DNN did not exhibit
sharp single troughs in the AF tuning curves, although some
other studies have reported auditory-like AF tuning emerging in
a DNN with a different architecture from ours (Hoshen et al.,
2015; Terashima and Furukawa, 2018). In the auditory system,
the AF tuning of a neuron depends largely on the mechanical and
physical properties of the cochlea (Pickles, 2012). Some architec-
tural constraints might be necessary to induce similarity in the
auditory system in the AF domain. By not using a spectrogram as
an input, the use of the spectral information such as harmonics
for sound recognition may become more direct, which may lead
to the complex spectral selectivity shown in our AF tuning curves.
The application of a similar convolutional DNN to the temporal
and spectral dimensions of a spectrogram might result in more
organized “spectrotemporal” tunings similar to those in the au-
ditory system, although an investigation of what determines the
shape of an AF tuning curve in a DNN is beyond the scope of this
study.

Several other computational studies have tried to explain au-
ditory AM coding by using models with anatomical and physio-
logical assumptions, including AF decomposition in a cochlea
(Pešán et al., 2015; McWalter and Dau, 2017; Khatami and Es-

a d

b c e

Figure 13. Similarity emerges consistently from speech dataset. a, Confusion matrices of the classification of the validation data. There are 39 categories. Other conventions are the same as in
Figure 3. b, Layer–region pairwise similarity normalized by the maximum value for each brain region. Other conventions are the same as in Figure 8c c, Classification accuracy (top) and cascade
similarity (bottom) as functions of the progress of optimization. d, Layer–region pairwise similarity after and before optimization, that of the DNN trained on shuffled category labels and shuffled
waveforms, and that of the waveform-following task. e, Cascade similarities of DNNs with various architectures plotted against their classification accuracies. All results were consistent with those
obtained with the nonhuman natural sound.

Figure 14. Histograms of tMTF sharpness. Layers 3, 5, 7, 9, 11, and 13 are shown as exam-
ples. The Q factors in the first and second layers are not calculated because no units in these
layers were band-pass shaped. SDs are shown in the top right corners.
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cabi, 2018). In contrast, our results indicate that auditory-like
AM coding emerges even without cochlear AF decomposition.
Sharp AF tunings are probably unnecessary to obtain an effective
AM representation for natural sound recognition.

Potential impact on plasticity studies
In this study, we analogized the auditory system with the opti-
mized DNN. It is difficult to clearly identify the biological coun-
terparts of the DNN optimization process. They probably include
a mixture of the effects of short-term plasticity and long-time
evolution over generations. Although it may be impractical to
experimentally manipulate the long-time evolution in humans,
studies with various AM detection or discrimination tasks in hu-
mans suggest that the responses of central auditory neurons to
AM cues are plastic and that practice may modify the AM pro-
cessing circuitry (Fitzgerald and Wright, 2005, 2011; Rosen et al.,
2012; Sabin et al., 2012; Caras and Sanes, 2015; Joosten et al.,

2016). It may be interesting future work to use a DNN model like
ours to explore the mechanisms underlying such short-term
plasticity.
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Guérin A, Jeannès Rle B, Bès J, Faucon G, Lorenzi C (2006) Evaluation of
two computational models of amplitude modulation coding in the infe-
rior colliculus. Hear Res 211:54 – 62.

Gygi B, Kidd GR, Watson CS (2004) Spectral-temporal factors in the iden-
tification of environmental sounds. J Acoust Soc Am 115:1252–1265.

He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing
human-level performance on ImageNet classification. Int Conf Comput
Vis 15:1026 –1034.

Hewitt MJ, Meddis R (1994) A computer model of amplitude-modulation
sensitivity of single units in the inferior colliculus. J Acoust Soc Am 95:
2145–2159.

Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Senior A,
Vanhoucke V, Nguyen P, Sainath T, Kingsbury B (2012) Deep neural
networks for acoustic modeling in speech recognition. Signal Process
Mag IEEE 29:82–97.

Horikawa T, Kamitani Y (2017) Generic decoding of seen and imagined
objects using hierarchical visual features. Nat Commun 8:15037.

Hoshen Y, Weiss RJ, Wilson KW (2015) Speech acoustic modeling from raw
multichannel waveforms. Int Conf Acoust Speech Signal Process
40:4624 – 4628.

Houtgast T (1989) Frequency selectivity in amplitude-modulation detec-
tion. J Acoust Soc Am 85:1676 –1680.

Houtgast T, Steeneken HJM (1985) A review of the MTF concept in room
acoustics and its use for estimating speech intelligibility in auditoria. J
Acoust Soc Am 77:1069 –1077.

Huffman RF, Argeles PC, Covey E (1998) Processing of sinusoidally ampli-
tude modulated signals in the nuclei of the lateral lemniscus of the big
brown bat, Eptesicus fuscus. Hear Res 126:181–200.

Joosten ER, Shamma SA, Lorenzi C, Neri P (2016) Dynamic reweighting of
auditory modulation filters. PLoS Comput Biol 12:e1005019.

Joris PX, Smith PH (1998) Temporal and binaural properties in dorsal co-
chlear nucleus and its output tract. J Neurosci 18:10157–10170.

Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the
auditory nerve of the cat. J Acoust Soc Am 91:215–232.

Joris PX, Yin TC (1998) Envelope coding in the lateral superior olive. III.
Comparison with afferent pathways. J Neurophysiol 79:253–269.

Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-
modulated sounds. Physiol Rev 84:541–577.

Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, Ed
4. New York, NY: McGraw-Hill.

Kell AJE, Yamins DLK, Shook EN, Norman-Haignere SV, McDermott JH
(2018) A task-optimized neural network replicates human auditory be-
havior, predicts brain responses, and reveals a cortical processing hierar-
chy. Neuron 98:630 – 644.e16.

Khaligh-Razavi SM, Kriegeskorte N (2014) Deep supervised, but not unsu-
pervised, models may explain IT cortical representation. PLoS Comput
Biol 10:e1003915.

Khatami F, Escabi MA (2018) Spiking network optimized for noise robust
word recognition approaches human-level performance and predicts au-
ditory system hierarchy. Available at: https://www.biorxiv.org/content/
early/2018/01/05/243915. Accessed March 27, 2018.

Koushik J, Hayashi H (2016) Improving stochastic gradient descent with
feedback. Available at: http://arxiv.org/abs/1611.01505. Accessed June 27,
2017.

Krishna BS, Semple MN (2000) Auditory temporal processing: responses to
sinusoidally amplitude-modulated tones in the inferior colliculus. J Neu-
rophysiol 84:255–273.

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with
deep convolutional neural networks. Adv Neural Inf Process Syst 25:
1097–1105.

Kuwada S, Batra R (1999) Coding of sound envelopes by inhibitory rebound
in neurons of the superior olivary complex in the unanesthetized rabbit.
J Neurosci 19:2273–2287.

Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus
of the cat. I. Neuronal mechanisms. J Neurophysiol 60:1799 –1822.

Lee KF, Hon HW (1989) Speaker-independent phone recognition using
hidden Markov models. IEEE Trans Acoust 37:1641–1648.

Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5:356 –
363.

Liang L, Lu T, Wang X (2002) Neural representations of sinusoidal ampli-
tude and frequency modulations in the primary auditory cortex of awake
primates. J Neurophysiol 87:2237–2261.
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