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Abstract: This review reports the progress of the recent development of graphene-based microfluidic
sensors. The introduction of microfluidics technology provides an important possibility for
the advance of graphene biosensor devices for a broad series of applications including clinical
diagnosis, biological detection, health, and environment monitoring. Compared with traditional
(optical, electrochemical, and biological) sensing systems, the combination of graphene and
microfluidics produces many advantages, such as achieving miniaturization, decreasing the response
time and consumption of chemicals, improving the reproducibility and sensitivity of devices.
This article reviews the latest research progress of graphene microfluidic sensors in the fields
of electrochemistry, optics, and biology. Here, the latest development trends of graphene-based
microfluidic sensors as a new generation of detection tools in material preparation, device assembly,
and chip materials are summarized. Special emphasis is placed on the working principles and
applications of graphene-based microfluidic biosensors, especially in the detection of nucleic acid
molecules, protein molecules, and bacterial cells. This article also discusses the challenges and
prospects of graphene microfluidic biosensors.
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1. Introduction

The rapid development of Microfluidics Technology in recent years has caused a revolutionary
impact in the fields of physics [1,2], materials [3,4], and biomedicine [5–7]. The technology includes
the control, operation, and detection of complex fluids at microscopic dimensions, with particular
emphasis on the construction of microfluidic channel systems to achieve various complex microfluidic
manipulation functions [8,9]. In comparison to macroscopic systems, microfluidic devices offer
advantages in high-throughput, homogeneous reactions, shorter time to results, high sensitivity [10],
and also demonstrate the commercial application value of low cost [11], low energy consumption,
repeatability, and highly integrated multi-function [12], etc. In recent years, there have been considerable
efforts have been made to combine the sensors with microfluidics to further broaden the applications
of sensors [13]. As the crucial device in the microfluidic control system, different from traditional
sensors, microfluidic sensors have the advantages of high sensitivity, small size, real-time monitoring,
accurate measurement, and easy matching with microfluidic equipment [14–16] Microfluidic sensors
are not only small in size, but also can be used as an analysis system platform (see Figure 1) [17],
combined with the outstanding characteristics of nanomaterials to make it have better selectivity and
sensitivity, and has attracted widespread attention in a host of fields [18–20].
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Figure 1. Schematic diagram of the microfluidic-chip. Reproduced from [17] with the permission 
from Elsevier. 

Due to the reactivity, surface and interface effects, quantum size effect, Raman spectrum effect, 
catalytic efficiency, electrical conductivity, and other characteristics of nanomaterials, nanomaterials 
have excellent applications in the field of microfluidics technology [21,22]. Graphene, as the optimum 
material, to construct the microfluidic devices among numerous nanomaterials due to its unique 
structural characteristics and excellent performances [23,24], such as the nanostructure of the 
honeycomb arrangement of carbon atoms, as well as excellent physical and chemical properties 
[25,26]. The signal layer graphene has better transparency it can penetrate 98 percent of visible light, 
it has ultra-high electron mobility and thermal conductivity, ultra-thin (about 0.35 nm) ultra-light 
structure, low planar density (0.77 mg/m2) [27,28]. The special two-dimensional (2D) structure of 
graphene, in which each carbon atom is exposed to its surface, makes it sensitive to changes in the 
charge environment caused by the adsorption of a target [29–31]. The surface of graphene and its 
oxide materials has active functional groups due to the intercalation of carboxyl, hydroxyl, and epoxy 
ions, thereby greatly improving the cell and biological reactivity of the material [32–34]. The 
biocompatibility of graphene has further broadened its application to biomedical fields such as the 
clinical diagnosis and drug delivery using optical and electrochemical sensors [35–37]. Based on these 
special properties, graphene combined with basic microfluidic technology has been widely used in 
microfluidic chips and devices [28,38]. Besides, graphene derivatives, such as graphene oxide (GO), 
reduced graphene oxide (rGO) and functional graphene, are also ideal materials for constructing 
microfluidic channels [39,40]. 

The combination of graphene and microfluidic sensors can amplify their respective strengths to 
enable even more valuable and potential applications. Santangelo et al. [41] developed a microfluidic 
sensing platform for detecting low-concentration analytes, even low-concentration toxic heavy 
metals, based on the advantage that graphene is extremely sensitive to foreign matter. The sensor is 
not only simple and accurate to develop, but also has a strong sensitivity to the lowest concentration 
of analytes. Bouilly et al. [42] designed a nanoelectronic biomolecular sensor based on the 
combination of a graphene field-effect transistor (GFET) device array and a microfluidic circuit for 
detecting DNA oligonucleotide sequences or antibody-antigen coupling [43]. The devices can exhibit 
the electrical characteristics of specific and non-specific biomolecule interactions with graphene 
materials, and lay the foundation for electronic detection of breast cancer and leukemia biomarkers 
for clinical diagnostic applications [44,45]. Numerous studies have shown that it is possible to 
develop miniature microfluidic sensors with remarkable performance owing to the size and unique 
properties of graphene materials, which opens up new opportunities in the field of sensor analysis 
and detection [46,47]. 

Figure 1. Schematic diagram of the microfluidic-chip. Reproduced from [17] with the permission
from Elsevier.

Due to the reactivity, surface and interface effects, quantum size effect, Raman spectrum effect,
catalytic efficiency, electrical conductivity, and other characteristics of nanomaterials, nanomaterials
have excellent applications in the field of microfluidics technology [21,22]. Graphene, as the optimum
material, to construct the microfluidic devices among numerous nanomaterials due to its unique
structural characteristics and excellent performances [23,24], such as the nanostructure of the honeycomb
arrangement of carbon atoms, as well as excellent physical and chemical properties [25,26]. The signal
layer graphene has better transparency it can penetrate 98 percent of visible light, it has ultra-high
electron mobility and thermal conductivity, ultra-thin (about 0.35 nm) ultra-light structure, low planar
density (0.77 mg/m2) [27,28]. The special two-dimensional (2D) structure of graphene, in which each
carbon atom is exposed to its surface, makes it sensitive to changes in the charge environment caused by
the adsorption of a target [29–31]. The surface of graphene and its oxide materials has active functional
groups due to the intercalation of carboxyl, hydroxyl, and epoxy ions, thereby greatly improving the
cell and biological reactivity of the material [32–34]. The biocompatibility of graphene has further
broadened its application to biomedical fields such as the clinical diagnosis and drug delivery using
optical and electrochemical sensors [35–37]. Based on these special properties, graphene combined
with basic microfluidic technology has been widely used in microfluidic chips and devices [28,38].
Besides, graphene derivatives, such as graphene oxide (GO), reduced graphene oxide (rGO) and
functional graphene, are also ideal materials for constructing microfluidic channels [39,40].

The combination of graphene and microfluidic sensors can amplify their respective strengths to
enable even more valuable and potential applications. Santangelo et al. [41] developed a microfluidic
sensing platform for detecting low-concentration analytes, even low-concentration toxic heavy metals,
based on the advantage that graphene is extremely sensitive to foreign matter. The sensor is not
only simple and accurate to develop, but also has a strong sensitivity to the lowest concentration of
analytes. Bouilly et al. [42] designed a nanoelectronic biomolecular sensor based on the combination of
a graphene field-effect transistor (GFET) device array and a microfluidic circuit for detecting DNA
oligonucleotide sequences or antibody-antigen coupling [43]. The devices can exhibit the electrical
characteristics of specific and non-specific biomolecule interactions with graphene materials, and lay
the foundation for electronic detection of breast cancer and leukemia biomarkers for clinical diagnostic
applications [44,45]. Numerous studies have shown that it is possible to develop miniature microfluidic
sensors with remarkable performance owing to the size and unique properties of graphene materials,
which opens up new opportunities in the field of sensor analysis and detection [46,47].

The purpose of this article is to provide a comprehensive overview from production to the
application of graphene microfluidics devices and the latest progress of graphene microfluidics sensors
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in recent years. In Section 1 we briefly introduce the structure and properties of graphene as well
as the features and advantages of microfluidics devices. The unique advantages of the graphene
microfluidics biosensors are also discussed. Fabrication of the graphene microfluidics devices is
presented in Section 2. Here we first introduce the preparation of graphene and the functionalization
of graphene. In Section 3, the current fabrication process and materials of microfluidic chips will be
highlighted. It focuses on the latest application of graphene microfluidics devices in biology, optics,
and electricity in Section 4. Finally, the conclusions of this article are summarized, and the challenges
and application prospects of graphene microfluidic sensors are also proposed.

2. Preparation and Functionalization of Graphene and Its Derivatives

2.1. Preparation of Graphene and Its Derivatives

Fabrication methods of graphene may be divided into top-down and bottom-up two main categories.

2.1.1. Top-Down Approach

The top-down method is mainly exfoliation (like micromechanical, electrochemical, thermal),
and also includes the reduction of GO, sonication, etc. Micromechanical exfoliation is the first method
used to obtain graphene with different layers from graphite [48]. Recently, Sinclair et al. [49] carefully
considered the intermolecular interaction of graphene, and designed a process for stripping graphene
from polymer tape, as shown in Figure 2a. Graphite containing multiple graphene sheets is compressed
between two polymer layers under isothermal-isostatic conditions. Exfoliate the graphite by increasing
the height between the polymer layers at a constant speed, thereby high-quality graphene is obtained
in the canonical ensemble [50]. Although this method is usually widely used to prepare high-quality
graphene samples for analysis, it is not suitable for commercial production due to its time-consuming
and labor-intensive shortcomings [51]. After that, with the development of technology, there gradually
emerge electrochemical and thermal exfoliation techniques. Electrochemical peeling is similar to liquid
phase peeling but applying electric field force to drive electrolyte molecules directly into the graphite
cathode electrochemically [52]. In this way, the van der Waals (vdW) forces between the graphite
layers become weaker with the increase of the layer spacing. Therefore, it is easy to obtain graphene
by directly electrochemically exfoliating graphite sheets [53]. Moreover, compared to mechanical
exfoliation, the electrochemical exfoliation approach makes mass production of high-quality graphene
easier. Graphene prepared by electrochemical exfoliation possesses better physical and chemical
properties because the layer structure is not damaged. During the preparation process, due to the strong
electrochemical electric field, the peeling efficiency is higher, and by accurately controlling the current
and voltage, it is easy to realize the controllable preparation and performance regulation of graphene.
Additionally, since GO is easier to exfoliate than graphite, graphene is usually made from GO by
chemical reduction. The preparation of GO is usually carried out using graphite, oxidising agents and
concentrated acid raw materials via Hummers, or the redox method [54]. Then, the GO is exfoliated by
heat treatments or the acoustic in water, and finally, the graphene can be obtained via the reduction
of GO using the chemical or thermal methods. Due to the final product is not completely reduced
in the reaction process, it is known as the rGO instead of graphene. However, the explosive and
toxic chemical reducing agents limit the large-scale production of graphene [55]. In recent years,
various biomolecules have been widely used to synthesise graphene and its derivatives because of the
availability of them. Microbial reduced graphene approach, GO reduction by bacterial respiration,
shows great electrochemical quality [56]. And it also has obvious advantages in terms of inexpensive,
timesaving, good biocompatibility and non-toxic compared with additional electrochemical and
mechanical methods [57].
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Figure 2. (a) Schematic diagram of direct exfoliation to obtain graphene by a top-down method. 
Reproduced from [49] with the permission from Royal Society of Chemistry. Mechanistic diagrams 
for the growth of graphene films by surface segregation (b) and surface adsorption (c). Reproduced 
from [58] with the permission from Wiley Online Library. (d) Schematic representation of the growth 
process of graphene on silicon substrate using atmospheric pressure chemical vapor deposition 
(APCVD). Reproduced from [59] with the permission from Open Access Science Online. 
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for the growth of graphene films by surface segregation (b) and surface adsorption (c). Reproduced
from [58] with the permission from Wiley Online Library. (d) Schematic representation of the growth
process of graphene on silicon substrate using atmospheric pressure chemical vapor deposition
(APCVD). Reproduced from [59] with the permission from Open Access Science Online.

2.1.2. Bottom-Up Approach

The bottom-up approach is to synthesize graphene using small carbon-containing molecules as
raw materials, which mainly includes chemical vapor deposition (CVD), pyrolysis of SiC, and crystal
epitaxy. The high purity and crystalline graphene can be obtained by all of these techniques. Nowadays,
the CVD method has proven to be the most widely used fabrication technique for obtaining high quality
and large area graphene due to process tunability and mass production. The growth of graphene by
CVD can in principle be divided into two types, that is, the carburizing mechanism and the surface
growth mechanism. The difference between the two mechanisms lies in the carbon content of the
metal substrate. CVD methods use carbon compounds such as methane as carbon sources to grow
graphene by decomposition at high temperature on the substrate. The growth of graphene on Cu
metal surfaces by CVD processes, which reduce the decomposition temperature and graphitisation
temperature of carbon precursors, is now being extensively studied. The growth of graphene on Cu,
Ni and Cu/Ni surfaces was investigated by Li’s group [58] using carbon isotope labelling techniques,
as shown in Figure 2b,c. In the CVD process, due to the catalytic activity of the metal surface and
the high solubility of carbon, the decomposition of methane provides 12CH4 or 13CH4, which rapidly
diffuses into most metals. Then, when the carbon in the metal reaches supersaturation at a certain
temperature, due to carbon segregation, balanced graphene will form on the surface. Moreover,
the carbon concentration and the cooling rate directly determine the number of layers of graphene on
the metal surface. Besides the metal substrates, the synthesis of graphene on the insulating substrates
has also been studied to be feasible. Tai et al. [59] conducted vdW epitaxial growth of graphene on
a single crystal silicon substrate placed upside down by metal-free atmospheric CVD at 900–930 ◦C,
as shown in Figure 2d. Due to the catalytic inertness of silicon, the thermal decomposition of methane
produces activated carbon that triggers the nucleation of graphene. The high saturation and collision
frequency of carbon radicals can enhance the nucleation of graphene when the substrate is upside
down. The methane under the flux of 180 sccm continuously decomposes into activated carbon,
leading to the subsequent growth of graphene. At higher temperatures, as the silicon surface becomes



Micromachines 2020, 11, 1059 5 of 25

active, graphene begins to spread and grow around its edges, resulting in the formation of concave
double-layered regions of larger size. The excess activated carbon also begins to nucleate in the
core of the domain. At this point, a bulging oligomeric graphene domain is generated during core
propagation. Improved growth conditions, like the CH4 partial pressure or H2/CH4 ratio, were also
experimentally investigated. In short, it is possible to deposit multiple layers of graphene on an
insulating substrate without catalysis. Furthermore, to manufacture high-quality graphene, a higher
decomposition temperature is required on an insulating substrate than on a metal substrate including
Cu or Ni.

2.2. Functionalization of Graphene and Its Derivatives

Although graphene exhibits great application potential in many fields due to its excellent physical
and chemical properties, it is worth mentioning that the strong vdW force between graphene sheets is
far greater than the interaction with solvents, making it difficult to dissolve in water and common
organic solvents, which also limits its wide application in microfluidic platforms. This is also the biggest
obstacle to the application of graphene as a sensing medium layer to sensor devices. Hence, it has greatly
significant to modify the characteristics of graphene and expand the application of it in the function of
nanoelectronic devices especially in the microfluidics field via functionalization. Although graphene
has a stable hexagonal structure and chemical inertness, the actual graphene produced has some defects
and its edges are very active, which provides the possibility to realize the functionalization of graphene.
One of the most effective methods to functionalize graphene is to reduce or peel the graphite with an
alkaline metal in an appropriate solvent and then the intermediate graphene formation is quenched
with an electrophilic body. Besides, the functionalization of graphene can avoid agglomeration by
producing the strong polar-polar interaction of hydrophilic. The functionalisation of graphene covers
many areas of research, including the chemical modification of its surface, reactions with various
molecules, and covalent and non-covalent interactions [60–62]. The method currently adopted is
mainly to carry out effective and controllable functional modification of the graphene surface. There are
two main methods for functional modification of graphene, i.e., non-covalent bond and covalent bond
functional modification. Table 1 shows many differences between covalent functionalization and
non-covalent functionalization, including theory, type, application, etc.

Table 1. The difference between graphene covalent functionalization and noncovalent functionalization.

Graphene
Functionalisation Theory Bonding Types Applications Reference

Graphene covalent
functionalization

Although the main part of
graphene is composed of

stable six-membered rings, the
edges and the defects of it

have high reactivity, it is easy
to obtain GO by chemical

oxidation method. There are
abundant carboxyl, hydroxyl

and active groups such as
epoxy bonds which can be

functionalized covalently by a
variety of chemical reactions

Free radical addition
atomic radical addition

cycloaddition
nucleophilic addition

electrophilic substitution
reactions

Polymer
composite
material,

photoelectric
functional

materials and
devices,

biomedicine

[63]

Graphene
noncovalent

functionalization

The noncovalent
functionalization of graphene

utilize vdW and ionic
interactions between graphene
and a functionalized molecule

π-interaction(H-π interaction,
π-π interactions, cation-π

interaction, πcation-π
interaction) electrostatic,

hydrophobic, vdW
interactions

[64]
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2.2.1. Covalent Functionalization of Graphene

Covalent bond functionalization of graphene is the most widely studied functionalization method.
After the edges and defects of graphene are oxidized, the surface contains a large number of active
epoxy groups, such as hydroxyl groups, carboxyl groups, etc., so it can be covalently modified by a
variety of chemical reactions. It not only can increase the solubility of graphene but also can offer
new properties by introducing the organic functional groups. There are two main routes to achieve
the organic covalent functionalization of graphene. One is by forming covalent bonds between free
radicals or dienophiles and C=C bonds of graphene, the other is by forming covalent bonds between
organic functional groups and the oxygen groups of GO. Free radicals, atoms or groups of unpaired
electrons, are highly reactive and react with sp2 carbon atoms of graphene to form covalent bonds.
The common free radicals are aryl diazonium salts and benzoyl peroxide, which are synthesized by
Bergman cyclization and Kolbe electrosynthesis. In addition to free radicals, dienophiles also can react
with the sp2 of graphene. For example, one of the most common dienophiles Azomethine ylide, it has
been successfully used to functionalize carbon nanostructures (fullerenes, nanotubes, and nanohorns)
via 1, 3 dipole ring addition reaction. The dihydroxyl phenyl group was decorated on a graphene
sheet with pyrrolidine rings, which was formed perpendicular to the graphene surface by the addition
of azomethine ylide precursors (see Figure 3a) [65]. The azomethine ylide can be obtained by the
condensation reaction between the 3,4-dihydroxybenzaldeyde and sarcosine. Introducing the hydroxyl
groups into graphene increase the dispersibility of graphene in the polar solutions including ethanol
and N,N-dimethylformamide. Moreover, by comparing the ID/IG ratio and peak curve before and after
the function of graphene in Figure 3b, it can be a conclusion that the functionalization of graphene
causes a significant increase in sp3 planar carbon atoms. There are also many methods that can achieve
the functionalization of graphene such as atomic radical addition, nucleophilic addition, cycloaddition,
and electrophilic substitution reaction.

The functionalised graphene sheets are further modified by chemical reactions such as surface
polymerisation, ion reduction and amidation to achieve higher chemical and thermal stability. At the
meantime, functional graphene sheets exhibit electrical conductivity and represent outstanding
processability and dispersibility in solutions. By contrast to graphene, GO contains a large number
of radical energy groups, causing it to achieve covalent functionalization through various chemical
reactions. For example, it usually is used as the starting material for the fabrication of graphene
derivatives by the covalent attachment of organic groups on its surface. There are still several oxygen
groups and defects after any reduction treatment of GO in the experiments. Hence, it can achieve that
the added groups are linked via the oxygen atoms of GO in this type of functionalization. And there
also remains a large number of oxygen groups after the functionalization because no further structural
perturbations have occurred [67]. The covalent bond function of graphene greatly improves its
processing properties, giving graphene and its oxides some new properties. However, the covalent
bond functionalization of graphene also has inevitable shortcomings. Covalent bond modification
of graphene will destroy the intrinsic structure of graphene and change its own unique physical and
chemical properties. The introduction of molecules and polymers with specific functions at the edges
and defects of graphene will be the main research trend for the functionalization of graphene covalent
bonds in the future.
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2.2.2. The Non-Covalent Functionalization of Graphene

In addition to functionalization with covalent bonds, non-covalent bonds (such as π-π interactions,
ionic bonds, and hydrogen bonds) can also be used to modify molecules to functionalize the graphene
surface and form a stable dispersion system. It is essential to increase the solubility and avoid
agglomeration of graphene by the non-covalent functionalization with different organic compounds.
Moreover, as a hydrophobic material, graphene must be non-covalently functionalized to make it
soluble in polar solvents. To achieve the non-covalent bonding, there may have multiple routes
including π-interaction, electrostatic, hydrophobic, vdW interactions. Among them, it must be said that
π-interaction is an attractive method for graphene functionalization because it can connect functional
groups to graphene without disturbing the electronic network of graphene.

As a π-system, non-covalent molecular interactions involving graphene are essential for stabilizing
proteins, nucleic acid molecules, inorganic molecules and functional nanomaterials [68]. Due to the
tiny change that happened in the electronic properties of π-systems can cause tremendous effect in
the structure and characters of the nanosystem, the most relevant applications of interactions contain
π-systems are about the fabrication of nanodevices and nanomaterial design. The π-interactions can be
further divided into H-π interaction, π-π interaction, cation-π interaction, and antion-π interaction [69].
In process of π-interactions, there are both attractive forces like static electricity and dispersion, as well
as repulsive forces. Each of these components differs from magnitude, physical origin, and directionality
but the strength of the π-interactions are determined by the combined effect of them.
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The H-π interaction, one of the hydrogen bonds, plays an important role in adjusting the geometry
and the nature of the complex. Additionally, the substantial contribution provides by dispersion can
further stabilize the H-π complexes. At present, the π-π interaction is the most attractive non-covalent
interactions, that is, the negatively charged and diffused electron cloud of the π-system exhibits
attractive interactions. For example, the dispersion interactions also take hold when two π-system
possess the same electron densities in noncovalent π-π interactions [70]. However, when the systems
hold different electron densities including one of the systems are electron-rich and the other is
electron-deficient, the resulting complexes of the system bind through induction interactions [71].
The attraction can be reflected by the interaction energy in the experiment, and it has a significant
impact on the interaction of the phenyl rings in the solution environments. In surface-substituted
aromatic systems, the electron density of the parasite is a crucial stabilizing factor, which not only
affects the electron donating ability responsible for static electricity but also affects the dispersion
interaction and exchange repulsion. Besides, dispersion energy and exchange repulsion will in turn
increase the electrostatic energy of surface-substituted aromatic systems. Kim et al. [72] has developed
and synthesised a new molecular system that exploits differences in non-bonding interactions to
exhibit a motion during redox processes. The photochemically and electrochemically active π-system
was utilized to have maximum control of this interconversion. The π-π interaction is one of the
important ways to realize supramolecular self-assembly. Therefore, the design and synthesis of
novel organic nanostructures can be achieved by controlling the relationships of several non-covalent
interactions. Graphene is very flexible and less expensive, but the energy conversion rate of it is
not high. Wang et al. [66] proposed a noncovalently modulated graphene film using the pyrene
butanoic acid succidymidyl ester (PBASE) to further improve the energy conversion rate. The inset of
Figure 3c shows that the PBASE molecules are attached to the surface of a graphene sheet by means
of π-π interactions. The effect of the π-π interaction between the graphene and PBASE on the optical
absorption of visible graphene films can be negligible, as shown in Figure 3c. And compare with the
pristine graphene, the power conversion efficiency of functionalized graphene was improved to 1.71%.
As can be seen from Figure 3d, the UV and reflected photoelectron spectra are very similar at the
Fermi energy, and graphene maintains a near zero-gap state both before and after modification with
PBASE. In the π-interactions, the cation-π interaction is enhanced by the electrostatic and attraction
energy between the metal cation and π [73], which is also superior to πcation-π interactions, so that
various receptors with strong binding energies and high selectivity for metal cations can be explored.
The πcation-π interactions also exhibit different advantages to metal cation-M interactions, such as a
stronger total binding energy.

3. The Fabrication Processes and the Materials of Microfluidics Devices

For the microfluidics field, one particularly attractive idea is to develop integrated “lab on a
Chip (LOC)” systems that can reproduce laboratory-scale processes in a simplified way that costs
less, takes less time, and takes up less space than traditional equivalents. Besides, graphene and its
derivatives (like GO, rGO, and functionalized graphene, etc.) are very suitable for the basic technical
functions of microfluidics, so they have been widely used in LOC devices.

3.1. The Fabrication Processes of Lab-On-A-Chip Devices

As a typical representative technology of a LOC, microfluidic technology has developed rapidly.
The microfluidic chip is the main platform for the realization of microfluidic technology. The main
feature of the device is that the effective structures (channels, reaction chambers, and some other
functional components) containing fluids are at least micron-sized. Besides, in the microfluidic-based
LOC devices, fluid transport is carried through laminar co-flow or immiscible flow in a segmented
flow within a small channel. Therefore, the fabricating process of the microfluidic chip is particularly
important. It has been reported that many microfluidic fabricating processes have been proposed
for various materials and applications. Under the major fabricating processes, many sub-processes
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including etching, lithography, thermoforming, hot embossing, polymer casting, and bonding are used
individually or collectively to implement the final form of LOC devices. Among them, hot embossing
and bonding are the most widely used methods in microfluidic chip processing. Glass microfluidic
chip prepared by hot embossing have great potential in the fields of medical detection, drug analysis,
air monitoring and optical sensors. Jiang et al. [74] fabricated glass microfluidic channels through
a novel thermal embossing strategy that can also be used for microfabrication of other amorphous
materials, as shown in Figure 4a. In this study, a glass mold inserts with a high transition temperatures
fabricated in the supercooled liquid region play an important role for glass embossing with low
transition temperatures. High transition temperature glass mold structures with excellent high
temperature resistance and thermoformability can be produced by controlling processing conditions
such as embossing temperature, pressure and duration. The shape transferability of the low transition
temperature glass microfluidic channel reaches ~95%. The proposed method has feasibility and
versatility in the preparation of microfluidic chips. However, the hot pressing method also has
the disadvantage of high heating temperatures and pressures, which affect the precision of the
microstructure and make it unable to fully meet all the requirements for preparing of microfluidic
chips. Bonding is to pattern all the features on the substrate and then glue it with the cover to
create a closed microchannel for fluid analysis. Microfluidic chip bonding methods mainly include
hot pressing and adhesive. Kurihara et al. [75] proposed a new low-deformation thermal bonding
method for manufacturing a single polymer material chip, which uses two different compounds
of the same polymer material with different transition temperatures and nanostructured plates to
achieve bonding with low deformation accuracy. For low-temperature bonding, the deformation rate
of the polystyrene board chip with nanostructure is only 1.1%, which is significantly smaller than the
deformation produced by the ordinary thermal bonding process, so this bonding process can be used
to replace direct thermal bonding and laser bonding, etc. The bonding failure rate by the thermal
bonding method is high due to many factors, especially the lack of cleanliness and smoothness of
the glass surface. To simplify the operation and improve the adhesion, Su et al. [76] proposed a fast
bonding method to manufacture glass-based chips using a polyurethane (PU) composed of 8015-A
(A-glue) and 8015-B (B-glue). The adjustable performance of the PU is affected by the distribution
ratio of A-glue and B-glue. And after repeated tests, when the weight ratio of A-glue/B-glue is 3.6:1,
it can be used to encapsulate glass chips. The results of many experiments have also proved the
feasibility of the glass PU chip. This method of encapsulating chips using PU material has the lowest
cost, the fewest steps, and the highest bonding success rate. The adhesive bonding method also has
some drawbacks, such as generating a large number of bubbles, which can easily contaminate and
block the microchannels. In this regard, Zhang et al. [77] investigated a new bonding method under
pressure by UV-curing to fabricate microfluidic chips. Through the light-curing bonding method,
the prepared microfluidic chip has high bonding strength and high speed, and the microchannel will
not be contaminated by the adhesive. Therefore, permanent bonding can be achieved to effectively
solve the problem of poor adhesion of microfluidic chips. The irreversibility of the chip is also an
inevitable problem, which remains to be solved.
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3.2. The Materials of Lab-On-A-Chip Devices

There are a wide variety of materials used to make microfluidics device, mainly includes silicon,
metals, semiconductors and other inorganic materials, as well as polymers, hydrogels, paper and other
organic materials [79]. The different kinds of materials hold significant advantages in some aspects
and have played an important role in the corresponding field. In microfluidic chips, silicon materials
are widely used and used as the main material of early microfluidic chips. Fornell et al. [80] fabricated
380 × 150 µm2 silicon channels with vertical walls and flat bottom surface in cross section by optimizing
the power and pulse frequency of a nanosecond laser, which is a method for fabricating microfluidic
channels in silicon using a laser system. The design of the microfluidic chip includes a resonance
channel branched into a three-pronged outlet, and a glass wafer is used to seal the microfluidic
channel using an adhesive. Due to its good electroosmosis, light transmission, surface biocompatibility,
and processing technology similar to silicon materials, glass [81] is widely used as a substitute for silicon
materials in microfluidic chips. Wang et al. [78] developed a Si-glass chip using a cyclic direct bonding
method based on an oxygen plasma and annealing treatment process (see Figure 4b). The bonding
process mentioned in this work has the advantage of high bond strength and a tight bonding interface
to meet the needs of microfluidic devices. Besides, the bonding strength of the chip interface was
verified by testing its corrosion resistance in various chemical and biological solutions, and the work of
separating the bonding interface of the glass substrate in ethanol without cracking was explored.

Although glass has many advantages compared with other materials, the manufacturing cost
of glass-based microfluidic chips is high and time-consuming and laborious, which limits its use.
Polydimethylsiloxane (PDMS) is currently the most widely used polymer material in the field of
microfluidic chips, and it is often combined with glass to make microfluidic chips. PDMS can be applied
to biomedicine in the field of microfluidics, including on-chip devices and rapid real-time monitoring.
Due to the enhanced signal response and ease of manufacturing, many microfluidic preparation
processes use PDMS as basic material. Surface treatment, especially functionalization, has changed
the physical and chemical properties, so it is aimed at a very wide range of sensing applications for
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PDMS-based microfluidic systems. The most important surface modification techniques commonly
used in microfluidics are plasma and UV. Liu et al. [82] reported the preparation of a microfluidic
channel in a highly innovative way, by sealing the control layer, liquid layer and the thin membrane of
PDMS material together. Among them, the control layer and the liquid layer are manufactured by
positive and negative photoresist molds, respectively. In this work, enhanced seal strength was achieved
due to two factors, one being the use of an oxygen plasma surface treatment of the PDMS surface which
helped to improve the properties and the other being the use of different ratios of PDMS prepolymer
which helped to lower the bonding temperature and time. Besides, the entire sealing process was
achieved at room temperature, which is convenient, simple and easy to perform. This method is more
convenient than the one used for other commonly silicon-based materials (e.g., glass, quartz, etc.),
and it also optimizes the PDMS-PDMS bonding process. To demonstrate its performance, the PDMS
microfluidic chip maintains integrity under an applied pressure of 280 kPa provided by the N2 flow,
which is perfectly suited to the practical needs of microfluidic chips. Olmos et al. [83] introduced a
PDMS microfluidic device manufacturing method by manufacturing a photopolymer mold with a
multilayer microstructure. In the experiment, the female photopolymer mold manufacturing method
with multi-stage channels was successfully demonstrated by changing the cavity width and performing
a reverse UVA exposure time.This method can obtain multiple molds with multiple microstructures in
a unique part, where the mold has a minimum structural size of 10 mm and a structural height range
of 53 to 1500 mm. Also, the thickness of the structure can be controlled by changing the channel width,
thereby customizing the thickness according to the type of assay. The method for manufacturing PDMS
microfluidic devices has many advantages, such as reduced manufacturing time, multiple structures
with multiple topologies, multiple depths and heights in a single mold, and lower manufacturing
costs. In the end, the PDMS microfluidic device developed to produce a hierarchical structure has
great potential in different microbial fields, especially for cell culture and proliferation.

4. The Application of Graphene Microfluidics Devices

4.1. Graphene Field-Effect Transistor Sensors

Graphene, as a two-dimension material, has a large surface and high surface-area-to-volume
ratio. On account of the special 2D structure, each carbon atom is exposed on graphene’s surface.
Graphene is sensitive to changes in the environment caused by the adsorption of the analyte to its
surface, in particular to the binding of organic or inorganic molecules on the surface [29]. Hence,
it served as a promising material for the highly sensitive electrochemical sensors and also played an
important role in the field-effect transistor (FET) field [84]. And there has a high electrode electron
transfer rate on the edges and defects of it [85], which also turns its huge potential in electrochemical
sensors [86]. For electrochemical sensors, the carbon nanotube is the material that is most widely utilized
in electrocatalysis and the electrode [87]. But contrast to the carbon nanotube, the graphene-based
electrode material has more advantages in the electrocatalysis activity. Most graphene electrochemical
sensors used rGO because it can increase the electrochemical activity and enhance the performance
of the sensor [88–90]. Besides, the advantages of rGO such as moderate and profitable preparation,
high conductance, high surface-area-to-volume ratio [91], and tunable properties make it widely used
in electrical sensors [88]. GO can immobilize the biomolecules by the covalent interaction as a tool.
Hence graphene plays an important role in the electrochemical analysis [92].

Currently, based on the development trend of electrode surface functionalization and device
module miniaturization based on electrochemical sensors, a new generation of nano-modified and
integrated microfluidic technology on-chip detection system has been developed. For example,
graphene is widely used as a working electrode in electrochemical detection platforms for the detection
of heavy metals. The electrochemical analysis method is one of the most commonly used methods,
because of the advantages of low power consumption, high sensitivity, short analysis time, and easy
direct measurement [93]. In 2019, Santangelo et al. [41] reported a sensor (see Figure 5a) composed of
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3D printed microfluidic chips and epitaxial graphene on SiC, which can detect heavy metals with high
sensitivity and real-time. The sensor, with physical dimensions of 7 mm × 7 mm, is made by depositing
four electrodes on the edges of the graphene surface. The four wires connecting the electrodes are
soldered to the bottom of the SiC substrate, and then the sensor is constructed by applying an external
force to fix the 3D printing chamber onto the top of the chip, as shown in Figure 5a. Two single-syringe
pumps are used to inject the buffer solution and the analyte (Pb) into the mixed microfluidic chip,
and then to the fluid cell for detection (see Figure 5b). Finally, the measurement is performed between
the two angular contact points by biasing the sensor. In this study, the potential of the system for
continuous monitoring of heavy metals was demonstrated by automatically injecting the reactants
into microfluidic sensors to detect different concentrations of lead ions, as shown in Figure 5c. As the
concentration of lead ions increases, the amount of charge transfer and hole conductivity between
graphene and Pb2+ increases, but the Fermi energy level decreases. In the electrochemical microfluidic
sensor, the sensing platform achieves significant sensitivity and low detection limits, although the area
of graphene in contact with the solution is small. This work fully proves that the sensing platform can
continuously monitor toxic heavy metals in real-time, and is convenient for direct sample research,
which can be applied to daily life and industrial manufacturing. At present, it also shows some
shortcomings, such as difficulty in determining the concentration of a single heavy metal in the presence
of other heavy metals [94], defects in the preparation of uniform single-layer graphene, etc.

FETs are also one of the most widely used electrochemical microfluidic devices. Graphene has a
suitable condition it was generally used as a channel material for FETs with applications in sensors
and biosensors. Compared with other FETs devices made of classic semiconductor materials (such as
silicon, GaN, SiC), GFETs show the development of flexible, stable, and biocompatible merits [95].
Many methods are fabricating GFETs sensors. Here, Wang et al. [96] developed a FET sensor with
graphene channels for the direct measurement of hydroxyl radicals (•OH). The fabrication process of
this graphene-based FET sensor is shown in Figure 5d, where a single layer of CVD-grown graphene is
used as the sensing layer in the channel, while SiO2 and Si are used as the gate dielectric and back
gate, respectively. The Cr/Au, which is patterned by photolithography, is located on both sides of the
graphene surface and acts as an electrode. The design of the graphene channel FET sensor with the
graphene/Au/Cys-PP structure is then completed by a sequence of operations involving the evaporation
of gold nanoparticles (NPs), immersion in a cysteamine (Cys) solution and immobilisation of the
protoporphyrin IX (PP). Figure 5e shows the schematic diagram of •OH detection. An unconfined
chamber, approximately 8 mm wide, is assembled on the chip for the detection of all target solutions.
After the Cd2+ aqueous solution is dropped into the chamber, the Cd2+ ions are combined with the
doped graphene on the channel surface. After that, in the process of dropping the mixed solution
that produces •OH, the Ids monitored by the graphene/Au/Cys-PP-Cd2+ sensing layer shows a rapid
response when corresponding to 1 × 10−4 M •OH within 2 s, as shown in Figure 5f. Quantitative
metal ion doping can detect the •OH produced in aqueous solutions or living cells. Hence the FET
sensor based on the graphene/Au/Cys-PP-Cd2+ structure enables real-time label-free detection of
•OH and its concentration. Because of its label-free, high sensitivity, selective detection function,
and miniaturization function, it has important value in human health and environmental monitoring.

In recent years, graphene-based FETs have attracted a lot of attention in various electrochemical
and biosensor applications. Hence, a GFET is promising in the detection of various molecules, such as
exosomes, bisphenol A (BPA), etc. For example, Yu et al. [97] have developed an rGO FET sensor
for label-free electrical detection of exosomes with high sensitivity and specificity (see Figure 6a).
In this work, the rGO FET sensor is fabricated by dropping the rGO solution prepared by the chemical
reduction method on the induction channel of the chip, and then heating and annealing in a vacuum
furnace. Figure 6b shows the working principle and operating procedure of the rGO FET-based
biosensor for detecting exosomes. Among them, 1-Pyrenebutanoic acid succinimidyl ester plays a key
role because its two ends are connected to the rGO surface and the CD63 antibody. When the exosomes
flow through the sensor channel and bind to the CD63 antibody, the net carrier density on the chip
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surface changes due to the negative charge of the exosomes, which causes the Dirac point to move to
the left. In order to confirm its practical application ability in the medical field, the rGO FET-based
biosensor was used to detect serum samples of healthy people and prostate cancer (PCa) patients,
and the test results showed significant differences, as shown in Figure 6c. Unlike other techniques, it is
an effective tool that can use exosomes as markers for the early detection of fluid biopsy diseases.
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4.2. Graphene Microfluidic Optical Sensors

With the continuous improvement of microfluidic technology and the continuous penetration and
integration with other disciplines, several research hotspots have emerged in recent years, of which
microfluidic optical devices are typical representatives. A new cutting-edge cross-discipline formed by
the combination of optoelectronics and microfluidics technology combines microfabrication technology
with physics, chemistry, biology, etc., and realizes the special functions of optical or optoelectronic
devices and systems through precise control of microfluidics. With the birth of the new discipline of
microfluidic optics and the development of new technologies, microfluidic optics will play a more
important role in the future of optical technology. In contrast to traditional optical systems with
large volume, high cost, and poor adjustability, the fusion of microfluidic technology and optical
devices provides the possibility of miniaturization, arraying, low-cost and high-precision control of
microfluidic optical devices.

Integrated optics can accommodate the compact arrangement of microfluidic channels and
optical devices, which has broad application prospects for the integration of fluid optical sensors with
high sensitivity and high throughput. Various optical methods have been applied to microfluidic
sensings, such as light absorption, Raman scattering or surface plasmon resonance, and other
measurement methods. Besides, graphene possesses excellent optical properties, especially under
the total internal reflection structure, the enhanced interaction between graphene and light and
its polarization-dependent properties, making graphene combined with microfluidics technology
demonstrate potential applications in optical sensing. Wu et al. [98] developed an intelligent optical
microfluidic sensing system with reflection coupling structure based on rGO glass for ultra-sensitive
real-time detection of microfluidic liquid (water) pressure. The sensor is based on the principle of
evanescent wave coupling, that is, the liquid around the sensing layer graphene interacts with its
evanescent field. The schematic diagram of the optical experimental platform based on the rGO
microfluidic sensor is shown in Figure 7a, with the microfluidic chip in the illustration being the
most important part of the entire sensing system. The materials composing it from top to bottom
are microfluidic channel, rGO, glass sheets, refractive index matching fluids, and prism. The key to
the entire assembly process of the rGO microfluidic chip is that the PDMS microfluidic channel is
aligned and bonded with the patterned rGO glass, and further adhered to the prism coated with a
refractive index (RI) matching liquid, as shown in Figure 7b. The microfluidic channel is made of PDMS
prepolymer, and its chamber size is 6 × 4 × 0.05 mm3, and the diameter of the two ports connecting the
channel is about 10 µm. Based on the theoretical analysis of the reflection of the coupling structure,
the strong interaction between a part of the incident energy and rGO is very sensitive to the RI change
of the low refractive index medium. Therefore, when the pressure of the aqueous solution in the
microfluid changes, its RI will change accordingly, which is measured by the photodetector. In their
work, a fixed frequency (1 MHz) weak ultrasonic wave was used to provide a pressure of 1kpa to the
water, and the RI change of 1.35 × 10−7 was obtained by using the formula (dn/dP = 1.35 × 10−10)
between RI change (dn) and ultrasonic pressure (dP) in the water. The RI of water changes periodically
with the ultrasonic frequency. Figure 7c shows that the ultra-small water RI change of about 470 mV
under the sound pressure of single pulse ultrasound, corresponding to a response time of 560 ns and a
frequency of 1 MHz, which is similar to the original ultrasound frequency.
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Figure 7. (a) Diagram of the experimental setup for the rGO-based microfluidic optical sensor.
(b) The flow chart of the preparation for microfluidic optical sensing chips. (c) The weak RI variation of
the solution corresponds to the pressure provided by ultrasound. (d) The optimized RI changes the
detection of water. (e) The relationship between the liquid level in the catheter and the voltage signal
response. Reproduced from [98] with the permission from Frontiers Media S.A. (f) The voltage-time
signal collected from the video, the illustration shows the voltage-time signal between 135 and 140 s.
The voltage and time signals corresponding to the liquid being pumped at higher (g) and lower
(h) speeds, respectively. Reproduced from [99] with the permission from The Optical Society.

The limit of detection (D) and sensitivity (S) for graphene-based microfluidic optical sensors
are determined by the methods described above. The relationship between them and RI changes is
as follows:

D = Nnoise/S (1)

S = dU/dn (2)

where dU is the value of the voltage signal change corresponding to a RI change in the medium 2.
The above Formulas (1) and (2) give a detection limit of 1.4 × 10−8 and a sensitivity of 3.5 × 109 mV/RIU
for this microfluidic optical sensor. To facilitate the reliability of the experiment and optimise the
signal-noise ratio (SNR), the high RI changes in the aqueous solution caused by high-pressure
ultrasound were also monitored using the microfluidic optical sensor (see Figure 7d), resulting in
an ultra-fast response time (about 600 ns) and a low SNR (about 23). By comparing the pressure of
different ultrasonic waves on water, it is found that the response time limit is about 100 ns. In this
regard, the application of ultrasonic waves to the optical path not only makes the detection process
more accurate, but also makes it easier to directly perform real-time measurement without complicated
operations. Besides, to further accurately detect the voltage fluctuation caused by the accompanying
RI change, the water pressure in the detection window is increased by changing the water level in the
external hose. The inset of Figure 7a shows a schematic diagram of a specific experimental device with
a ball valve installed at the outlet of the microfluidic channel to make it in a closed state. When the
height of the water in the external hose at the entrance is changed, the microfluidic optical sensor
based on rGO glass can measure the change of the voltage signal, as shown in Figure 7e. This means
that the tiny but stable voltage caused by the liquid level in the hose is accurately detected in the
detection region. As the water level increases, the water pressure also presents an approximately
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linear relationship. In short, this work proves for the first time the importance of microfluidic devices
for the high-precision detection of small changes in fluid pressure, and opens up new platforms for
monitoring small changes.

In addition to the study of fluid pressure sensing in microfluidic environments, real-time
monitoring and sensing of changes in fluid flow velocity is also challenging. Wu et al. [99] have
designed a graphene-based microfluidic flow sensor (GMFS) that monitors weak and transient signals
of flow changes in the detection window. Compared with the fluid pressure sensing experiment,
graphene produced by low-pressure chemical vapor deposition (LPCVD) was used instead of rGO as
the sensing layer, and the entire microfluidic channel was unobstructed in this experiment. As graphene
exhibits a difference in absorption between TE and TM polarisation modes under total reflection
conditions, the interface of the high RI medium (prism)/graphene/low RI medium (liquid) coupled
sandwich structure enhances the interaction of light graphene, making it sensitive to changes in low
RI liquids. In this work, the continuous liquid flow rate is calculated by the relationship formula
(v = dQ/dS) between the volume flow rate per unit time (dQ) and the cross-sectional area of the
microfluidic cavity (dS).

The relation between the detected voltage variation (dU) and velocity, the pressure (dP) in
microfluidics and the actual fluid velocity signal (dv) are all nearly linear:

dU/dv = 4.65× 105 mV·sm−1 (3)

dP/dv = 9.43× 105 Pa·sm−1 (4)

where the linear relationship between pressure and fluid velocity variation is obtained by COMSOL
simulation. Since both pressure and flow rate has a linear relationship with voltage, the trend of voltage
signal and pressure is considered to be similar to the trend of flow rate. In the experiment, the response
of GMFS to the rapid change of the liquid flow rate provided by the syringe and the peristaltic pump
was studied separately. Figure 7f shows the real-time response signal results caused by weak pressure
detected by the graphene-based microfluidic optical sensor. It can be seen from the figure that the
transient pressure given by the outside world will get a high periodic voltage signal, which corresponds
to the signal change at each time point. Besides, the dynamic images of the theoretical simulation
process intuitively illustrate the change of fluid velocity in the microfluidic channel. Based on the
difference between the contraction and relaxation of the right ventricle of the heart, a peristaltic pump
is used to simulate its cardiac cycle. The simulation experiment results cover the entire range of normal
values, as shown in Figure 7g,h. The result in Figure 7g is that the voltage signal detected by GMFS
corresponds to a peristaltic pump with a pressure of 3 kPa and a frequency of 1 Hz. Figure 7h shows
that under low pump frequency, the stability of the simulated flow rate increases, and the noise of the
peristaltic pump decreases, which corresponds to a peristaltic pump that provides a pressure of 11 kPa
and a frequency of 0.1 Hz. The detection signal of the simulation process is far beyond the normal level,
which indicates that GMFS can detect the weak abnormal signal in the blood flow velocity caused by
the body organs, like the heart.These signals can reflect vascular occlusion, heart function and other
basic vital signs, and also provide a possible new monitoring method for life medicine.

4.3. Graphene Microfluidic Biosensor

In the past decade, various nanomaterials combined with microfluidic chips have been developed
to design sensors for detecting biomolecules. The appearance of graphene and its oxidized derivatives
(such as GO, rGO, etc.) has become a vital nanomaterial in the field of biosensors due to its unique
optoelectronic properties, especially in the manufacture of low-cost optoelectronic devices. The channel
size and flow characteristics of microfluidic devices have also become favorable conditions for the
study of biosensors and biological systems. In the field of sensing and biosensing, the research goal of
combining microfluidic technology is to develop integrated miniaturized equipment that can achieve
high sensitivity and selectivity, fast response, small throughput, and automated testing.
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The combination of microfluidic technology and biosensing provides the advantages of
high-throughput analysis and portability, thereby realizing intelligent real-time detection. Due to
the different sizes of biomolecules, graphene nanomaterials can be used to functionalize and detect
different biological analytes [100], such as nucleic acid molecules, protein molecules, bacterial cells, etc.
Liu et al. [101] developed a graphene transistor sensor modified by DNA molecules in a microfluidic
channel to sensitively detect BPA. In this work, a microfluidic chip was fabricated by patterning the
channel in PDMS using a soft lithography machine, corresponding to the channel length and width
of 10 mm and 0.8 mm, respectively. Figure 8a shows the structure of the entire microfluidic sensor,
including the patterned graphene film under the drain-source electrode, and the bonding of the PDMS
chip and the glass substrate through oxygen plasma treatment. In the whole process of detecting BPA,
the graphene channel is first modified with Au NPs, and then the single-stranded probe DNA molecule
is immobilized onto the Au NP on the surface of the graphene. After that, the BPA solution dissolved
in the PBS solution with a concentration ranging from 10 ng/mL to 100 µg/mL was sequentially injected
into the microfluidic channel to monitor the real-time response of the device with functionalized DNA
to various concentrations of BPA in the PBS solution. It can be seen from Figure 8b that as the BPA
concentration gradually increases from 1 to 100 µg/mL, the value of Id shows an upward trend in the
range of 55 to 62 µA. Besides, even at concentrations as low as 1 µg/mL, a significant current response to
BPA injection can be observed. Due to BPA molecules in a high-concentration solution can form covalent
compounds with DNA molecules, which destroy the DNA structure and chemical bonds, resulting in
ssDNA molecules to fall off the graphene surface, as shown in Figure 8c. It also exhibits a unique signal
response to the detection of BPA using double-stranded complementary DNA (dsDNA) molecules.
The sensor provides a cost-effective way to detect BPA concentration in aqueous solutions with high
sensitivity and is also expected to be used for convenient BPA detection in many practical applications.
Singh and colleagues have fabricated a surface plasmon resonance (SPR) microfluidic biosensor that
uses L-cysteine–reduced graphene oxide (L-Cys–rGO) hydrogel to quantify cardiac myoglobin (cMb),
as shown in Figure 8d [102]. Figure 8e shows the fabrication process of this microfluidic biosensor.
Cys-rGO hydrogel is covalently bonded to antibodies by introducing amide bonds. Microfluidic
channels of micrometer dimensions are prepared and combined with glass containing Au, Cys-rGO
hydrogels and Ag/AgCl electrodes by oxygen plasma catalysis. In order to use this microfluidic
sensor to monitor cMb immunoassay based on the antibody-antigen interaction, the carboxyl-COOH
functional group existing on the surface of Cys-rGO must be conjugated with the amine (-NH2) group
of an antibody (cMAb). After injection into the microfluidic channel, cMb molecules are directly
trapped by cMAb on the channel surface (see Figure 8f), leading to the formation of antigen-antibody
immune complexes, which are detected by dual-mode transduction such as electrochemistry and
surface plasmon technology. The large surface area and special structure of Cys-rGO hydrogel itself
and the functional groups that can carry more antibodies on the surface provide favorable conditions
for improving detection sensitivity and high selectivity. Therefore, the microfluidic biosensor not
only shows a large dynamic detection concentration range of cMb, but also has high sensitivity and
specificity. Besides, exploring its practical application in monitoring other biomolecules is the current
trend of studying microfluidic biosensors.
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Singh et al. [103] prepared a microfluidic immunosensor with high sensitivity to detect Salmonella
typhimurium bacterial cells. The biosensor is made by selectively depositing a colloidal solution of
GO-carboxy-lated multiwalled carbon nanotubes (GO-cMWCNTs) composite material on a patterned
indium tin oxide electrode, and sealing it with PDMS microchannels, as shown in Figure 9a.
Among them, when the mass ratio of GO:cMWCNT is 1:10, the largest electrochemical response
is produced, which is found to be the most suitable mass ratio. Besides, the height and width of
the PDMS microchannel manufactured by soft lithography are 200 µm, and the length is 2.0 cm.
A single inlet and an outlet are connected to the microchannel chamber by punching holes at the
desired positions at both ends of the PDMS plate (see the real image in Figure 9b). The carboxylation
(COOH) on the GO-cMWCNTs composite was activated using 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) and N-hydroxysuccinimide (NHS) covalent chemistry, and then the antibodies
(StAb) was immobilized to form discrete regions for capturing Salmonella typhimurium bacterial
cells. With the injection of Salmonella typhimurium, the sensor shows the current change, as shown in
Figure 9c. Due to the concentration of Salmonella typhimurium increases, an electrically insulating
antigen-antibody complex is formed, which in turn leads to a decrease in the peak current at the sensor
anode. It can also be found from the figure that the size of the electrochemical current varies linearly
from 101 CFU/mL to 107 CFU/mL, and reaches saturation at 107 CFU/mL. Compared with GO-based
immunochips, the use of GO nanosheets to wrap cMWCNT exhibits a synergistic effect, which improves
the sensing properties of Salmonella typhimurium cells and has better biological detection properties,
such as sensitivity and detection limit. Figure 9d shows the electrochemical response comparison
curve of only GO and GO-coated cMWCNTs-based bioelectrodes in the detection of Salmonella
typhimurium. It can be seen that the detection limit and range of the sensor based on cMWCNTs
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wrapped with GO is significantly better than that of the sensor only with GO. The advantages of
the microfluidic immunosensor with fewer reagents, higher sensitivity, reproducibility, and ease
of functionalization and manufacturing are truly embodied in clinical studies on real samples of
Salmonella typhimurium cells. In 2018, Jijie et al. [104] reported a sensitive and selective immunosensor
for detecting pathogenic bacteria in drinking water and serum samples. Due to the formation of
immune complexes, the detection of Escherichia coli is based on the limitation of electron transfer
from redox mediators to rGO/polyethylenimine modified electric transducers. In a similar vein,
Wibowo et al. [105] developed a graphene sensor as a means of detecting Escherichia coli in order to
study the interaction between graphene and different concentrations of Escherichia coli. The sensor
detects the signal response of Escherichia coli by monitoring the electrical properties and Raman
spectroscopy of the graphene film. The increase of bacteria not only causes the resistivity of graphene
to decrease, but also changes the intensity ratio between the G peak and the D peak. Therefore,
the development of a device that can quickly detect harmful bacteria and is easy to implement is
basically mature.
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Figure 9. (a) Schematic for the fabrication of GO wrapped multiwalled carbon nanotubes integrated
microfluidic chip. (b) Real image of the StAb/GO-cMWCNTs based microfluidic immunochip.
(c) Electrochemical response of StAb/GO-cMWCNTs microfluidic electrodes to pathogenic cells.
(d) Comparative electrochemical response curves of GO and GO/cMWCNTs based electrodes for
Salmonella typhimurium detection. Reproduced from [103] with the permission from ELSEVIER.

Here, more work is still needed to demonstrate the selectivity or specificity of the graphene
microfluidic biosensor to the analyte. Ideally, it is more hope that the sensor can have a large response
to the target detection object, but almost no response to any interference. In this regard, it is necessary
to improve the functional layer, or more methods to capture the target.

5. Conclusions and Future Work

In this review article, we discussed the latest work on graphene and microfluidic technology,
focusing on microfluidic sensors based on graphene nanomaterials for the detection of chemical
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substances and biomolecules. The combination of graphene and microfluidics can take advantage
of the unique physical and chemical properties and analytical characteristics of graphene, such as
real-time rapid detection, high sensitivity, low consumption, and easy operation. In recent years,
more and more devices based on graphene integrate microfluidic have been developed and widely used
in various fields. This article first introduces the preparation methods of graphene and its derivatives
and the functionalization of graphene. Next, briefly introduce the development of microfluidic
technology, and analyze the preparation of microfluidics and material research. It mainly discusses the
manufacturing process of different types of microfluidic platforms and microfluidic devices. The main
applications of graphene microfluidic devices are divided into three parts: electrochemistry, optics,
and biology. It ranges from the detection of chemical molecules to the electrical signals of nucleic acid
and protein molecules and even the detection of bacterial cells.

Although graphene microfluidics devices have made remarkable achievements in many fields
such as biomedicine and health detection, research on graphene-based microfluidic sensors is still
developing and improving, and there is much work to be done. In order to better use the graphene
sensor, it can be converted into a sensing system that can be used in many daily life environments,
such as drinking water quality monitoring, blood glucose level detection in the body, or as a urine
analyzer. The main challenges for researchers in the microfluidics biosensors, in especial, using the
graphene and turn them into production [86]. However, there lacked a method for obtaining the
controllable, and easy preparation of graphene material with specific structure and properties [106].
Especially in the application of microfluidic biosensors, the main challenge for researchers is how to use
graphene and put it into production. However, there is a lack of methods to obtain graphene materials
with good structure and properties that are controllable, reproducible, scalable, and easy to prepare.
Therefore, to obtain high-quality graphene-based nanomaterials, it is essential to find an effective
method to grow graphene [107,108]. Many applications currently reported are limited to the detection
of biomolecules, so new research needs to be extended to medical treatments. This also requires
researchers to create new biosensors for different complex environments [109,110]. Besides, there is
a need to deal with the toxicity and sustainability of graphene microfluidic devices. Because many
graphene-based microfluidic devices are used for careful analysis, integrity and reproducibility must
undergo extensive quality checks, which may increase costs. Therefore, there still faces great challenges
to realize the production of cheap and environmentally stable graphene microfluidic equipment. But
graphene microfluidic chip will eventually be the strongest candidate for one of these real-world tools.
Through the organic combination of graphene and microfluidic, advanced manufacturing methods will
be further developed and in the coming period, we will successfully implement various applications.
This work could provide a reference for those who want to make research in the direction.
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