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The development of a humoral immune response to influenza vaccines occurs on a 
multisystems level. Due to the orchestration required for robust immune responses when 
multiple genes and their regulatory components across multiple cell types are involved, 
we examined an influenza vaccination cohort using multiple high-throughput technol-
ogies. In this study, we sought a more thorough understanding of how immune cell 
composition and gene expression relate to each other and contribute to interindividual 
variation in response to influenza vaccination. We first hypothesized that many of the dif-
ferentially expressed (DE) genes observed after influenza vaccination result from changes 
in the composition of participants’ peripheral blood mononuclear cells (PBMCs), which 
were assessed using flow cytometry. We demonstrated that DE genes in our study are 
correlated with changes in PBMC composition. We gathered DE genes from 128 other 
publically available PBMC-based vaccine studies and identified that an average of 57% 
correlated with specific cell subset levels in our study (permutation used to control false 
discovery), suggesting that the associations we have identified are likely general features 
of PBMC-based transcriptomics. Second, we hypothesized that more robust models of 
vaccine response could be generated by accounting for the interplay between PBMC 
composition, gene expression, and gene regulation. We employed machine learning to 
generate predictive models of B-cell ELISPOT response outcomes and hemagglutina-
tion inhibition (HAI) antibody titers. The top HAI and B-cell ELISPOT model achieved an 
area under the receiver operating curve (AUC) of 0.64 and 0.79, respectively, with linear 
model coefficients of determination of 0.08 and 0.28. For the B-cell ELISPOT outcomes, 
CpG methylation had the greatest predictive ability, highlighting potentially novel regula-
tory features important for immune response. B-cell ELISOT models using only PBMC 
composition had lower performance (AUC = 0.67), but highlighted well-known mech-
anisms. Our analysis demonstrated that each of the three data sets (cell composition, 
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mRNA-Seq, and DNA methylation) may provide distinct information for the prediction of 
humoral immune response outcomes. We believe that these findings are important for 
the interpretation of current omics-based studies and set the stage for a more thorough 
understanding of interindividual immune responses to influenza vaccination.

Keywords: influenza vaccine, data mining, machine learning, cell sorting, methylation, differential expression, 
immunology

inTrODUcTiOn

Goals of vaccine research include improved understanding of  
vaccine-induced immunity, identification of differences in 
immune responses to vaccination, and determination of their 
underlying mechanisms. While vaccination programs to combat 
seasonal and pandemic influenza strains have been highly effec-
tive at decreasing the burden of disease, these gains have not been 
uniform; specific populations, such as the very young, aged, and 
immunocompromised, experience the greatest risk for influenza-
related complications. It is known that immune responses to 
vaccination diminish as the age of the vaccinated population 
increases; however, it has been demonstrated that immune waning 
is not only strictly correlated with chronologic age but also more 
closely correlated with molecular measures of immunosenescence 
(1–4). Thus, leveraging molecular data to enhance our ability to 
predict response to influenza vaccination is of great interest.

Previous studies of immune response to influenza vaccination 
have leveraged genetic association and gene expression data to 
highlight specific pathways and signaling events, which have 
contributed greatly to our understanding of innate and adaptive 
immune responses (5–9). A common theme observed through-
out these studies is that very few individual genes demonstrate 
strong effect sizes (5, 10); rather many genes exhibit small effects, 
similar to what has been observed in genetic association studies 
for other complex traits (11, 12), including immunity following 
vaccination (13–16). Thus, to generate robust statistical models of 
vaccine response, it may be necessary to leverage multiple genetic 
features whose combined information is greater than each alone.

Many of these previous studies of human immune responses 
to influenza vaccination have used whole blood (17), or periph-
eral blood mononuclear cells (PBMCs) (5, 9, 18), to generate 
transcriptomic data sets to identify the molecular signatures of 
protective immune responses. However, when high-throughput 
data are assayed on mixed populations of cells, it is challenging 
to differentiate changes in population composition from changes 
in activities within each subpopulation. Methods have been 
developed for employing immune cell signatures (19, 20) to 
identify subpopulations of cells within heterogeneous samples, 
but the interplay between vaccine-induced gene expression 
changes and interindividual differences in prevaccination PBMC 
composition is not generally considered. Further, the potentially 
complementary information among PBMC composition, gene 
expression, and CpG methylation for constructing predictive 
models of immune response has not been explored.

To better understand the biologic underpinnings of interindi-
vidual immune response to influenza vaccination, we studied a 
cohort of healthy older individuals (n = 159) who received seaso-
nal influenza vaccination. In this study, we first hypothesized that 

many of the differentially expressed (DE) genes observed upon 
influenza vaccination are indicative of changes in the composition 
of PBMCs. Second, we hypothesized that more robust predictive 
models of vaccine response can be generated by accounting for 
the interplay between three data types: PBMC composition, gene 
expression, and gene regulation. To do this, we applied machine 
learning (ML) techniques and compared our results to other 
publically available data. We found that the majority of DE genes 
upon vaccination are associated with changes in PBMC composi-
tion. Further, predictive models can be constructed from all three 
data types, but the highest performing model leveraged all three.

MaTerials anD MeThODs

Data used in this study have been made available through http://
immunespace.org, under study number SDY67. The following 
methods are similar or identical to our previously published 
studies using this cohort (21–26). The primary objective of the 
original study was to describe and characterize immune response 
profiles before and after influenza vaccination. In this work, we 
reanalyze our existing data to integrate across data types by gener-
ating novel predictors that leverage markers from each data type.

subjects
Subject selection and study recruitment has been previously 
published (21–23). In brief, the study included 159 healthy 
individuals, ranging in age from 50 to 74  years old, who were 
immunized with a single dose of the 2010–2011 seasonal TIV 
Fluarix (GlaxoSmithKline), containing A/California/7/2009 
(H1N1), A/Perth/16/2009 (H3N2), and B/Brisbane/60/2008 
viruses (21–23). All subjects reported stable health and provided 
detailed vaccination histories. Subjects were excluded from the 
study if they already received the 2010–2011 TIV. Blood samples 
(90 ml) from each subject were obtained at three separate time 
points: prevaccination (Day 0), Day 3, and Day 28 (22).

Flow cytometry Panels
Our flow cytometry data using fluorescence-activated cell surface 
marker tags (abbreviated as Flow) consisted of three different 
panels of cellular/functional and humoral immune markers. The 
first panel was a measurement of innate immunity (CD11c, CD3, 
CD86, CD56, CD123, CD20, HLA-DR, CD16, and CD14). The 
second panel was a measurement of regulatory T-cell phenotypes 
(CD3, CD4, CD25, CD28, CD38, CD45R0, CD127, CD194, and 
HLA-DR). The third panel measured B-cell phenotypes (CD3, 
CD19, CD20, CD24, CD27, CD38, and IgD). Intensity levels 
were expressed as fractions of the number of total cells that were 
sorted. Within each panel, data were analyzed for consistency 
and reproducibility. Cell subset levels were manually reviewed 
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by experienced technicians, and only those with at least 50 cells  
for each subject in the cohort were carried on to further analysis.

immune assays
The hemagglutination inhibition assay (HAI) has been previously 
described (21, 24). The standard WHO protocol (27) was used to 
determine influenza-specific (virus strain A/California/07/2009) 
antibody titers from each subject’s serum at all three time points. 
The HAI titer was defined as the highest dilution of serum 
that inhibits turkey red blood cell (0.5%) hemagglutination. 
Seroconversion to influenza viral antigens was defined as a four-
fold increase in serum antibody titers between Day 0 (before 
vaccination) and Day 28 (28). The average coefficient of variation 
for the HAI assay performed in this study was 2.9%.

B cell elisPOT assay
We have previously described our use of the B  cell ELISPOT 
assay in recent publications (23, 25). In brief, IgG memory-like 
B  cells specific to influenza virus (influenza A/H1N1) were 
quantified in subjects’ PBMCs using the Mabtech ELIspotPLUS kit 
for human IgG (Mebtech Inc., Cincinnati, OH, USA), according 
to the manufacturer’s protocol and as previously described (23, 
25). Influenza-specific B cell ELISPOT response was measured 
in quadruplicate, quantified in spot-forming units per 2  ×  105 
cells and summarized as subjects’ median. Intraclass correlation 
coefficients, which assessed the correlation between replicate 
measurements in this assay, were high (0.88) (23, 25).

Dna Methylation assay
DNA samples were extracted and bisulfite modified, and the 
methylation patterns prevaccination and postvaccination were 
assessed using the Illumina’s Human 450 Methylation BeadChip, 
as previously described (26). DNA methylation patterns were 
measured as percent methylation values (β-value), which were 
transformed to M-values. Our filtering and normalization 
methods have been previously published and resulted in the 
interrogation of 101,456 probes across the human genome (26).

next-generation sequencing
Transcriptome profiling (mRNA-Seq) methods are similar or 
identical to those we have previously published (24–26). In sum-
mary, libraries were prepared from total RNA extracted from 
PBMCs (all time points), and single-end 50 bp read sequencing 
was performed on the Illumin HiSeq 2000 (Illumina, San Diego, 
CA, USA). We used the Illumina Single Read Cluster Generation 
kit (v2) and 50 Cycle Sequencing Kit (v3). A median of 139.6 mil-
lion reads per sample were generated. The sequencing reads were 
aligned to the human genome build 37.1 using TopHat (1.3.3), 
and Bowtie (0.12.7). HTSeq (0.5.3p3) was used to perform gene 
counting, and BEDTools (2.7.1) was used to count the reads 
mapping to individual exons (29–31). The same procedure was 
applied to purified cell subsets (monocytes, T-cells, and B-cells) 
from 10 additional subjects (waste blood products from apheresis 
donors; IRB-approved use). Gene expression features were filtered 
to those of high interindividual variability (top quartile) and 
median read count >32 in at least one time point and expressed 
in log2 units.

associations between Flow cytometry 
and high-Dimensional Data
We computed the Spearman’s correlation between each high-
dimensional feature and Flow features. Because of the large 
num ber of correlations and also due to the complex covariance 
structure within both data sets, correlation coefficients for each 
Flow feature were computed with 10,000 randomly permuted 
gene expression features to generate an empirical null distribu-
tion. This null distribution was used to filter for significant asso-
ciations. Correlation coefficient values, observed in up to 1% of 
random permutations (α = 0.01 level for our empirical null), were 
filtered. The remaining associations between gene expression 
profiles and Flow data defined our list of Flow-associated features.

Public Data sets
Whole genome DNAse accessibilities, and transcription factor 
binding site (TFBS) data made available from ENCODE, were 
downloaded from the UCSC Genome Browser (University of  
California, Santa Cruz). TFBS narrow-peak calls from all avail-
able human ChIP-Seq experiments were downloaded from 
http://encodeproject.org on 2016-9-23 and filtered to those with 
maximal confidence (score of 1,000).

We searched GEO (32) data sets for “(PBMC OR “peripheral 
blood mononuclear”) AND (Vaccine OR virus) AND Taxon:9606.” 
This query returned 234 data sets that are composed of many 
different types of comparisons. The utility of these data sets is to 
investigate if the associations between mRNA and FLOW levels 
that we have identified are generally observed in PBMC-based 
studies. We removed data sets with <10 samples and manually 
reviewed metadata and phenotype tables to identify a control 
group for differential expression analysis, leaving 186 data sets. We 
used a semiautomated procedure for identifying DE genes within 
each study, so that cross-study gene expression normalization was 
not required. As the dominant trend between conditions in each 
study could be upregulation or downregulation, we tested a series 
of fold change thresholds (1/20, 1/10, 1/4, 1/2, 2, and 5) and FDR-
adjusted p-value thresholds (1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−4, 
and 1 × 10−5). For each type of threshold, we identified the most 
conservative threshold that admitted ≥150 genes. It was necessary 
to dynamically choose thresholds because different treatments 
potentially applied within different contexts can produce different 
magnitudes of fold change. The combined thresholds were then 
applied to the data set; the resulting DE genes are the intersection 
of those identified by each threshold. Data sets for which no DE 
genes were identified according to these criteria were filtered. 
Finally, the DE genes from across 128 data sets composed of 8,381 
samples were compared to the genes significantly correlated with 
Flow variables in our study. We summarized each study by the 
fraction of DE genes overlapping with our Flow-associated genes.

We queried ImmuneSpace (33) for human PBMC-based influ-
enza studies that assayed gene expression and ELISPOT outcomes 
in at least 25 subjects, identifying SDY269 and SDY80. Data were 
downloaded and processed using the ImmuneSpaceR (34) pack-
age. These studies were used for validation of gene expression 
features identified in our predictive models. No studies beyond 
our own assayed methylation levels.
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FigUre 1 | correlations among cell subset levels across subjects. We 
present a heatmap of Spearman’s correlation coefficients among cell 
subsets. Each cell in the matrix is the correlation between the corresponding 
two Flow markers, across subjects. The matrix is symmetric; columns labels 
omitted for brevity. Row order was determined using hierarchical clustering. 
Cell subsets are either directly named or labeled by the surface markers 
used. A forward slash indicates a fraction. For example, the first row indicates 
the fraction of CD20-positive cells that are IgD positive and CD27 negative.
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immune response Outcomes for 
Modeling
The primary immune response outcomes used were Day 28 B-cell 
ELISPOT response expressed on the log2 scale or Day 28 HAI titers 
expressed on a log2 scale. Continuous levels were modeled, and 
classification accuracies were determined by splitting the cohort 
into two groups: “high” and “low.” For B-cell ELISPOT response, 
we used a median threshold. For HAI, we used a fourfold change 
from Day 0 levels.

clustering Methods
We investigated three clustering methods: k-means with k = 25, 
k-means with the value of k determined by consensus clustering, 
and WGCNA (35). For each clustering method, we used two pro-
cedures for choosing a representative from each cluster—either 
the cluster’s medoid (i.e., the observation that is closest to the 
cluster centroid) or the feature with highest correlation with the 
outcome.

generating Predictive Models
To generate predictive models, data were first standardized: 
′ = −x x x xi i( ) / mad( ); this is analogous to Z-scores, but using 

medians. Each data set was filtered by a second variance-quartile 
filter. As a final step prior to any ML, we also removed variables 
with a Spearman’s correlation coefficient with an outcome less 
than 0.1; this very low threshold was chosen for noise reduction.

For a given set of input features, we employed 10-fold nested 
cross-validation (CV) ensemble learner for prediction (36, 37). 
Ensemble learners are a novel class of ML methods that generate 
multiple individual models and statistically combine them in a 
way that minimizes overfitting (38, 39). The ensemble learner 
used here included individual glm, glmnet, RPART, and random 
forest models with glmnet used for feature selection within the 
ensemble. The resulting models were summarized by the number 
of input features, the number of selected features, and the linear 
association between the model’s predicted outcomes level and 
the experimentally measured outcomes. We discretized the fitted 
and measured outcome levels to evaluate if each model was an 
accurate classifier for patients having “high” or “low” outcome 
levels. Classification performance was evaluated using Cohen’s D, 
t-tests, sensitivity, specificity, and area under the receiver operat-
ing curve (AUC).

software
Analysis was performed using custom scripts in the R program-
ming language (40) version 3.2.0 and leveraging the packages: 
geosearch (41), geoquery (42), glmnet (43), rpart (44), random-
Forest (45), Epi (46), and SuperLearner (37). Figures were gener-
ated using R and leveraging the ggplot2 (47) and rgl (48) packages.

resUlTs

assay Outcomes
Our study consisted of 159 subjects for which HAI, B-cell 
ELISPOT, three flow cytometry panels, mRNA-Seq, and CpG 
methylation data were available at several time points relative 

to vaccination [details published previously (23–26, 49)]. Two 
samples were removed due to failed quality control metrics in 
mRNA-Seq gene expression or CpG methylation.

associations between Flow cytometry 
Data and immune Outcomes
Multivariable analysis of our B  cell flow cytometry panel data 
revealed that, in addition to age, the percentage of a combination 
of cell types including CD8+CD28low T cells (as % of CD8 cells) 
and the percentages of IgD+CD27− naïve and transitional B cells, 
CD20− B cells, and CD20-CD27highCD38high plasma cells of 
total B cells (all measured at Day 3 post-vaccination) were nega-
tively associated with Day 28 HAI response (R2 = 0.31), as previ-
ously described (23). We previously identified specific T and B cell 
subsets positively associated with Day 28 HAI response (23, 49).  
While there were no statistically significant changes in plasma  
cells (CD20−CD27+CD38+) over time, there was a slight per-
centage increase of B cells at Day 3 versus Day 0 (p = 0.006) (23).

relationships within and between  
Flow Data and mrna levels
We first quantified the correlations among cell subset levels 
(Figure  1). Three groups of cells are visually evident. The first 
contains NK-cells, plasmacytoid dendritic cells (pDCs), and 
monocyte subsets. The second is a middle group exhibiting 
little correlation with other cell subsets, including DR+Tregs 
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FigUre 2 | The distribution of correlations with gene expression differs for each flow cytometry feature. (a) After filtering relationships with low statistical 
significance using permutation, each cell subset shows positive and negative associations with many genes; each row corresponds to a cell subset. Correlation 
magnitude is shown along the abscissa and probability density along the ordinate. (B) As examples to demonstrate how genes with strong negative correlations 
with one subset have strong positive correlations with another, we selected genes with correlation ≤−0.4 with any cell subset and plot their associations across  
all subsets. Each of the selected genes is represented by a line connecting their correlation value with each subset. The same strong trend is observed when 
selecting genes with a positive correlation coefficient and for smaller magnitudes (not shown).
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and DR+CD8+ memory cells. The third group contained total 
B-cells, total T-cells, NK-T-cells, and myeloid DCs (mDCs).

Next, we correlated gene expression levels with Flow data. 
Many of the genes that showed differential gene expression 
exhibited potentially important association(s) with cell subset 
levels (Figure  2). We used permutation to identify thresholds 
for likely false-positive associations. The threshold used differed 
for each subset and were on average 0.24 ± 0.02. The remaining 
correlations represent 7.8% of all correlations considered. This 
correlation translates into global gene expression profiles such that 
variability in immune cell populations over time is correlated with 
changes in gene expression over time (Figure S1 in Supplementary 
Material). The analogous trend is not observed for methylation 
levels (Figure S2 in Supplementary Material). To better understand 
the relationships between gene expression levels and correlations 
with Flow subsets, we identified genes with a strong negative cor-
relation (<−0.4) and demonstrate their correlation with all other 
major innate cell subsets. For example, genes with high correlation 
with monocyte subsets have the opposite associations with T-cells, 
NK-T-cells, and mDCs (Figure  2). The number of associated 
genes differed by cell type (Figure S3 in Supplementary Material). 
Monocyte populations exhibited the largest number of highly cor-
related genes, followed by DCs. Further detail is revealed by con-
sidering the number of genes whose expression level is correlated 
with each cell subset level (Figure S4 in Supplementary Material).

To gain greater resolution on which cell types specifically 
express each gene, we performed mRNA-Seq on PBMCs and 
three subsets (fluorescence-activated cell sorting of B  cells, 
T  cells, and monocytes) from 10 additional participants. In all 
three subsets, many genes exhibited significantly different expres-
sion levels compared to PBMCs (Figure 3). Many genes exhibited 
different expression levels in all three subsets. However, the 

majority of genes with the highest interindividual variability were 
highly expressed in both B and T cells and lowly in monocytes 
or vice  versa (Figure S5 in Supplementary Material). Thus, the 
identification of which cell subsets drive each gene’s expression 
is a critical component of understanding the biologic meaning  
of differential gene expression when assayed in PBMCs.

relationships between Flow Data,  
mrna levels, and immune response
To assess the degree to which the above associations impact the 
interpretation of immune response outcomes, we computed the 
correlation of each Flow-associated gene with B-cell ELISPOT 
outcomes (Figure S6 in Supplementary Material). T  cell and 
pDC subset genes have the highest proportion of expression-
associating genes with significant associations (p  <  1  ×  10−2) 
with immune response levels. About half of the monocyte- and 
NK-T-associated genes are also associated with B-cell ELISPOT 
outcome levels, while only few B  cell- and NK  cell-associated 
genes are associated with B-cell ELISPOT outcome levels.

To validate the potential impact of these relationships on the 
interpretation of PBMC-derived profiles, we examined DE genes 
from publically available data sets of vaccine or virus response 
assayed in PBMCs and identified 57% overlap, on average, with the 
genes exhibiting strong correlations in our study (Figure 4). Thus, 
it is likely that the association between Flow variables and gene 
expression is a general property of PBMCs. These associations 
should be considered for the interpretation of high-dimensional 
data assayed on PBMC samples.

Predictive Models of immune response
Given the interdependencies evident within and between our 
three data sets, the utility of combining them into a more powerful 
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FigUre 4 | The potential impact of accounting for immune cell composition on the interpretation of peripheral blood mononuclear cell (PBMc)-
derived gene expression profiles. We quantified the fraction of differentially expressed (DE) genes from publically available studies for which the same gene was 
strongly correlated with an immune cell subset in our study. (a) Across 128 publically available human vaccine-related data sets where data were produced from 
PBMCs, we identified DE genes and determined the percent of those DE genes that are significantly associated with Flow-derived cell subset levels in our data set 
(%DEFlow). On average, 57% of the DE genes from external PBMC-derived samples were associated with a change in cell subset level in our study. (B) Recurrence 
analysis of DE genes across these studies highlights that underlying changes in PBMC composition could be driving many of the most important transcriptomic 
changes across these studies.

FigUre 3 | comparison between expression levels in human peripheral blood mononuclear cells (PBMcs) and sorted cell subsets. We performed 
fluorescence-activated cell sorting for 10 patient samples, and mRNA-Seq was assayed on three sorted cell subsets: monocytes, T-cells, and B-cells. In the first 
row, we show the relationship between gene expression levels in each cell subset versus PBMCs from the same patient samples, across the most variable quartile 
of the transcriptome. In the second row, we calculate the difference in expression (ΔExpr) between PBMCs and each sorted cell subset; the probability density of 
ΔExpr across genes is plotted. These data confirmed the trends observed from data generated on PBMCs—genes correlating with levels of a cell subset according 
to Flow are expressed to a higher degree in that cell subset than in PBMCs and often than in other cell subsets.
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predictive model of immune response was investigated. We will 
refer to variables from each data set generically as “features” for 
model development. Different combinations of data sets were 
submitted to an ensemble learner, a ML algorithm that combines 
multiple marginal predictions so as to maximize performance 
while not significantly affecting the rate of false discovery, com-
pared to other ML algorithms (36, 39).

Models Built from Single-Data Types
Individual data sets demonstrated different abilities to produce 
predictive models for B-cell ELISPOT response. We have sum-
marized prediction results across all models in Table  1. Flow 
variables alone achieved high sensitivity, but low specificity, 
resulting in a modest AUC of 0.67. The three features retained 
by the Flow-only model, selected from all available Flow features 
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TaBle 1 | Performance of predictive models of B-cell elisPOT using combinations of data types.

input data Feature 
selection

continuous prediction Discrete predictiona

Flow mrna cpg N M lM r2 lM p-value Db t-test sens spec aUc

F0 27 3 0.07 1.05 × 10–3 0.67 1.59 × 10−4 0.78 0.53 0.67
E0 151 6 0.00 7.73 × 10−1 0.01 7.60 × 10−1 0.75 0.35 0.51
F0

C 31 1 0.00 4.81 × 10−1 0.02 3.68 × 10−1 0.30 0.79 0.52
E28-0 63 2 0.04 1.83 × 10−2 0.11 2.61 × 10−1 0.44 0.69 0.55

E28-0 ∩ F0
C 10 3 0.00 5.38 × 10−1 0.00 8.40 × 10−2 0.90 0.22 0.55

M0 72 29 0.23 1.81 × 10−10 1.13 1.21 × 10−10 0.76 0.73 0.78
F0 E0 178 8 0.03 2.74 × 10−2 0.52 4.91 × 10−3 0.58 0.68 0.63
F0 F0

C 58 3 0.04 1.14 × 10−2 0.44 3.67 × 10−3 0.65 0.62 0.63
F0 E28-0 90 4 0.03 4.22 × 10−2 0.49 9.25 × 10−3 0.58 0.67 0.62
F0 E28-0 ∩ F0

C 37 3 0.06 1.97 × 10−3 0.68 1.38 × 10−4 0.65 0.65 0.68
F0 M0 99 31 0.22 5.77 × 10−10 1.04 4.29 × 10−11 0.81 0.67 0.79
F0 E0 M0 250 35 0.12 1.22 × 10−5 0.84 3.03 × 10−5 0.63 0.69 0.69
F0 F0

C M0 130 27 0.17 5.42 × 10−8 1.06 4.29 × 10−9 0.82 0.63 0.76
F0 E28-0 M0 162 32 0.28 1.63 × 10−12 1.08 2.26 × 10−11 0.70 0.76 0.79
F0 E28-0 ∩ F0

C M0 109 29 0.19 8.96 × 10−9 1.01 4.04 × 10−9 0.71 0.74 0.76

Best representativec

E0, k = 25 M0, k = 25 50 32 0.22 7.42 × 10−10 0.84 2.59 × 10−7 0.62 0.76 0.73
F0 E0, k = 25 M0, k = 25 77 23 0.18 3.05 × 10−8 0.88 4.47 × 10−7 0.72 0.68 0.72

E0, k = 6 M0, k = 8 14 10 0.15 8.49 × 10−7 0.75 9.68 × 10−7 0.72 0.65 0.72
E0, WGCNA = 15 M0, k = 8 23 13 0.13 3.13 × 10−6 0.80 1.27 × 10−6 0.68 0.65 0.71

F0 E0, k = 6 M0, k = 8 41 10 0.13 3.27 × 10−6 0.83 9.51 × 10−7 0.62 0.74 0.72

Medoid representative
E0, k = 25 M0, k = 25 50 7 0.01 2.36 × 10−1 −0.19 3.06 × 10−1 0.61 0.56 0.56

F0 E0, k = 25 M0, k = 25 77 3 0.06 1.97 × 10−3 0.43 2.80 × 10−3 0.37 0.86 0.64
E0, k = 6 M0, k = 8 14 2 0.03 2.24 × 10−2 0.30 2.77 × 10−2 0.59 0.62 0.60

E0, WGCNA = 15 M0, k = 8 23 3 0.02 9.50 × 10−2 0.29 4.88 × 10−2 0.85 0.32 0.59
F0 E0, k = 6 M0, k = 8 41 3 0.05 3.28 × 10−3 0.60 2.88 × 10−4 0.80 0.50 0.67

AUC, area under the receiver operating curve; F0, day 0 cell subset levels (flow) plus participant age and biologic sex; E0, day 0 gene expression; F0
C, day 0 gene expression of genes 

not correlated with any flow data; M0, day 0 methylation; N, the number of features input to the ensemble learner; M, the number of features retained in the final model; LM, linear 
model fit between observed and predicted outcome levels.
aFor evaluative purposes, outcome data were discretized by above or below the median.
bCohen’s D statistic measuring the standardized difference in means.
cData were clustered into k clusters before model construction, and one representative from each was used.
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plus age and biologic sex, were the levels of B-cells, DR− memory 
Tregs, and the fraction of CD20+ cells that are CD27+. Thus, 
ML identified these specific cell types as important for memory 
B-cell immune response. Gene expression alone exhibited less 
robust prediction by multiple measures; the model had an 
AUC of 0.51 and contained six genes: BHLHE41, DES, NXPH4, 
NOMO3, PKIB, and TKTL1. Changes in these genes’ expression 
levels are associated with, respectively, the levels of the following 
cell subsets: mDCs, monocytes, B-cells, monocytes and DR− 
memory Tregs, monocytes, and NK-cells. Differential expres-
sion alone also yielded less robust prediction (AUC  =  0.55).  
Two genes were selected by this model and also showed cor-
relations with Flow levels: HSD17B14 correlated with classical 
monocytes and pCDs, while MACROD2 correlated with mDCs 
and T  cells. Methylation alone achieved an AUC of 0.78 and 
demonstrated greater separation of high and low responders 
than other per-data type models. Detailed performance metrics 
for all models were examined, and examples are available in 
Figure S7 in Supplementary Material. Thus, per-data type models  
indicate that PBMC composition and CpG methylation may 
provide complementary information for prediction of immune 
response outcomes.

Models Built from Multiple Data Types
First, we combined the aforementioned mRNA and Flow features 
and generated a new model, which included naïve CD4+Treg and 
IgD+CD20+CD27+ B-cell levels and expression of additional 
genes, including BHLHE41, NOMO3, PKIB, and TKTL1. With 
these additional features, moderate gains in performance were 
observed—particularly an increased specificity (Table 1). Com-
bining Flow and methylation data resulted in 27 of the original 
29CpGs selected, with the three cell subsets from the Flow-only 
model. Importantly, nearly all models generated that utilized 
Flow features retained the three cell subset variables identified 
in the Flow-only model. The only two exceptions were models  
of Day 0 gene expression with or without Day 0 methylation that 
did not include B-cell levels; however, genes were included in 
these models whose expression levels were correlated with either 
B-cell or T-cell levels. Thus, the complementary information 
between Flow and CpG methylation was further supported.

Combining features from all three data types achieved the high-
est specificity and AUC. The model was composed of nearly identical 
features to the Flow and methylation model, with included expres-
sion levels of five genes: BTNL9, HSD17B14, MACROD2, OXTR, 
and UGT8. As previously stated for the expression-only model,  
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HSD17B14 and MACROD2 are associated with T-cells and mDCs 
and B-cells and mDC, respectively. BTNL9 and UGT8 are cor-
related with B-cell levels and OXTR was not significantly associ-
ated with Flow levels. Therefore, Flow and methylation provided 
the predominant signal in our model, with expression of genes 
typically correlating with cell subset levels providing modest 
improvements.

Finally, and because of the extensive correlation structure pre-
sent within each data set (Figure 1; Figure S8 in Supplementary 
Material), we tested the effect of using different clustering 
techniques. First, we used k-means clustering and chose a rep-
resentative from each cluster to be given to the ML procedure. 
Representatives were chosen in one of two ways: the “central” 
feature (medoid) from each cluster versus the feature with strong-
est association with outcome. Second, we used consensus cluster-
ing approaches to optimize the number of clusters chosen. The 
best performing model across all methods considered was from 
clustering prior to feature selection; however, models generated 
from cluster represen tatives shared a significant number of fea-
tures with the models generated without clustering. For example, 
BHLHE41, NOMO3, NXPH4, PKIB, and TKTL1 gene expression 
levels were frequently included in predictive models of B-cell 
ELISPOT response. These genes are all strongly correlated with 
the levels of cell subsets, emphasizing the interrelated nature of 
high-dimensional data and sample composition.

The same analysis approach was applied to the prediction of 
HAI response (Table S1 in Supplementary Material), but was less 
successful at identifying high and low responders regardless of 
which data types were used. The most predictive model was Day 
0 gene expression of genes not correlated with any Flow data 
(Cohen’s D = 0.49, AUC = 0.64).

comparison to Other Data sets
While no comparable data sets of methylation levels and influenza 
vaccination were found for validation, the ImmPort database 
contained several data sets for gene expression before and after 
influenza vaccination. Prevaccination gene expression from three 
cohorts [SDY269-TIV (9), n =  28; SDY269-LAIV, n =  28; and 
SDY80 (5), n = 51] was used to investigate the immune response 
outcome associations for the top 10 genes from predictive mod-
eling in our study (Figure S9 in Supplementary Material). These 
comparison data were acquired on microarray, and no probesets 
interrogated NOMO3. Further, these studies are smaller than ours 
and use different technologies, reagents (e.g., antibodies and vac-
cines), and procedures. Subjects in SDY80 received both seasonal 
influenza and H1N1 vaccines. Subjects in SDY269 received either 
LAIV (FluMist) vaccine, likely to activate the immune system dif-
ferently from TIV vaccines, or a TIV vaccine, but were recruited 
over three seasons and assayed using plasmablast ELISPOT—an 
immune response outcome expected to be correlated with our 
B-cell ELISPOT outcome, but the strength of correlation is 
unknown. Thus, these previous studies are not fully comparable 
to ours, and the SDY269-TIV cohort is likely to most comparable. 
Evaluating the nine genes identified in our analyses demonstrated 
the greatest reproducibility in SDY269-TIV, but variable repro-
ducibility in SDY269-LAIV and SDY80. However, statistically 
significant predictive models could be generated for all three 

data sets using only the nine genes (Figure S9 in Supplementary 
Material), indicating the potential for these genes to provide 
information about immune response outcomes.

annotation of Model Features
Many of the same genes and CpGs were selected by our ML 
procedure for inclusion in multiple predictive models. We list the 
occurrence of features across our predictive models in Table S2 in 
Supplementary Material. Flow levels and CpG sites lie at the top 
of this list. To facilitate the interpretation of the potential biologic 
mechanisms that these CpG sites may be indicative of, we anno-
tated them for their potential regulatory roles by their relationship 
to genes, DNA accessibility, and integrated TFBS measurements 
from ENCODE ChIP-Seq data (Table 2). About half of them are 
cis-acting to a gene, lying either within the gene’s promoter or 
within the gene body. Nearly all of them overlap known ChIP-
Seq-identified TFBSs and are accessible via DNAse digestion. 
Many of the TFs identified at each site are known chromatin 
remodeling enzymes (e.g., CTCF, MYC, MAX, SIN3A, EP300). 
Differential methylation at these sites could influence either 
immune cell composition or activity through differential bind-
ing of these chromatin remodelers at the same sites, potentially 
influencing the regulation of multiple genes. Thus, mechanistic 
hypotheses for the role of each CpG site in specific TF binding 
events, and therefore, gene regulation are apparent.

DiscUssiOn

Applying systems biology approaches, high-dimensional data sets, 
and advanced analytical tools is critical to furthering our under-
standing of human immune responses to infection and/or vac-
cination (50). Transcriptomic analyses are being used to examine 
human immunology; however, the integration of transcriptomic 
data with additional data types may improve our ability to assess 
immune responses and potentially generate improved predic-
tive models. In this study, we analyzed the extent to which gene 
expression and methylation level changes are influenced by PBMC 
composition (assessed by flow cytometry) and applied ML to com-
bine these three data types in different ways to construct predictive 
models of immune response to seasonal influenza vaccination.

Many systems biology studies of human immune responses 
have used PBMC samples to generate high-throughput data sets 
to identify molecular signatures of robust immune response. A 
key advantage to this approach is that blood is easily obtained 
from individuals and PBMCs can be isolated without intensive 
purification procedures that potentially alter cellular gene expres-
sion patterns. In addition, whole-cell samples likely better reflect 
holistically the in vivo environment in which immunity is gener-
ated. A disadvantage is that PBMCs are a diverse mixture of cell 
types, each with a potentially unique gene expression response to 
a given stimulus. A common theme observed throughout high-
throughput studies utilizing PBMCs has been that few individual 
genes contribute consistently to immune responses and those that 
do have relatively small effect sizes. This is likely not only due to the 
fact that immune responses are complex, multigenic processes but 
also due to the presence of multiple, cell subset-specific responses 
to the vaccine that are superimposed.
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TaBle 2 | annotation of cpgs recurrently used in classification of B-cell elisPOT outcomes.

illumina iD context nca Promoter Body Dnaseb #TFc Transcription factor binding site (TFBs)d

cg06739303 S_Shore 6 LOC441666 x 46 ELF1, FOS, GABPA
cg17959722 Island 6 PNPLA7 x 28 E2F1, POLR2A, SIN3A
cg19566405 6 SLFN12 x 16 ZNF263, FOS, JUND
cg00310523 6 RASSF9 x 11 CEBPB, TBP, TCF7L2
cg18963800 N_Shore 6 HSD17B7P2 x 7 CEBPB, POLR2A
cg21384492 Island 6 SNED1 3 E2F1, POLR2A, SIN3A
cg15878909 5 FAM90A1 x 9 MAX, POLR2A, RAD51
cg00785941 Island 5 OR2L13 31 CTCF, ZNF263, ELF1
cg15633073 Island 11 ZNF536 x 0
cg20550154 6 NID2 x 8 EP300, NFE2, ZNF384
cg00367615 Island 6 MEDAG x 1 EZH2
cg04681845 6 FMNL2 x 1 MYC
cg18396987 S_Shore 6 SYCP1 1 EZH2
cg11430096 S_Shore 6 CDK19 0
cg18498565 3 PFKP x 8 CEBPB, FOS, EP300
cg08065408 N_Shore 11 x 5 NFYB, RFX5, ZBTB40
cg14521995 S_Shore 11 x 0
cg03532030 S_Shore 10 x 27 MAX, POLR2A, SPI1
cg02599498 6 x 69 EP300, JUND, MYC
cg15203566 Island 6 x 7 RAD21, TBP, EZH2
cg17292337 6 x 6 E2F6, L3MBTL2, EZH2
cg11757417 6 x 0
cg06470855 Island 6 x 0
cg19510820 6 1 MAFK
cg16005559 S_Shore 5 x 0
cg18307968 5 5 CTCF, MAFK, MAFF
cg06134410 Island 3 x 2 E2F6, UBTF
cg03121508 3 1 EZH2

aThe number of classifiers that selected the CpG site.
bDNAse sensitivity made available through UCSC; an “x” indicates an accessible site.
cNumber of unique TFBSs overlapping the loci from ENCODE.
dHighest scoring TFBSs overlapping the loci; up to three are shown for brevity.
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While it is intuitive that changes in PBMC composition would 
lead to changes in PBMC-derived gene expression, it is not taken 
into account by the majority of studies. An immune response 
is the result of a complex interaction of numerous components 
working in a coordinated fashion to elicit immune response. Thus, 
by its nature, interdependencies within and between data sets  
should be expected. In this study, we have identified many asso-
ciations between the cellular composition and resulting transcrip-
tomic data from PBMC samples. Interestingly, less prevalent cell 
populations, such as mDCs, tend to have many gene expression 
changes associated with their population-level changes, com-
pared to more prevalent cell types. Thus, the relative expression 
levels of each gene and between cell types may be an additional 
factor for consideration. The associations found in our data  
set with specific genes’ expression levels are recapitulated within 
multiple publically available data sets assayed on PBMCs, which 
makes accounting for them potentially important for the inter-
pretation of results, as well as the interpretation of predictive 
models generated from the same data.

In principle, studies should assay gene expression within mul-
tiple subsets to attain the highest resolution, but this is often not 
feasible. Flow analysis is a strong companion assay to help inter-
pret differential gene expression. We recommend checking how 
expression profiles associate with Flow levels and if the simplest 
interpretation of the data is predominantly through changes in 
PBMC composition, or through gene expression changes within 

a specific cell subset. When analysis of specific cell subsets is not 
an option, computational deconvolution may be helpful (19, 20). 
If possible, we believe that performing assays in the most appli-
cable cell subset will yield more clearly interpretable results than 
in mixed populations of cells. However, when no clear candidate 
cell subset exists, and/or when searching for biomarkers, or due 
to cost considerations, PBMC-based studies may be appropriate.

Genes that had expression levels associated with multiple cell 
subsets recapitulated expected relationships, such as the progres-
sion between classical, intermediate, and non-classical monocytes, 
but also revealed further relationships (Figure S4 in Supplementary 
Material). One example is the high overlap in gene expression 
between T and NK cells, but the lack of overlap between both of 
these subsets and NK-T cells. Due to NK-T cells sharing properties 
with both NK and T  cells (IFN-g secretion, perforin/granzyme 
secretion, expression of death-inducing receptors/ligands: TNF-
TNFRs, TRAIL-TRAILRs, and FAS-FASL), one may expect them 
have an intermediate gene expression profile. A recent paper 
demonstrated that murine NKT1 cells shared transcriptomic 
similarities with NK and Th1  cells, but that NKT2 and NKT17 
cells did not (51). This example highlights the incredible cellular 
complexity of blood leukocyte populations. Thus, a more distinct 
gene expression pattern of NK-T cells is indicated by our analysis 
and may support further investigation of the detailed differences 
among subpopulations within defined cell subsets (T cells, B cells, 
NK cells, etc.) (52).
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We generated predictive models using each data set (Flow levels,  
mRNA expression, and CpG methylation) and combinations of 
data sets, comparing the predictive performance of each, as well 
as the types of features used by each model. Age and biologic sex 
were included as candidate features in all models that leveraged 
flow cytometry data; however, the ML model did not select age or 
sex in cross-validated models, likely due to their known correla-
tions with genetic features (4, 53–55). Flow levels were critical in 
all expression-based models, either through their direct inclusion 
or through the interpretation of gene expression features. Three 
cell subsets were repeatedly included in models: B-cells, memory 
Tregs, and CD20+CD27+ cells (plasmablasts). These three 
subsets efficiently capture aspects of a subject’s adaptive capacity, 
prior exposure, and activated memory-based response. All genes 
(besides OXTR) included in predictive models were correlated with 
changes in Flow levels—B-cell levels in particular. Methylation 
was the most predictive of the single-data type models. Nearly  
all predictive CpG sites are within open chromatin states and 
overlap known TFBSs (Table  2). Thus, they have a capacity to 
regulate gene expression, but which genes are primarily affected 
may require further study. We believe a component of the predic-
tive nature of methylation levels could be through their influence 
on differentiation rates of certain cell subsets.

Our DNA methylation data highlighted CpG sites within 
several genes (Table  2) that are associated with variations in 
memory B  cell ELISPOT response to influenza vaccination. 
Interestingly, PNPLAA7, MEDAG, CDK19, and PFKP are all 
involved in metabolic activity (mostly lipid and glucose metabo-
lism). Examination of transcriptomic data in this same cohort  
identified cholesterol and lipid metabolism-related genesets 
associated with memory B cell ELISPOT responses after influ-
enza vaccination (25). Other groups have also reported on meta-
bolic changes in B cells associated with activation and antibody 
production (56, 57). The DNA methylation findings reported 
here support those previous findings and provide a potential 
mechanism for the observed changes in gene expression. B cell 
metabolism during activation and acquisition of effector func-
tion has not been well studied. Our results suggest that the 
metabolic activity of B cells may contribute to differential vac-
cine responses and that further investigation into this area may 
improve our understanding of how humoral immune responses 
to vaccines are regulated.

Our studies examining the response to seasonal influenza vac-
cination were carefully designed, and data acquisition was perfor-
med by experienced core labs. Previous studies of vaccine response 
that used high-throughput technologies, such as gene expression 
and CpG methylation, were performed in smaller numbers of 
subjects than our current study. Thus, while we are challenged 
by an overall cohort sample size (n = 159), our data are of high 
quality and have minimal systematic and technical noise, as our 
previous work has addressed (25, 58). We performed aggressive 
data filtering prior to generation of any ML models; thus, models 
using high-throughput data did not start from many thousands 
of features, but from hundreds of features that were the most  
variable across samples.

The standard approach for validation is to generate a model 
within one cohort and then, after it is finalized, test it in an 

externally derived cohort consisting of similar samples. Where 
the external cohort comes from is an important consideration. 
One option is to collect and process samples, but leave a group of 
them out of the analysis. Thus, they are known to be comparably 
processed and can be controlled for clinical similarity. CV seeks 
to perform this type of left-out validation in a more statistically 
powerful way wherein models are tested on sections of the data set 
that were not used in training. It is critical that data used in training 
and testing are never shared during each loop of CV. Few of our 
cohort, data type, and vaccine-type characteristics were strong 
matches with previously published studies, making orthogonal 
retrospective validation challenging; therefore, we employed 
a ML approach to identify the most robust associations within  
our data set.

Our study emphasizes some of the challenges of applying 
high-dimensional technologies to the study of immune response 
outcomes to vaccines. While our cohort is among the largest used 
in vaccinomics studies, limitations of statistical power and data 
interpretation due to correlations between data types remain. In this 
study, we have integrated data types to assess these challenges and 
applied ML methodologies to address them. The genes iden tified 
in our study are known to impact immune response outcomes, 
but here we have demonstrated that they may also be markers of 
differences in immune cell composition. This indicates that gene 
expression studies performed on mixed cell populations must take 
into account the interindividual differences in cell subset makeup 
to accurately interpret their results. These findings also suggest 
that studies on purified cell populations may result in stronger, 
more readily detectable, changes in gene expression or regulation. 
Better predictive models could be generated using CpG methyla-
tion sites, providing compelling candidates for future studies to 
determine their potential in directly regulating immune response 
mechanisms, in regulating immune cell composition through sig-
nals of cellular differentiation, or as markers of a subject’s potential 
to respond. Importantly, our study utilized established immune 
response outcomes to vaccination. We have shown that genomic 
features can be used to generate predictive models of those out-
comes. Our cohort size allowed us to use nested CV to optimize 
the potential reproducibility of the model. Taken together, we 
believe that these data highlight important considerations for data 
integration and the interpretation of high-dimensional data for 
immune response outcomes.

cOnclUsiOn

We have found that (1) overall variability of participants’ PBMC 
composition is correlated with overall variability in gene expres-
sion, (2) many of the individual genes with statistically significant 
gene expression changes are associated with changes in specific 
cell subsets, and (3) PBMC composition is a strong predictor of 
humoral immune response. While the importance of immune 
cell composition is known, high-dimensional data can provide 
further information to improve prediction of immune response 
to vaccination, and these features may improve our understand-
ing of the underlying mechanisms of interindividual response 
variations. Using the largest available data set of high-quality 
humoral immune outcomes to influenza vaccination, paired with 
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genomic and epigenomic data, we have identified that predictive 
models leveraged features of immune cell composition and CpG 
methylation. Therefore, the high-dimensional features identified 
by our predictive modeling approach may indicate regulatory 
mechanisms that are active in modulating immune responses 
including alteration in PBMC composition. We believe that these 
findings, which emphasize the strong interplay between sample 
cell composition and high-dimensional data, are important for the 
interpretation of current omics-based studies and, when applica-
ble, should be accounted for within ongoing studies of immune 
responses.
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