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Abstract

Working memory engages multiple distributed brain networks to support goal-directed behavior 

and higher order cognition. Dysfunction in working memory has been associated with cognitive 

impairment in neuropsychiatric disorders. It is important to characterize the interactions among 

cortical networks that are sensitive to working memory load since such interactions can also hint at 

the impaired dynamics in patients with poor working memory performance. Functional 

connectivity is a powerful tool used to investigate coordinated activity among local and distant 

brain regions. Here, we identified connectivity footprints that differentiate task states representing 

distinct working memory load levels. We employed linear support vector machines to decode 

working memory load from task-based functional connectivity matrices in 177 healthy adults. 

Using neighborhood component analysis, we also identified the most important connectivity pairs 

in classifying high and low working memory loads. We found that between-network coupling 

among frontoparietal, ventral attention and default mode networks, and within-network 

connectivity in ventral attention network are the most important factors in classifying low vs. high 

working memory load. Task-based within-network connectivity profiles at high working memory 

load in ventral attention and default mode networks were the most predictive of load-related 

increases in response times. Our findings reveal the large-scale impact of working memory load on 

the cerebral cortex and highlight the complex dynamics of intrinsic brain networks during active 

task states.
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1. Introduction

Working memory (WM) is a fundamental cognitive function that allows humans to maintain, 

manipulate, and control information. It maintains information in an accessible state for a 

limited time and guides goal-directed behavior (Baddeley, 2012; D’Esposito and Postle, 

2015; Eriksson et al., 2015; Miller et al., 2018). WM metrics (e.g., capacity) often predict 

cognitive measures such as fluid intelligence (Harrison et al., 2015; Wiley et al., 2011). This 

is not surprising given that WM is an essential component for various domains of human 

cognition such as executive function, learning, goal-directed behavior, problem solving, and 

language; and impaired WM is central to many cognitive deficits (Conway et al., 2003; 

Diamond, 2013; Gathercole and Baddeley, 2014; Titz and Karbach, 2014). While the precise 

neural mechanisms of WM and how it maintains information in the absence of sensory input 

are not fully understood, it is thought that interactions between distributed brain networks 

including prefrontal, parietal, sensory, and motor areas underlie WM maintenance and its 

executive control (Christophel et al., 2017).

Sustained selective attention is thought to support both encoding and maintenance of 

information (Eriksson et al., 2015; Petersen and Posner, 2012). This attentional prioritization 

may explain the limited nature of WM capacity (Conway et al., 2003; Cowan, 2010; 

D’Esposito and Postle, 2015). However, the impact of WM load on attention and salience 

networks, as well as other task-related networks remains poorly understood. Functional 

connectivity is a powerful tool used to characterize brain networks during distinct brain 

states. Task-based functional connectivity studies have demonstrated that resting state 

networks largely preserve a core pattern during task states despite subtle reconfigurations 

(Cole et al., 2014; Gratton et al., 2016, 2018; Krienen et al., 2014; Schultz and Cole, 2016). 

Supervised machine learning (ML) algorithms have the capacity to assess covariance in 

connectivity patterns across large number of independent variables and detect such subtle 

changes (Mahmoudi et al., 2012; Meier et al., 2012). Algorithms such as support vector 

machines (SVMs) achieve tractability on big data by operating only on the marginal cases 

(the “support vectors”) that define boundaries between classes (Duda et al., 2001), and have 

the additional benefit of implicitly guarding against overfitting by minimizing generalization 

error rather than empirical error (Bishop, 2006; Russell and Norvig, 2010). Furthermore, 

ML methods have been successful in capturing task-induced variance in functional 

connectivity (Richiardi et al., 2011). In the current study, we took advantage of the 

multivariate nature of ML to determine the characteristic connectivity features that produce 

the most accurate classification of high and low WM load conditions.

In our study, participants underwent fMRI scanning while performing a version of the 

Sternberg Item Recognition Paradigm (SIRP), which requires short term maintenance of 1, 

3, 5, or 7 items in WM. We evaluated functional connectivity among 611 uniformly 
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distributed seed regions covering the entire cerebral cortex, during all four WM load 

conditions. Each seed was assigned to a cortical network based on the Yeo parcellation (Yeo 

et al., 2011). We then calculated time series correlations between (611 × 611) seed pairs, and 

used linear support vector machines and neighborhood component analyses to identify 

changes in brain connectivity patterns that most robustly indexed WM load. Finally, using a 

cross-validated analysis, we tested whether task connectivity patterns can be used to predict 

behavioral performance measured as load-related increases in response time.

2. Methods

2.1. Participants

Study procedures were approved by the Partners Healthcare Human Research Committee 

and all participants provided informed written consent. The study included 177 healthy 

young adult participants (age 24.96 ± 3.60, 91 F), who underwent fMRI during resting state 

and working memory performance. Participants were excluded if they had any history of 

neurological or psychiatric disease, history of psychotropic medication use, or any MRI 

contraindications.

2.2. Image acquisition

Participants were scanned at the Martinos Center for Biomedical Imaging at Massachusetts 

General Hospital using a 3T Skyra magnet (Siemens, Germany) with a 32-channel head coil. 

The acquisition included a high-resolution T1-weighted image (repetition time/echo time/

flip angle = 2530 ms/1.92 ms/7°) with an isotropic voxel size of 0.8 × 0.8 × 0.8 mm3. An 

interleaved multislice (3 slices) resting-state functional scan was also acquired (repetition 

time/echo time/flip angle = 1150 ms/30 ms/75°; in-plane resolution = 3 mm × 3 mm; slice 

thickness = 3 mm, number of volumes = 372), where participants were instructed to keep 

their eyes open and remain still. Finally, participants performed the Sternberg task while 

undergoing echo planar imaging (EPI) scans (repetition time/echo time/flip angle = 2000 

ms/30 ms/90°; in-plane resolution = 3.6 mm × 3.6 mm; slice thickness = 4 mm, number of 

volumes = 235).

2.3. Task

A variant of the Sternberg Item Recognition Paradigm was used (Sternberg, 1966). The 

SIRP is characterized by linear load-dependent increases in response time and brain 

activation (Kirschen et al., 2005). The task involved encoding a set of consonants and target 

recognition during probes (Fig. 1). During encoding, a set of 1, 3, 5, or 7 consonants were 

presented (6 s). After a brief delay screen (1 s), 14 consecutive probes were presented for 1.1 

s, separated by a varying intertrial interval (0.6–2.5 s). Participants were asked to indicate, as 

quickly as possible, whether the probe was a target (presented during encoding) or foil (not 

presented during encoding) by pressing one of the two keys on a keypad. Each of the four 

task loads (1, 3, 5, 7) was used twice during the task run (total task duration = ~8 min). 

Throughout this article we will refer to these four task conditions as 1T, 3T, 5T, and 7T 

respectively.
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2.4. Preprocessing of imaging data and functional connectivity

Functional images first underwent slice timing, realignment, and registration onto an MNI 

template using affine and nonlinear transforms. They were then resampled to 2-mm isotropic 

voxels and smoothed using a 6-mm full width half maximum (FWHM) Gaussian kernel. 

Temporal filtering was applied to eliminate linear trends and retain frequencies below 0.08 

Hz. Then, nuisance variables including the signal averaged over the whole brain (global 

signal), six motion parameters, signal averaged over ventricles and in white matter, and their 

12 first temporal derivatives were removed by regression. The residual volumes were used 

for the functional connectivity analysis. Quality control analysis for head motion was 

performed using Art Repair (https://www.nitrc.org/projects/art_repair/) and customized 

scripts (Power, 2017). Framewise Displacement (FD) was computed at each timepoint. The 

subjects who had average FD > 0.2 mm (over the task run) were excluded from the analysis 

(n = 5). In addition, volumes with FD > 0.25 mm were scrubbed from the connectivity 

analysis (see Supplementary Results for additional analysis on FD variation across task 

conditions). The residual volumes were downsampled to 6×6×6 mm voxels using FLIRT 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). In order to reduce dimensionality, we selected 

1/8th of all 6-mm cortical voxels in a uniformly spaced manner using Matlab (Natick, MA, 

http://www.mathworks.com/), which produced 611 voxels. These voxels were used as seed 

regions. Each of these 6-mm voxels was assigned a network based on the Yeo parcellation 

(Yeo et al., 2011). The seed regions were visually inspected and those that were located on 

Yeo network boundaries (guided by the 2×2×2 mm Yeo MNI template) were moved to the 

closest location such that they are clearly inside a network. Time courses were then extracted 

from these 611 seed regions covering the entire cerebral cortex to compute a 611 × 611 

correlation matrix for each subject (Fig. 2). Each seed was assigned a cortical network based 

on a validated cortical parcellation (Yeo et al., 2011). Of the 611 cortical seed regions, 104 

were in the visual network (VN), 90 in the somatomotor network (SN), 71 in the dorsal 

attention network (DAN), 64 in the ventral attention network (VAN), 53 in the limbic 

network (LN), 91 in the frontoparietal control network (FPCN), and 138 in the default mode 

network (DMN). In order to compute functional connectivity at different task loads, we 

extracted time courses at intervals corresponding to the retrieval period (containing 14 probe 

trials) for a given load (e.g., 1, 3, 5, or 7), during which participants maintained a memorized 

set, visualized probes, compared them to the memorized set, determined if they were a target 

(or a foil) and executed a motor response. The time course of each seed was shifted forward 

by 3 TRs (6 s) in order to account for the hemodynamic lag. This latency was chosen based 

on the putative peak of the hemodynamic response (Gibbons et al., 2004). For each load, a 

task correlation matrix (611 × 611) was generated by first appending the time series of all 

blocks corresponding to that load (total length = 38 time points [76 s]), and then computing 

the Pearson’s correlation for the time series of all pairs of seeds. Fig. 2 displays the 

correlation matrices separately for all four loads. The same preprocessing pipeline was used 

for resting state functional connectivity, which was computed using the full timeseries of the 

resting state run. Fig. S1 shows the group-averaged resting state correlation matrix.

2.5. Machine learning analysis

Correlation matrices generated for each WM load condition were analyzed using a linear 

SVM algorithm (fitcsvm) in Matlab. SVMs are a robust supervised ML method that is 

Eryilmaz et al. Page 4

Neuroimage. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/art_repair/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://www.mathworks.com/


computationally efficient in large part because they operate on “support vectors” that 

represent only a small subset of the input data (those data points that sit closest to the 

hyperplane). SVMs maximize the margin between these support vectors and a separating 

hyperplane. (Vapnik, 1999). In order to verify the separability of the task conditions needed 

to meaningfully analyze feature contributions, first we performed binary classification for all 

possible task condition pairs (1T vs. 3T, 1T vs. 5T, 1T vs. 7T, 3T vs. 5T, 3T vs. 7T, and 5T 

vs. 7T). Correlation matrices were vectorized to yield 186, 355 unique features representing 

connectivity between the seed regions. 157,567 of these features encompassed between-

network seed pairs (e.g., FPCN-DMN), whereas the remaining 28,788 included within-

network pairs (e.g., DMN-DMN). To quantify classifier performance while guarding against 

overfitting, we calculated the mean out-of-sample accuracy across all folds in a 5-fold cross-

validation. For this, we trained an SVM on 80% of the data, tested its performance on the 

remaining 20%, and repeated with a new SVM for each of five 80/20 splits. This analysis 

allowed us to assess the separability of each of the task condition pairs.

Next, we further examined the 1T–7T classification to identify the most important features 

separating low and high WM load conditions. In order to determine which network features 

contribute most to the classification, we used Neighborhood Component Analysis (NCA) via 

the fscnca function in Matlab. NCA is a computationally efficient variant of classical 

“nearest neighbor” methods, which optimizes the classification error by learning a quadratic 

distance metric. As a nonparametric, unsupervised clustering approach, NCA does not 

operate on assumptions on distribution of the data and therefore, is more robust to non-

Gaussian distributions compared to algorithms using affine transformations (Goldberger et 

al., 2005). NCA provided us with feature weights for the 1T–7T classification. For the NCA, 

we used an optimized lambda (regularization parameter) value of 0.02, which minimized 

classification loss (Yang et al., 2012).

Once the feature weights were computed by the NCA, we ranked all features by their weight 

and reanalyzed 1T–7T classification using the same 5-fold cross-validation approach. In 

order to identify the most relevant features, we ran our SVM procedure iteratively using 

increasing numbers of input features, starting with two and adding one feature at a time until 

we reached 1000 features (~0.5% of all features). Fig. 3a shows the average classification 

accuracy resulting from cross-validation at each iteration. In order to select the most relevant 

features among the top 1000, we assessed the most stable points (where the standard 

deviation was minimal) in the accuracy plot. For this analysis, we computed the standard 

deviation of classification accuracy on a sliding window of 100 features (starting from the 

first 100 features and moving to the right, e.g., 1–100, 2–101, 3–102 … 900–999, 901–

1000). Standard deviation for these sliding windows is depicted in Fig. 3b. We then selected 

4 local minima (N = 72, N = 252, N = 385, and N = 649), for which the network 

distributions were generated. We assessed that N = 385 produced a stable solution with peak 

accuracy and low standard deviation. In order to determine the brain network distribution of 

these top features that were most relevant to our WM load classification, we first evaluated 

the number of features in each within- and between-network pair among the top 385 

features. Since each network contains different numbers of seeds, the total number of 

connectivity features across the network pairs differed. For example, while VN-DMN had 

the most between-network features with 14,352, VAN-LN had the least with 3392. In order 
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to correct for this disparity and account for differences in network size when computing 

prevalence of each network pair, we multiplied the number of occurrences of a given 

network pair (among the top 385 features) by a weight representing the ratio of the total 

number of features of that pair to the total number of all between-network features (or 

within-network features if the pair in question is a within-network one). The obtained value 

represented the contribution of that specific network pair (e.g., VN-DMN) to the 

classification. See Supplementary Methods for details.

2.6. Behavioral prediction analysis

In order to examine the behavioral relevance of the functional connectivity features, we 

tested whether these features could be used to predict behavior. As a behavioral measure, we 

used the difference in response times for loads 1T and 7T (RT1T – RT7T or ΔRT), the 

characteristic behavioral marker of the SIRP (Sternberg, 1969), which provided us with the 

degree to which subjects slowed down due to increased WM load. Following previously 

published methods (Finn et al., 2015), we employed leave-one-out cross-validation 

(LOOCV) to test whether ΔRT could be predicted by a summary statistic derived from 

functional connectivity during the most demanding task condition (7T). For this analysis, the 

highest load was chosen, as we aimed to capture the robust load response in the brain, which 

most likely underpins the load-dependent increase in response time. In this analysis, one 

subject’s data (test set) is removed from the rest of the dataset (training set) and the training 

set is used to first determine the edges that show a significant correlation with behavior 

(feature selection), and then to build a predictive model. Finally, this model is tested on the 

subject that was left out (prediction). Each subject is left out once. We conducted 3 separate 

analyses with 3 different feature selection steps. In the first analysis, we included all edges 

(within- and between-network) during the feature selection step. This analysis allowed us to 

test whether a global summary statistic (i.e., network strength) could be used to predict 

behavior. Secondly, we included all within-network edges (e.g., DAN-DAN, FPCN–FPCN) 

and built a multilinear regression model with local summary statistic for each network as a 

separate predictor. Finally, the third analysis restricted feature selection to only (within-

network) edges of a single network to directly compare the predictive power among all 7 

networks. In order to select the most relevant edges, we computed the correlation between 

each edge in the feature pool and ΔRT across the subjects in the training set. A feature 

selection threshold determined the edges with the strongest correlation with ΔRT. We used p 

= 0.01 for the global and within-network models, whereas p = 0.05 was applied for single-

network models to obtain reasonably high edge density. Once the most relevant edges were 

determined, they were then separated into positive and negative sets depending on the sign 

of the correlation with ΔRT. Next, we computed a summary statistic (for each subject in the 

training set), which is defined as the sum of the connectivity values of all edges in the 

feature sets (i.e., positive and negative) separately. This metric represents the ‘network 

strength’ (Finn et al., 2015). The relationship between network strength and ΔRT was 

modeled using linear least squares regression for the global and single-network summary 

statistics:

ΔRT′ = a*NS + b
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where NS stands for network strength, ΔRT′ represents the predicted response time change. 

Two separate models were built for positive and negative feature sets. For the model that 

includes all within-network edges, we included a different summary statistic for each 

network:

ΔRT′ = a1*NS1 + a2*NS2 + … + a7*NS7 + b

Finally, network strengths have been calculated in the test subject for positive and negative 

sets and these models were used to predict the ΔRT for that subject. These analysis steps 

were iteratively repeated until each subject was used as a test subject. Then, the predictive 

power of these models was determined by the correlation between observed and predicted 

ΔRT values (p < 0.05).

3. Results

3.1. Behavioral results

As expected, subjects responded highly accurately to the probes at all WM loads (Table 1). 

Response time for the Sternberg task is characterized as a linear function of the set size (Fig. 

S2). Based on the typical characterization of the set size-response time plot (Sternberg, 

1969), the intercept represents the total duration of all processes that occur once during the 

processing of a given probe such as encoding the probe and generating its representation. In 

contrast, the slope reflects the duration of processes that occur once for each item in the 

memorized set such as comparison of the probe to an item in the memorized set. Fig. S2 

depicts the set size-RT plot, its linear best fit, and the putative processes that take place 

during the retrieval of a probe stimulus.

3.2. Classification

We tested whether SVMs can reliably decode the WM load from 611 × 611 correlation 

matrices. SVMs are a robust supervised learning method in which the classifier searches for 

a relationship between input features (connectivity patterns) and a (binary) output category 

(WM load). Unlike classical univariate statistical methods, SVMs compare the entirety of 

the data between conditions. For all our binary classification problems (e.g., 1T–3T, 3T–7T 

etc.), we used a 5-fold cross-validation (five 80/20 splits of train/test set data) to assess 

classifier accuracy while guarding against overfitting. Mean accuracy rates for all binary 

classifications are shown in Table 2. As expected, the greatest classification accuracy was 

obtained between the lowest and highest WM load conditions (1T vs. 7T). High accuracy 

rates demonstrated that WM load can be reliably decoded from connectivity matrices even in 

the case of task conditions with similar difficulty (e.g., 5T vs. 7T).

3.3. Discriminative connections

SVM classifiers successfully learned brain connectivity features that could be used to 

reliably discriminate between task conditions (WM load). Next, we aimed to identify those 

features to better understand the underlying physiological changes that characterize different 

states of WM load. To this end, using the most robust classification (1T-7T, which yielded 

Eryilmaz et al. Page 7

Neuroimage. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the highest classification accuracy in our SVM analyses) we applied a Neighborhood 

Component Analysis to the input features. NCA is a supervised learning method which 

optimizes classification error by learning a quadratic distance metric, and is often used to 

assess feature importance in linear SVM-solved classification problems (Goldberger et al., 

2005). NCA estimated feature weights by minimizing its error term with stochastic gradient 

descent and the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm 

(Bottou, 2010; Liu and Nocedal, 1989). We first identified 1000 connections with the 

greatest feature weights. In order to determine the optimal number of top features, we ran 

SVM models iteratively using more features. Starting with top 2 features, we computed 1T–

7T classification accuracy adding one feature at a time until we reached the top 1000 

features. Fig. 3 shows the accuracy rate at each iteration as well as the standard deviation of 

accuracy over a sliding window of 100 features. Based on this stability analysis, we 

identified 4 local minima, for which the network connectivity patterns are demonstrated in 

Fig. S3. Top 385 features provided an optimal point with high classification accuracy and 

sufficient number of features for a reliable network characterization. Therefore, we analyzed 

the distribution of network pairs among these 385 features.

In order to obtain the network distribution, we first identified the number of connections for 

each network pair within the top 385 features. Within- and between-network pairs were 

analyzed separately. Importantly, we took into consideration the fact that network pairs 

consisted of unequal number of connections. For example, our 611 × 611 correlation matrix 

consists of many more FPCN-DMN seed pairs than DAN-LN pairs. Hence, the probability 

of a given FPCN-DMN pair to appear in the top 385 features is higher than that of a DAN-

LN pair. Therefore, the prevalence of each feature was weighted accordingly to eliminate 

this disproportionality (see Supplementary Methods for details).

Fig. 4 depicts the distribution of brain networks among the top 385 features. Among 

between-network features, FPCN-DMN, VAN-DMN, DAN-VAN, and VAN-FPCN 

connectivity contributed most to 1T–7T classification (23%, 15%, 14%, and 14% 

respectively). These values correspond to the ratio of weighted prevalence of each network 

to the total sum of all weighted prevalence values, thus representing the contribution of each 

network when network size is taken into account. Connectivity within VAN and FPCN were 

the top contributors among within-network connections (67% and 20% respectively). Table 

3 displays, for each within- and between-network pair, the total number of features, 

calculated weight, number of features among the top 385 features, and a weighted 

prevalence score. Bar graphs in the lower panel of Fig. S4 demonstrates the actual number of 

connections among the top 385 features for each network pair, as well as the hypothetical 

number of connections if every network pair contributed equally to the classification of low 

vs. high WM load. For details on direction of changes in functional connectivity from low to 

high WM load, see Supplementary Results.

3.4. Relationship to behavior

In an iterative, cross-validated analysis, we tested whether functional connectivity patterns 

during the highest WM load condition could be used to predict behavior. As our main 

behavioral measure, we used load-related increase in response time, ΔRT. We employed 
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leave-one-out cross-validation to test whether ΔRT can be predicted based on the 

connectivity patterns of a previously unseen subject. As a first pass, we selected features 

globally. The ΔRTs predicted by the global model significantly correlated with the observed 

ΔRTs (p = 0.021, r = 0.17 for the positive, p = 0.025, r = 0.17 for the negative set). In a 

second analysis, features were selected from the within-network pool only. The ΔRTs 

predicted by the multilinear within-network model strongly correlated (for the positive set 

only) with the observed ΔRTs (p = 0.00017, r = 0.28). Finally, we selected features from 

single networks (within-network) to directly compare the predictive power among the 7 Yeo 

networks. The ΔRTs predicted by the models built using the positive within-VAN and 

within-DMN features produced the highest correlations (p = 0.011, r = 0.19 for VAN, p = 

0.045, r = 0.15 for DMN) with the observed ΔRT values (Fig. 5). Note that these single-

network predictions do not reach significance due to multiple comparisons, suggesting that 

no individual network alone contains sufficient information to characterize ΔRT. In addition, 

none of the single-network model predictions built with the negative feature sets reached the 

significance threshold (p = 0.05).

4. Discussion

WM is fundamental to human cognition, and its impairment is associated with cognitive 

deficits in a number of neuropsychiatric diseases (Kasper et al., 2012; Manoach, 2003; 

Stopford et al., 2012; Williams et al., 2005). WM engages multiple systems including 

sensory, motor, attention, semantic and episodic memory to support goal-directed behavior 

(D’Esposito and Postle, 2015). As WM capacity is highly limited, it is important to 

understand the degree to which these systems are affected by increasing WM load. In this 

study, using a robust ML method, we first showed that WM load can be decoded from task-

based functional connectivity during retrieval periods, even in the case of two task 

conditions with similar load. Furthermore, we identified that functional coupling within 

ventral attention and frontoparietal control networks as well as coupling between FPCN-

DMN, VAN-DMN, DAN-VAN, and VAN-FPCN play key roles in separating high and low 

WM conditions. We also found that connectivity patterns within the ventral attention 

network are the most predictive of load-related changes in response time. Taken together, 

our findings highlight the primary role of interactions among control, attention and default 

mode networks in generating adaptive responses to different WM load levels.

Our findings suggest a key role for the VAN (also known as the salience network), which 

includes the insula and the anterior cingulate cortex (ACC). The NCA revealed that VAN 

features comprise over 60% of all top within-network features separating high vs. low load. 

Moreover, functional connectivity of the VAN with DMN, DAN, and FPCN also were 

among the primary between-network features contributing to the classification. Previous 

work showed that the salience network is sensitive to WM load, and that its connectivity 

with DMN and executive control network increases with increasing load (Liang et al., 2016). 

High prevalence of VAN connectivity with DMN, DAN, and FPCN among the primary 

discriminative features is also consistent with the putative salience network function of 

switching between large-scale networks to facilitate access to attentional resources (Goulden 

et al., 2014; Menon and Uddin, 2010). One possible interpretation is that the salience of the 
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increased WM load may be detected by the VAN and as a result, the internal attention is 

shifted toward external, task-relevant stimuli.

Human imaging and nonhuman primate studies have consistently documented WM 

maintenance-related activation in prefrontal and posterior parietal regions (Curtis and 

D’Esposito, 2003; Ester et al., 2015; Levy and Goldman-Rakic, 2000; Pesaran et al., 2002). 

While the exact role of delay period activity remains unclear (Lundqvist et al., 2018), it is 

believed to support maintenance of WM items at an abstract level (Scimeca et al., 2018), 

reflect top-down signals that allow control of the sensory information (Gazzaley et al., 

2005), support storage of WM items (Xu, 2017) or maintain task-relevant goal 

representations (Sreenivasan et al., 2014). While the difference between these accounts is 

beyond the scope of this study, the prevalence of within-FPCN connectivity and FPCN-

DMN coupling in classifying high vs. low WM load suggests that communication between 

frontoparietal regions and the default mode network is essential for the appropriate load 

response, regardless of where stimulus-specific representations are encoded (Scimeca et al., 

2018; Xu, 2018). Previous work demonstrated the role of the coupling between FPCN and 

DMN in supporting goal-directed cognition (Spreng et al., 2010). Therefore, the substantial 

number of FPCN-DMN connectivity pairs identified as top features in our NCA analysis 

(Fig. 4) suggests that these two networks work in coordination to support the brain response 

during high WM loads.

It is important to note that even though the memory set and the probes are first processed 

visually, the version of the SIRP we used is essentially a verbal task. Thus, it is expected that 

participants employed subvocal rehearsal strategies to maintain the memory set. Prevalence 

of connectivity between SN and VAN among the top features separating high vs. low WM 

load may, therefore, reflect the differences in rehearsal efforts expended to maintain long 

and short memory sets. The discriminative power of SN-VAN connectivity is also in line 

with the pivotal role of the VAN in switching between internal and external (e.g., stimulus-

driven) attentional states (Uddin, 2015), as high WM load (due to increased external stimuli) 

is associated with increased motor activity due to phonological loop in the Sternberg task 

(Baddeley et al., 1998).

Performance in the SIRP is characterized by linear increases in response time with 

increasing set size (Sternberg, 1969). Indeed, our behavioral results confirmed this linearity 

as depicted in Fig. S2, which also schematizes the putative cognitive processes that take 

place during the retrieval period where we computed functional connectivity. Response time 

can be thought of the combined duration of individual processes. While the intercept of the 

fit line represents the duration of processes that occur regardless of the set size (e.g., 

preparation for motor response), the slope reflects the duration of processes that occur once 

per item in the memory set (e.g., comparison of the probe to an item in the memory set). 

Therefore, for a given subject, difference between the response times at 7T and at 1T reflects 

the additional duration of processes occurring once per WM item. We found that this load-

dependent change (from 1T to 7T) in response time can be predicted by a global measure 

representing overall network strength. Moreover, this load-dependent increase in response 

time can be robustly predicted by a linear model that reflects the combination of network 

strengths of individual networks. This suggests that the adaptive load response in these 
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networks can be used to gauge the pace at which individuals process and maintain the 

additional information due to increased load. Finally, our single-network analysis revealed 

that functional connectivity within the ventral attention and default mode networks at high 

WM load best predicts the load-dependent response time changes. This finding is consistent 

with the role of the VAN in detecting behaviorally relevant stimuli, as well as with studies 

reporting an association between processing speed and areas of the VAN (Genova et al., 

2009) and DMN (van Geest et al., 2018).

5. Conclusion

We used robust ML methods in a large fMRI cohort to decode a characteristic task 

parameter from cortex-wide connectivity matrices and determine key within- and between-

network connectivity features associated with changes in WM load. Our findings confirm 

the distributed nature of WM and reveal the key systems involved in adaptive load responses 

in WM. Our study also demonstrates that combining ML and functional connectivity can 

help identify subtle effects that could not be accessed via GLM or univariate connectivity. 

Future work can take advantage of these robust methods to identify the mechanisms of 

working memory impairment in neuropsychiatric disease at the system level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the Sternberg task. Each block started with an encoding block where 

participants were asked to memorize a set of letters (1, 3, 5, or 7 letters). Then, the 

participants were presented with one letter at a time (probe) to which they were asked to 

respond by pressing ‘1’ on the keypad if the probe was a foil, and by pressing ‘2’ if the 

probe was a target. Each WM load was presented twice in an 8-min task run.
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Fig. 2. 
Functional connectivity during four different WM load conditions (N = 177). Correlation 

matrices were computed using Pearson’s correlations among 611 seed regions on the 

cerebral cortex covering all 7 Yeo networks. A core pattern characterized by strong within-

network connectivity is preserved across different load conditions. Notable changes in 

connectivity within the ventral attention network, as well as between the ventral attention 

and default mode networks have been observed. Abbreviations: DAN: dorsal attention 

network, DMN: default mode network, FPCN: frontoparietal control network, LN: limbic 

network, SN: somatomotor network, VAN: ventral attention network, VN: visual network.
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Fig. 3. 
Classification accuracy vs. number of top features included in the SVM analysis. The upper 

panel shows mean classification accuracy obtained via 5-fold cross validation on SVM 

classification as a function of top N features included in the analysis. The lower panel shows 

the standard deviation of mean classification accuracy over a sliding window of 100 features 

(from top 1–100 to 901–1000). The arrows demonstrate a local minimum (N = 385), where 

the classification accuracy reaches a stable point.

Eryilmaz et al. Page 17

Neuroimage. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Weighted network prevalence among the primary 385 features separating low vs. high 

working memory load. Y-axes in the bar graphs shows the ratio of weighted prevalence for 

each network. A. Weighted prevalence of within-network features for each of the Yeo 

networks. Coupling within the ventral attention network contributed most to 1T–7T 

classification. B. Contribution of each between-network set is shown. Functional 

connectivity among frontoparietal control, ventral attention, and default mode networks 

contributed most to 1T–7T classification. C. The circular plot depicts feature weights 

obtained by the Neighborhood Component Analysis for the top 385 features. Line thickness 

is proportional to the feature weight. Abbreviations: DAN: dorsal attention network, DMN: 

default mode network, FPCN: frontoparietal control network, LN: limbic network, SN: 

somatomotor network, VAN: ventral attention network, VN: visual network.
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Fig. 5. 
Relationship between connectivity and behavior obtained via an iterative, cross-validated 

prediction analysis. On the top panel, predicted vs. observed ΔRT values are displayed for 

the two models that used all possible edges and all within-network edges respectively in the 

feature selection step. Each dot represents a subject. The bar graph in the bottom panel 

shows the correlation (r) between observed and predicted ΔRTs for each of the 7 single-

network models restricting feature selection to 7 respective within-network feature sets. All 

plots reflect results from positive feature sets.

Eryilmaz et al. Page 19

Neuroimage. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eryilmaz et al. Page 20

Table 1

Behavioral results. Average working memory accuracy and response time for each load are shown (N = 177).

WM load

WM task accuracy (% correct)

1T 98.9 ± 2.4

3T 97.8 ± 4.1

5T 91.1 ± 5.9

7T 90.2 ± 7.8

WM task RT (ms)

1T 617 ± 77

3T 692 ± 86

5T 780 ± 93

7T 846 ± 111

Abbreviations: WM: Working memory, RT: Reaction time.

*
Mean ± Stdev is shown for quantitative parameters.
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Table 2
Classification accuracy determined by 5-fold cross-validation using all 186,355 features.

For each classification, the SVM classifier was trained in 80% of the data and tested in the remaining 20% to 

calculate accuracy. This process was repeated 5 times until each 20% data partition was used as a test set. 

Mean accuracy reflects the average of all 5 values of classification accuracy, while the range depicts the 

minimum and maximum accuracy for a given classification.

Classification Mean accuracy Range

1T–3T 68% 63%–74%

1T–5T 84% 73%–95%

1T–7T 87% 81%–93%

3T–5T 72% 68%–76%

3T–7T 81% 77%–89%

5T–7T 66% 63%–70%

Abbreviations: 1T, 3T, 5T, 7T: Working memory load representing 1-, 3-, 5-, and 7- letter conditions.
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Table 3

Prevalence of each network pair among top 385 features for 1T–7T classification.

Network pair Number of features Weight Number of features in top 385 Weighted prevalence

Within-network

VAN-VAN 2016 14.28 26 371.28

FPCN–FPCN 4095 7.03 16 112.48

DMN-DMN 9453 3.045 18 54.81

DAN-DAN 2485 7.188 1 7.19

LN-LN 1378 20.891 0 0

SN-SN 4005 11.585 0 0

VN-VN 5356 5.375 0 0

Total 28,788

Between-network

FPCN-DMN 12,558 12.547 114 1430.40

VAN-DMN 8832 17.841 53 945.57

DAN-VAN 4544 34.676 25 866.90

VAN-FPCN 5824 27.055 31 838.71

SN-VAN 5760 27.355 19 519.75

DAN-DMN 9798 16.082 30 482.46

VN-SN 9360 16.834 12 202.01

DAN-FPCN 6461 24.387 8 195.10

VN-VAN 6656 23.673 6 142.04

SN-DMN 12,420 12.687 8 101.50

VN-FPCN 9464 16.649 6 99.89

DAN-LN 3763 41.873 2 83.75

SN-DAN 6390 24.658 3 73.97

LN-DMN 7314 21.543 2 43.09

SN-FPCN 8190 19.239 2 38.48

VN-LN 5512 28.586 1 28.59

VN-DMN 14,352 10.979 2 21.96

LN-FPCN 4823 32.67 0 0

SN-LN 4770 33.032 0 0

VAN-LN 3392 46.453 0 0

VN-DAN 7384 21.339 0 0

Total 157,567

Abbreviations: DAN: dorsal attention network, DMN: default mode network, FPCN: frontoparietal control network, LN: limbic network, SN: 
somatomotor network, VAN: ventral attention network, VN: visual network.
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