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Plasma Proteins As Biodosimetric Markers
of Low-Dose Radiation in Mice
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Abstract
Long-term exposures to low-dose radiation (LDR) may trigger several specific biological responses, including dysregulation of the
immune and inflammatory systems. Here, we examined whether biodosimetry of LDR can be used to protect tissues from
radiation or assess cancer risk. Mice were subjected to gamma-irradiation with repeated or single-dose LDR, and then the organ
indices, peripheral hemogram, and blood biochemistry were analyzed. An antibody array was applied followed by enzyme-linked
immunosorbent assay to evaluate the utility of multiple plasma proteins as biomarkers of repeated LDR in a murine model. LDR
induced inapparent symptoms but slight variations in peripheral blood cell counts and alterations in blood biochemical indicator
levels. Specific plasma proteins in the LDR groups were altered in response to a higher dose of irradiation at the same time points
or a single-dose equivalent to the same total dose. Plasma levels of interleukin (IL)-5, IL-12p40, P-selectin, and serum amyloid A1
were associated with the LDR dose and thus may be useful as dosimetric predictors of LDR in mice. Estimating the levels of
certain plasma proteins may yield promising biodosimetry parameters to accurately identify individuals exposed to LDR, facil-
itating risk assessment of long-term LDR exposure in individuals.
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Introduction

In recent years, exposure of the general population to low-dose

radiation (LDR) has increased remarkably, such as during air-

port security checks or medical radiographic inspection.1-4

Long-term exposure to LDR may trigger several specific bio-

logical responses that differ from those induced by high-dose

radiation (HDR), including dysregulation of the immune and

inflammatory systems5-8; downregulation of free radical sca-

vengers and enzymes, such as superoxide dismutase and glu-

tathione peroxidase9; and DNA damage, which indicates tissue

dysfunction and a risk of carcinogenesis.10 Biodosimetry of

LDR may be useful for revealing whether radiation protection

is required or for predicting possible health issues, such as

an increased risk of carcinogenesis. However, conventional

dosimetry, including monitoring of prodromal symptoms or

peripheral blood cell counts, are mostly indicated as a linear

dose-response for HDR and have limited value as biomarkers

for radiation damage after LDR exposure.

LDR exposure may induce diverse molecular cascades asso-

ciated with metabolism and the inflammatory response.11-13

For example, plasma metabolic and lipidomic profile analysis

showed major changes in glycerophospholipid, amino acid, and

fatty acid metabolism in mice exposed to low doses of oxygen

ions (16O) and protons (1H).13,14 Additionally, 75% of radiation

workers had either high monocyte chemoattractant protein-1
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(MCP-1) levels or low interleukin (IL)-10 levels, and 30%
exhibited dysregulated monocyte chemoattractant protein-1,

tumor necrosis factor a and IL-10 activity. In contrast, only

2% of control subjects showed dysregulation of these cyto-

kines.12 However, several reports suggested that the cytokines

may be upregulated or downregulated upon LDR exposure in

mice and humans, as they are important immune regulators that

respond to radiation.5,15,16 Dysregulated expression of cyto-

kines after LDR has not been widely investigated as a biomar-

ker for LDR, as this may not sufficiently reflect a correlation

with pathogenesis.17

Here, we examined LDR-induced dysfunctions and abnorm-

alities and determined plasma protein expression profiles using

an antibody array in a murine model exposed to low-dose total-

body irradiation. Based on the protein profiles, several proteins

were selected for validation by enzyme-linked immunosorbent

assay (ELISA). The present study aimed to determine whether

plasma proteins are useful as biodosimetric markers.

Methods

Animals

C57BL/6 male mice (6–8-week-old) were purchased from

Vital River Experimental Animal Company (Beijing, China)

and housed in a controlled environment under a 12-h light/dark

cycle. All animal experiments were approved by the Institu-

tional Animal Care and Use Committee of Academy of

Military Medical Sciences, China (Permit number: IACUC-

DWZX-2020-700).

Radiation Exposure

Whole-body irradiation was performed using a 60Co g-ray

source (Beijing Institute of Radiation Medicine, Beijing,

China). Mice were randomly divided into 5 groups and then

irradiated at 0.76 Gy/min; the detailed exposures are listed in

Table 1. Non-irradiated mice were used as controls. Blood

samples were collected via heart puncture at 24 h after the last

irradiation.

Antibody Arrays

Plasma was extracted from the whole blood of normal controls

and mice irradiated with 0.05 Gy (�10), 0.1 Gy (�5), and

0.5 Gy (�1) via centrifugation at 1,000�g for 15 min (Heraeus

Multifuge X1 R; Thermo Fisher Scientific, Waltham, MA,

USA). Twenty microliters of plasma were used for the biotin

label-based L-series mouse antibody array (AAM-BLG-1;

Raybiotech, Atlanta, GA, USA), which was performed accord-

ing to the manufacturer’s instructions.

Data Analysis

Plasma protein levels were normalized to that of the internal

control and compared between the LDR and non-irradiated

control groups. The intersection of target proteins between

these groups was analyzed using Venny 2.1.0 (http://bioinfo

gp.cnb.csic.es/tools/venny/index.html). Proteins showing

expression changes P < 0.5 in the 0.05 Gy (�10) group,

P < 0.25 in the 0.1 Gy (�5) group, and P < 0.2 in the 0.5 Gy

(�1) group were selected. A protein-protein interaction net-

work of the common proteins was constructed using STRING

(http://string-db.org)18 and visualized in Cytoscape software

(version 3.7.1, The Cytoscape Consortium, San Diego, CA,

USA; http://www.cytoscape.org).19

Body Weight and Blood Analysis

Body weight measurements and standard hematological testing

of the white blood cell (WBC), red blood cell (RBC), lympho-

cyte (LYM), and platelet (PLT) counts were conducted at 24 h

after the last irradiation. Blood was collected via heart punc-

ture, and cell counts were determined using a hematology ana-

lyzer (Celltac E, Nihon Kohden, Tokyo, Japan). Plasma was

prepared using the anticoagulant heparin lithium for blood bio-

chemical tests, and alanine aminotransferase, aspartate amino-

transferase, total proteins, albumin, globulin, albumin/globulin,

total bilirubin, alkaline phosphatase, gamma-glutamyl trans-

peptidase, creatine kinase, glucose, urea, creatinine, choles-

terol, triglyceride, calcium, phosphorus, and total bile acid

levels were measured using a hematological biochemical ana-

lyzer (Cobas 6000, Roche, Basel, Switzerland) at China Agri-

cultural University Veterinary Teaching Hospital (Beijing,

China).

Elisa

Plasma samples from all groups were analyzed via sandwich

ELISA to detect interleukin-5 (IL-5), IL-10, IL-12p40, matrix

metalloproteinase 14 (MMP14), serum amyloid A1 (SAA1),

and P-selectin (SELP) (Elabscience, Wuhan, China) levels

Table 1. LDR Treatments.

Groups Single-dose Intervals Fractions Total dose

Control Non-IR / 0 0
0.2 Gy (10 fractions) 0.02 Gy Twice per week 10 0.2 Gy
0.5 Gy (10 fractions) 0.05 Gy Twice per week 10 0.5 Gy
0.5 Gy (5 fractions) 0.1 Gy Once per week 5 0.5 Gy
0.5 Gy (1 fractions) 0.5 Gy Last day of duration 1 0.5 Gy

Abbreviations: LDR, low-dose radiation; Non-IR, non-irradiated.
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according to the manufacturer’s instructions. In each assay, the

absorbance was detected at 450 nm using a plate reader (Model

680XR; Bio-Rad, Hercules, CA, USA). Plasma protein concen-

trations were determined based on standard curves for each

plate.

Statistical Analysis

Data are presented as the mean + standard error of the mean

(SEM). Statistical significance was assessed by one-way anal-

ysis of variance with Tukey post-test using GraphPad Prism 7.0

software (GraphPad, Inc., San Diego, CA, USA). A P-value of

<0.05 was considered to indicate statistically significant

results.

Results

LDR Induces Slight Peripheral Blood and Tissue
Abnormality in Mice

We irradiated mice at a total dose of 0.2–0.5 Gy (�10) and

0.5 Gy (�1 or 5) and found that the body weight, spleen

index, thymus index, and testicle index were not altered in

all LDR mice compared to in the normal control group

(Table 2). This indicates that LDR did not induce gross

Table 2. Effects of g-LDR on Body Weight and Organ Indices in Mice.a

Treatment Body weight (g) Spleen index (mg/g) Thymus index (mg/g) Testicle index (mg/g)

Non-IR 25.60 + 0.37 2.83 + 0.13 2.12 + 0.11 6.39 + 0.31
0.02 � 10 Gy 24.51 + 0.22 2.89 + 0.16 2.61 + 0.14 7.03 + 0.49
0.05 � 10 Gy 25.62 + 0.35 2.71 + 0.25 2.16 + 0.10 6.56 + 0.46
0.1 � 5 Gy 24.63 + 0.42 2.06 + 0.23 3.00 + 0.29 6.50 + 0.41
0.5 � 1 Gy 26.46 + 0.37 2.83 + 0.18 1.93 + 0.18 6.46 + 0.51

Abbreviations: LDR, low-dose radiation; Non-IR, non-irradiated.
a Data are expressed as mean + SEM (n ¼ 10).

Figure 1. Changes in murine peripheral blood count after low-dose radiation (LDR). Peripheral blood counts of (A) white blood cells (WBC),
(B) lymphocytes (LYM), (C) red blood cells (RBC), and (D) platelets (PLT) at 24 h after the last irradiation dose. Data are presented as the mean
+ SEM. n ¼ 10, *P < 0.05, **P < 0.01. NC, normal control.
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general changes in these tissues. Peripheral blood analysis

showed decreased WBC and LYM counts, with the lowest

average counts in the 0.05 Gy (�10) group (P ¼ 0.06 for

WBC count, P < 0.05 for LYM count, compared to in the

normal control group), and lower RBC counts, with the low-

est average count in the 0.1 Gy (�5) group. In contrast, PLT

counts were increased in all LDR groups, showing signifi-

cantly higher values in the 0.5 Gy groups than in the other

groups [P < 0.05 for 0.5 Gy (�1), P < 0.01 for 0.1 Gy (�5)

and 0.05 Gy (�10)] (Figure 1).

Moreover, some tissue functions were altered after LDR.

For example, creatine kinase and urea levels were gradually

and significantly decreased in the 0.1 Gy (�5) and 0.5 Gy (�1)

groups (P < 0.05); in contrast, cholesterol was upregulated in

all groups, except for in the 0.02 Gy (�10) group (P < 0.05), in

which it was significantly upregulated (Figure 2). Some other

biochemical indicator levels, including those of alanine amino-

transferase, aspartate aminotransferase, alkaline phosphatase,

and total bile acids, were the same in all LDR groups (Figure 2,

Supplemental Table 1). Taken together, these results indicate

that LDR radiation induced slight abnormalities in the periph-

eral blood, kidneys, and lipid metabolism.

Plasma Protein Levels Differ Between LDR and Normal
Mice

To determine the plasma protein profile of LDR, the non-

irradiation plasma protein profile was compared with that of

plasma samples from LDR groups by antibody array. Figure 3A

shows the expression of plasma proteins in the normal and

0.5 Gy total dose radiation groups with different fractionations,

which revealed inconsistencies between the groups and even

individuals within the same groups (Supplemental Table 2). A

violin plot also showed different overall expression levels of all

proteins between repeated the irradiation groups and single-

dose irradiation groups (Figure 3B). Array analysis revealed

eight common differentially regulated proteins in the 0.5 Gy

radiation groups (Figure 3C). Activin A (Inhibin subunit b A,

INHBA), C-terminal Src kinase (CSK), interferon-alpha/beta

R1 (INFAR1), IL-5, IL-10, IL-12p40, and MMP14 were upre-

gulated, whereas SELP was downregulated in the LDR groups.

These proteins may also interact with each other (Figure 3D).

Their expression levels are shown in Figure 3E. Some proteins,

including INHBA, CSK, and IL-5, exhibited gradual upregula-

tion in response to a decreasing number of LDR fractionations.

Figure 2. Blood biochemistry analysis in mice after low-dose radiation (LDR). (A) Alanine aminotransferase (ALT), (B) aspartate aminotrans-
ferase (AST), (C) alkaline phosphatase (ALP), (D) creatine kinase (CK), (E) urea (UREA), and (F) cholesterol (CHOL). Data are presented as the
mean + SEM. n ¼ 5, *P < 0.05, **P < 0.01. NC, normal control.
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SAA1 was downregulated (P < 0.05) in the 0.02 Gy (�10)

radiation group with notable differences compared to that in

the HDR group.20,21 Taken together, although large variations

in the protein expression levels within and among groups were

detected, some plasma proteins were differentially altered after

exposure to LDR.

Plasma Protein Levels Were Altered in Response
to Reduced Time Fractions at the Same Dose

We confirmed the plasma protein levels in the different time

fractions for the same total dose radiation [0.05 Gy (�10),

0.1 Gy (�5), and 0.5 Gy (�1)] and found that plasma IL-5,

IL-10, and IL-12p40 levels gradually increased, whereas those

of SELP gradually and significantly decreased in response to

fewer fractionations (Figure 4A-D). The level of plasma

MMP14 was gradually, but not significantly, upregulated

(Figure 4E). The SAA1 level was unaffected by repetitive LDR

but was lower than that in the control group (P < 0.01)

(Figure 4F). These results suggest that repeated exposures

induced fewer alterations in plasma protein levels compared

to single-dose or fewer fractionations at the same total dose.

Certain Plasma Proteins May Serve as Dosimetric
Markers of LDR

To identify possible biodosimetric markers of LDR, selected

plasma proteins from the 0, 0.2, and 0.5 Gy groups with �10

exposure were validated by sandwich ELISA. As shown in

Figure 5, several proteins, including IL-5 and IL-12p40, were

significantly and gradually upregulated, whereas SAA1 and

SELP were downregulated in response to 0-0.5 Gy with �10

exposure. However, IL-10 and MMP14 were gradually upre-

gulated but only IL-10 was significantly upregulated in the

0.5 Gy group (P < 0.05) (Figure 5). Taken together, these

results indicate that some plasma proteins, including IL-5,

IL-12p40, SELP, and SAA1, are potential biodosimetric mar-

kers in mice after long exposure to LDR.

Discussion

The present study focused on the association between plasma

proteins and abnormality caused by LDR and revealed that

multiple proteins were altered in response to the number of

fractions and dose of LDR. We identified several plasma pro-

teins that can serve as potential predictors of LDR. Multiple

studies have suggested that LDR triggers organ- or tissue-

specific responses in humans and mice, including dysregula-

tion of the immune system,6,12 kidneys,22 and other organs.

Some reports indicated that the levels of proteins/cytokines,5,7

metabolites,13,14 and nucleic acids23 in the plasma and tissues

are altered after LDR, which may be useful biodosimetric mar-

kers for LDR.

We found that the body weights and organ indices of mice

were not altered by LDR. Although WBC, RBC, and most

LYM [except 0.05 Gy (�10)] counts exhibited a decreasing

Figure 3. Comparison of plasma protein levels before and after low-dose irradiation (LDR) using an antibody array. (A) Heatmap of plasma protein
expression between non-radiation control and low-dose radiation groups is shown. The heatmap was drawn using MultiExperiment Viewer (4.9.0). (B)
Violin plot shows Avery expression levels of total analyzed proteins in each group. (C) Venny analysis indicated that the common plasma proteins were
differentially altered between pre-irradiation and post-irradiation samples in all LDR groups. (D) Protein-protein interaction network of differentially
altered proteins from the common set of LDR groups is shown. (E) Expression of selected plasma proteins from the antibody array in each LDR group.
Data are expressed as the mean + SEM. n ¼ 3, *P < 0.05, **P < 0.01, ***P < 0.001. NC, normal control.
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trend, these counts were not significantly changed in the LDR

groups. In contrast, the PLT count was increased after LDR,

suggesting that LDR slightly influences hematopoiesis, partic-

ularly thrombopoiesis. Furthermore, the low WBC and LYM

counts and high PLT counts in the 0.05 Gy (�10) group indi-

cated that multiple or long-term LDR induces more serious

abnormalities than single or short-term radiation even at the

same dosage. Although the indicators of liver function were

unchanged, some indicators in the kidneys, muscles, and meta-

bolism were slightly altered after LDR. These changes were

still within the normal range, indicating that longer exposure to

a varied dose of LDR induces greater alterations and dysregu-

lation in these tissues or biological processes. These results are

consistent with those showing that LDR can modify the pro-

gression of chronic renal failure,22 alter lipid metabolism,13,24

or induce other damage.9 Collectively, these findings suggest

that repeated LDR caused mild tissue abnormalities in mice,

although no alteration were detected at the body or tissue lev-

els. Further experimental studies are required to determine the

details and molecular mechanisms of these abnormalities.

As important regulators of the immune system, certain cyto-

kines in the plasma are highly induced upon irradiation.20,21

Comparison of the protein profiles between normal control and

LDR mice revealed that most plasma proteins were altered

after LDR with inconsistent expression, even between individ-

uals within the same group, indicating significant individual

differences. Among these proteins, some were selected based

on their consistent expression and showed consistent upregula-

tion or downregulation after LDR. Protein-protein interaction

analysis further indicated that these LDR-induced proteins are

functionally related. We confirmed that the expression of

plasma IL-5, IL-10, IL-12p40, and SELP was altered following

single-dose irradiation compared to after repeated irradiation at

the same total dose. Moreover, the expression of plasma IL-5,

IL-12p40, SELP, and SAA1 was altered in response to LDR

dose. Some of these proteins, including IL-55 and IL-10,5,7,12

have been reported to be upregulated during LDR, and

IL-12p4025 and SAA121 are altered after exposure to radiation

and correlated with radiation damage, whereas SELP26 and

MMP1427,28 are involved in radiation-induced pathological

processes. These results suggest that the proteins play roles

in regulating LDR-induced tissue damage and can serve as

dosimetric indicators of LDR.

Some serum proteins were reported to be altered in response

to all doses of radiation; for examples, IL-5 and IL-10 levels

were consistently elevated in splenocytes according to RT-PCR

Figure 4. Plasma protein levels in mice in response to low-dose radiation (LDR), determined by ELISA. A, Interleukin (IL)-5, (B) IL-12p40, (C)
P-selectin (SELP), (D) IL-10, (E) matrix metalloproteinase 14 (MMP14), (F) serum amyloid A (SAA1). Data are expressed as the mean + SEM;
n ¼ 6-8 mice for each group. *P < 0.05, **P < 0.05, ***P < 0.05, ****P < 0.0001. NC, normal control.
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analysis after 0.01–2 Gy exposure on day 15 and in the blood

according to ELISA after 3-12 Gy exposure29 on days 1-4

(IL-5) or days 4-7 (IL-10) post-irradiation, which are suitable

for dosimetry of HDR. Here, we identified serum IL-5 and

IL-10 as biomarkers for LDR. SAA1 was previously reported

to be upregulated in response to >2 Gy HDR, but was invar-

iant30,31 or irregularly changed to approximately 1-2 Gy at

24–48 h after irradiation.32 However, our data show that SAA1

was significantly downregulated at a radiation dose as low as

0.2-0.5 Gy. Therefore, SAA1 can be used as a biomarker of

both HDR and LDR with bilateral regulation and indicates

the complexity of regulation between LDR and HDR. The

underlying mechanism and boundary of LDR-induced down-

regulation and HDR-induced upregulation require further

investigation.

Based on the antibody array data, high variation within and

among groups was observed, which may have decreased the

number of candidate biomarker proteins for LDR. For instance,

some known LDR-related cytokines, including IL-65,7 and

tumor necrosis factor a,7,12 were not identified in the antibody

array, perhaps because of insufficient samples along with high

inter-individual variation in protein levels resulting from

hyper-radiosensitivity.20 This also indicates that plasma

proteins other than those identified in this study are potential

biomarkers.

Conclusion

Our data preliminarily indicate that LDR induces protein dys-

regulation in the blood and tissues, and certain plasma proteins

can be considered as indicators of LDR in mice. Although some

plasma proteins may have been missed because of inter-

individual variations,33 our results provide insight into biomar-

kers of LDR or LDR-induced abnormality or damage.
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