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Abstract: We have previously reported that the female genital tract (FGT) of Beninese HIV highly-
exposed seronegative (HESN) commercial sex workers (CSWs), presented elevated frequencies of a
myeloid HLA-DR+CD14+CD11c+ population presenting “tolerogenic” monocyte derived dendritic
cells (MoDC) features. In order to assess whether a differential profile of monocytes may be involved
in the generation of these genital MoDCs, we have herein characterized the blood monocyte compart-
ment of Beninese HESNs (HIV-uninfected ≥ 10 years CSWs) and relevant controls (HIV-uninfected
2.5–5 years CSWs herein termed “early HESNs”), HIV-infected CSWs, and low-risk HIV-uninfected
women from the general population. Transcriptomic analyses by RNA-Seq of total sorted blood
monocytes demonstrate that in comparison to the control groups, HESNs present increased expres-
sion levels of FCGR2C, FCAR, ITGAX, ITGAM, CR2, CD68, and CD163 genes, associated with
effector functions. Moreover, we found increased expression levels of genes associated with protec-
tion/control against SHIV/HIV such as CCL3, CCL4, CCL5, BHLHE40, and TNFSF13, as well as with
immune regulation such as IL-10, Ahr, CD83, and the orphan nuclear receptor (NR)4A1, NR4A2, and
NR4A3. Through multicolor flow cytometry analyses, we noticed that the frequencies of intermediate
and non-classical monocyte populations tended to be elevated in the blood of HESNs, and exhibited
increased expression levels of effector CD16, CD11c, CD11b, as well as regulatory HLA-G, IL-10, and
IFN-α markers when compared to HIV-uninfected women and/or HIV-infected CSWs. This profile
is compatible with that previously reported in the FGT of HESNs, and likely confers an enormous
advantage in their resistance to HIV infection.

Keywords: HIV; resistance; highly exposed seronegative (HESN); commercial sex workers; monocytes;
effector functions; regulatory functions

1. Introduction

Most HIV infections are acquired through heterosexual intercourse, and in sub-Saharan
Africa, 59% of new infections affect women [1]. The authors and others have established
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cohorts of heavily HIV-exposed African female commercial sex workers (CSWs), in which
some women remain HIV-uninfected after more than 7 years of active sex work [2]. The
study of these HIV-1 highly-exposed seronegative (HESN) women, who constitute a model
of natural immunity to HIV, provides an exceptional opportunity to determine important
clues for the development of preventive strategies, which at the moment, remain the best
solutions to eradicate the pandemic. We have previously reported that Beninese HESN
CSWs present a low-inflammatory profile in their female genital tract (FGT) [3,4]. We found
this low-inflammatory profile to be concomitant with important antiviral and regulatory
features. Notably, Beninese HESNs presented elevated frequencies of an endocervical
myeloid HLA-DR+CD14+CD11c+ population, expressing high levels of anti-viral (TLR7,
IFN-α) and immunoregulatory (IL-10, HLA-G, ILT4) molecules [5]. Concomitantly, we
found elevated frequencies of endocervical T regulatory (Treg) and Tr1 (CD49b+LAG3+)
cells, expressing high levels of PD-1 and IL-10, reflective of their active state [6,7]. These
are in agreement with the elevated frequencies of Tregs, which was previously reported
in the blood of Kenyan HESNs [8]. The HLA-DR+CD14+CD11c+ population described in
the FGT of Beninese HESNs, is reminiscent of tolerogenic monocyte derived dendritic cells
(MoDCs) or “DC-10” [9], that produce high amounts of IL-10, express high levels of HLA-G
and ILT-4, and can induce Tr1 via an IL-10–dependent ILT4/HLA-G pathway [10]. In
addition, both IL-10 and IFN-α promote Tr1 differentiation [11]. The increase in frequencies
of tolerogenic or “DC-10-like” MoDCs endowed with tolerogenic as well as IL-10- and
IFN-α-producing capacities is likely to contribute to the overall protection from HIV in
HESNs, by orchestrating potent anti-viral and regulatory activities at a major portal of
entry for HIV.

Genital tolerogenic MoDCs are possibly derived from blood monocytes, known to
demonstrate developmental plasticity as they differentiate into macrophages, MoDC, or os-
teoclasts depending on the inflammatory milieu (reviewed in [12]). In humans, monocytes
are categorized in 3 main populations based on their expression levels of CD14 and CD16,
each representing a stage of differentiation [12]. They are the predominant CD14+CD16-
classical, and to a lesser extent CD14+CD16+ intermediate and CD14low/dimCD16++
non-classical populations. Further distinction refers to differential expression levels of
chemokine receptors CCR2 and fractalkine receptor CX3CR1. CCR2 is highly expressed
by the classical majority, while CX3CR1 is lower at this stage and rises while CCR2 goes
down on the non-classical minority. Classical monocytes mainly recirculate or migrate into
tissues via CCR2 to address an assault and/or replenish monocyte-derived macrophages
and/or MoDC populations, whereas CX3CR1 allows for non-classical monocytes to patrol
for endothelial integrity. Studies on mouse Ly6Clow monocytes, which are considered
the murine analogues of human non-classical monocytes, whereas Ly6Chi correspond
to classical monocytes, demonstrated that the former are enriched within capillaries and
scavenge microparticles and necrotic debris from their luminal side in a steady state [13].

Orphan nuclear receptor (NR)4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (NOR1)
are transcriptional regulators of differentiation, proliferation, and apoptosis genes. The
transition from classical to intermediate and non-classical monocytes depend on the NR4A1
expression [14], necessary to their generation and survival, as they are reduced by 90% in
NR4A1-deficient mice [15]. Furthermore, recent studies of NR4A3-deficient mice show
that NR4A3 is required to skew monocyte differentiation toward MoDCs and allows the
acquisition of migratory characteristics required for MoDC function [16].

In order to start addressing whether a differential profile of monocytes may be involved
in the generation of tolerogenic MoDCs, we have herein characterized the blood monocyte
compartment of Beninese HESNs (HIV-uninfected ≥ 10 years CSWs) and compared to that of
relevant controls (HIV-uninfected 2.5–5 years CSWs “early HESN” i.e.,: beyond the immune
activation generated by ≤1 year sex work [17] and possibly evolving towards a HESN status,
HIV-infected CSWs, and low-risk HIV-uninfected women from the general population). The
fact that NR4As are pivotal to monocyte differentiation, prompted us to explore expression
levels of these factors along with those associated with the anti-viral and regulatory profile
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that we previously described for genital tolerogenic MoDCs. Based on transcriptomic and
multicolor flow cytometry analyses, we report that blood monocytes from HESNs present
elevated expression levels of NR4As, as well as anti-viral and regulatory markers when
compared to other groups. Moreover, we found increased expression levels of markers
associated with effector functions. Altogether, our observations suggest that the differential
profile of blood monocytes from HESNs reflects enhanced effector, antiviral, and regulatory
functions. This profile is compatible with that of tolerogenic MoDC, previously reported in
the FGT of HESNs, and likely confers an enormous advantage to HESNs in their resistance
to HIV infection.

2. Materials and Methods

Study populations. Non-CSW control women at low risk for exposure were enrolled
from a general health clinic in Cotonou, Benin. Female CSWs were recruited through a
dedicated sex worker clinic in Cotonou. Women were invited to participate in the study
as they attended clinics. Women were excluded from the study if they were less than
18 years old, menstruating, or pregnant. At enrolment, participants were asked to answer
a questionnaire about demographic information, sexual behavior, duration of sex work,
number of sex partners, condom use, vaginal douching practices, and reproductive history.
Each participant underwent a genital examination by a physician. Vaginal specimens were
obtained for diagnosis of candidiasis, trichomoniasis, and bacterial vaginosis by micro-
scopic examination and HSV infection by PCR. Endocervical swabs were obtained to test
for Neisseria gonorrhoea and Chlamydia trachomatis infection using the BD ProbeTec ET
system (Strand Displacement Assay, Becton Dickinson, Heidelberg, Germany). Periph-
eral blood was taken for HIV, syphilis, HSV, and progesterone testing by immunoassays.
HIV-1 positivity was defined by the presence of HIV-1-specific IgG tested with Vironos-
tika HIV Uni-Form II Ag/Ab (Organon Teknika, Boxtel, the Netherlands). Non-reactive
samples were considered HIV seronegative, whereas reactive samples were tested with
Genie II HIV-1/HIV-2 (Bio-Rad, Hercules, CA, USA). Genie II dually-reactive samples (to
HIV-1 and HIV-2) and discordant samples (Vironostika reactive/Genie II non-reactive)
were further tested by INNO-LIA HIV I/II Score (Innogenetics NV, Technologiepark 6,
Gent, Belgium). HSV infection and shedding was determined by testing for HSV-specific
antibodies in the serum and for the presence of HSV in the CVLs of the women by PCR
assay. Of note, the participants of this study were primarily tested for sexually transmitted
diseases and not for HBV, HCV, or HTLV, which are commonly associated with high-risk
groups. However, we feel any influence might be comparable amongst our study groups.
In the present study, samples were selected from 9 HESNs (HIV-1-uninfected ≥ 10 years
CSWs), 11 HIV-1-uninfected 2.5–5 years CSWs “early HESNs”, 10 HIV-1-infected CSWs,
and 7 HIV-1-uninfected non-CSW control women from the general population for charac-
terization by flow cytometry of blood monocytes. For the transcriptomic analyses of sorted
total blood monocytes, samples from 4 HESNs and 3 from other groups were selected. The
four study groups were all in the follicular phase of their menstrual cycle as determined
by progesterone levels, not taking oral contraception, and had no co-infection, bacterial
vaginosis, trichomoniasis, or candidiasis.

Ethics statement. Written informed consent was obtained from all subjects who
participated in the study. The methods reported in this paper were performed in accordance
with the relevant guidelines and regulations and all experimental protocols were approved
by the Comité National Provisoire d’Éthique de la Recherche en Santé in Cotonou and the
Centre Hospitalier de l’Université de Montréal (CHUM) Research Ethics Committees.

Sample collection and preparation. Peripheral blood mononuclear cells (PBMCs)
were isolated from whole blood by centrifugation on Ficoll gradients, washed and sus-
pended in freezing medium (90% heat inactivated fetal bovine serum (hi-FBS), 10% dimethyl
sulfoxyde (DMSO)), and kept in liquid nitrogen until use. Plasma and serum were kept
frozen at −80 ◦C until use.
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Multicolor Flow Cytometry Analyzes. PBMCs samples were thawed, washed in
IMDM followed by 1× PBS, and processed for flow cytometry. Briefly, each sample of
PBMCs was separated in two for intracellular and intranuclear staining. Live/dead exclu-
sion was performed using Aqua-LIVE/DEAD Fixable Stain (Invitrogen Life technologies,
Eugene, OR, USA). Non-specific binding sites were blocked using fluorescence-activated
cell sorting (FACS) buffer (1× PBS, 2% hi-FBS, and 0.1% sodium azide) supplemented
with 20% hi-FBS, and 10 µg of mouse and/or rat IgG (Sigma-Aldrich, St-Louis, MO,
USA) and 8 µg Human BD FCBlock (BD Biosciences) per million cells. The following
conjugated mouse and/or rat anti-human monoclonal antibodies were used for the detec-
tion of surface markers: anti-HLA-G-PerCP-eFluor710 (eBiosciences), anti-HLA-DR-BB515,
anti-CD16-BUV737, anti-CD14-BV786, anti-CD123-BV711, anti-CD83-BV650,
anti-CD11b-BUV395, anti-CCR2-BV421, rat-anti-CX3CR1- BV421 (BD Biosciences), and
anti-CD11c-Pe/Cy5.5 (Invitrogen by Thermo Fisher Scientific), anti-ILT4-AF594 (R&D
systems). For the detection of intracellular markers, the following conjugated mouse
and/or rat anti-human monoclonal antibodies were used: anti-CCL3-APC, anti-IFN-α-PE,
and rat-anti-IL-10-Pe/Cy7 (Biolegend). For detection of the intranuclear marker NR4A1,
the following conjugated human anti-mouse monoclonal antibody was used: anti-Nurr77
(NR4A1)-PE (Miltenyi Biotec). This human REA clone anti-mouse Nurr77 (NR4A1) IgG1
antibody cross-reacts with human NR4A1 as specified by MACS Miltenyi Biotec. We have
previously validated this reagent [18]. Intracellular labeling was performed using the
Cytofix/Cytoperm Fixation/Permeabilization kit and perm/wash buffer (BD-Biosciences).
Intracellular non-specific binding sites were blocked using perm/wash buffer containing
20% hi-FBS, 50% rat serum and 20 ug of mouse IgG. Intranuclear labeling was performed
using the FoxP3/Transcription Factor Staining Buffer Set (Invitrogen by Thermo Fisher
Scientific, CA, USA), and non-specific binding sites were blocked using 20% hi-FBS. Cells
were kept at 4 ◦C in 1.25% paraformaldehyde for 18 h prior to analysis. Data acquisition of
5 × 104 events per sample was performed with LSRFortessa (BD-Biosciences), and analysis
was done with FlowJo 7.6.3 software (TreeStar, Ashland, OR, USA). All stainings were
compared to that of fluorescence minus one (FMO) values and isotype controls. Anti-
mouse Ig(κ) and anti-rat Ig(κ) Compbeads Plus (BD Biosciences) were used to optimize
fluorescence compensation settings. CS&T beads (BD Biosciences) were routinely used
to calibrate the LSRFortessa to exclude the possibility of instrument-related fluorescence
intensity changes over time, and consistency was verified prior to each data acquisition
session using application settings based on Rainbow beads (BD Biosciences).

Cell Sorting of Total Blood Monocytes, RNA Isolation, and Sequencing. PBMCs
samples were thawed, washed with IMDM followed by 1× PBS, and processed for flow
cytometry, as stated above. Cells were stained using the following conjugated mouse
anti-human monoclonal antibodies: anti-CD19/CD3/CD56-BV650, anti HLA-DR-PE-Cy7,
anti-CD14-BV786 (BD-Biosciences), and anti-CD11c-PE-Cy5.5 (eBiosciences). Total CD14+
monocytes were sorted using a FACSAriaIII apparatus (BD-Biosciences) and kept at −80 ◦C
in trizol (Invitrogen Life technologies) prior to sequencing. Total monocytes were sent to
IRIC’s Genomics Core Facility for RNA extraction, sequencing, transcriptomic profiling,
and analysis. Libraries were prepared using Clontech Ultra Low RNA SMARTer v4 (Takara)
and sequenced on a HiSeq2000. Genes with adjusted p-values based on false discovery
rate (FDR) values <0.05 were considered to be differentially expressed. Gene expression
levels were compared using raw read counts and the negative binomial distribution model
implemented in DESEq2, a differential expression analysis package developed for R.

Statistical analyses. Data from HESNs were compared separately to those of HIV-
uninfected 2.5–5-year CSWs, HIV-infected CSWs, and HIV-uninfected non-CSWs. The
p-values used to infer statistical significance of difference between groups was determined
by unpaired Student’s T-test when continuous variables were normally distributed or by
the Mann–Whitney U test otherwise. The D’Agostino–Pearson normality test was used
to determine whether the values were sampled from a Gaussian distribution. Analyses
were performed using R version 3.6.3 for Windows [19]. Data manipulations were done
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using the R packages tidyverse [20] and reshape2 [21]. Figures were produced using the R
packages ggplot2 [22], ggfortify [23,24], gridExtra [25], ggpubr [26], and cowplot [27].

3. Results
3.1. Socio-Demographic Characteristics of the Study Groups

The socio-demographic characteristics of female CSWs and non-CSWs are shown in
Table 1. There were no statistical differences for age between HESNs, HIV-1-uninfected
2.5–5-year CSWs “early HESNs”, and HIV-infected CSWs. There was a highly significant
difference between the duration of sex work between HESNs, HIV-1-uninfected 2.5–5-year
CSWs “early HESNs”, and HIV-infected CSWs. All women were practicing vaginal douch-
ing. The average number of clients and condom use were not significantly different between
the CSWs groups.

Table 1. Distribution of demographic and sexual behavior characteristics in HIV-1 uninfected
non-CSWs, HIV-1-uninfected 2.5–5-year CSWs “early HESNs”, and HESNs and HIV-1 infected
CSWs. * p-value for comparisons between HESNs and the two other CSW groups were calculated
with the Mann–Whitney U test for age and duration of sex work; Unpaired T-test for the number of
clients; and Fisher’s exact test for condom use and vaginal douching. CSW, commercial sex worker;
HIV, human immunodeficiency virus; HESN, HIV Highly-Exposed Seronegative; N, number of
participants; NA, non-applicable; NS, nonsignificant; SD, standard deviation.

Non CSWs HIV- CSWs HIV- HESN CSWs HIV+

N = 10 N = 11 N = 10 N = 12 * p-value

Age, mean (SD), years 34 (6.5) 34 (7.6) 44 (7.9) 45 (9) NS

Duration of sex work (SD), years N/A 4 (0.9) 12 (3.7) 9 (4.5) 0.001337

Number of clients past week, mean (SD) N/A 15 (14.5) 12 (14.4) 18 (22.5) NS

Condom always used with clients past week N/A 7 8 9 NS

Vaginal douching 10 11 10 12 NS

3.2. Transcriptomic Analyses by RNA-Seq of Total Sorted Blood Monocytes from HESNs Reveal
Distinct Effector and Regulatory Capacities

Live total CD14+ monocytes were sorted from the PBMC samples of HESNs and
relevant controls. RNA was extracted, purified, and submitted to a total transcriptomic
analysis by RNA-Seq. Based on our previous observations with HESNs [3–5], and the gene
signature associated with protective vaccine regimen [28], we herein present a heatmap
selected for transcripts of interferon stimulated genes (ISG), Toll-Like Receptor (TLR) genes,
genes associated with effector functions and protection/control against SHIV/HIV, and
genes associated with tolerogenicity and immune regulation. As shown in Figure 1A, there
is great variability between groups for this selected gene expression profile and p-values
for statistical t-test between each group pairs are shown in Table S1. HESNs as well as
early HESNs and women from the general population do not present a significant IFN
signature, which is prevalent in the HIV-infected CSWs group. Albeit, that of HESNs
is notable when compared to early HESNs and women from the general population.
Strikingly, HESNs present increased expression levels of gene transcripts for the antibody
Fc Receptors (FcR) FCGR2C and FCAR, as well as for complement binding receptors, such
as ITGAX, ITGAM, and CR2 when compared to the other groups (Figure 1B). Transcripts
for the Scavenger Receptors CD68 and CD163 genes were also increased for HESNs when
compared to the other groups. Interestingly, monocytes from HIV-infected CSWs presented
increased expression levels of gene transcripts for distinct FcRs such as FCGR3A, FCGR1A,
FCGR1B, FCGR2A, and complement receptor CR1 when compared to HESNs and the other
groups. Importantly, HESNs present increased expression levels of genes shown to be
associated with protection/control against SHIV/HIV such as CCL3, CCL4, CCL5, the
transcription factor basic helix-loop-helix family member e40 (BHLHE40), and TNFSF13,
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which encodes the growth factor A proliferation inducing ligand (APRIL), as well as with
immune regulation such as IL-10, the IL-10 regulatory transcription factor aryl hydrocarbon
receptor (Ahr), CD83, and the orphan nuclear receptors NR4A1, NR4A2, and NR4A3 when
compared to the other groups (Figure 1C,D). Altogether, these observations suggest that
blood monocytes of HESNs are endowed with a unique profile suggestive of a distinct
effector, protective, and regulatory capacities when compared to the other groups.
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Figure 1. Selected transcriptomic analyses by RNA-Seq of total sorted live blood monocytes.
(A) The heatmap shows total live monocytes expression levels of gene transcripts, the panel being
selected based on our previous observations with the Beninese cohort [3–5] and the gene signature
associated with protective vaccine regimen [28,29]. (B) Selected gene transcripts clustered for effector
function. (C) Selected gene transcripts clustered for regulation markers. (D) Selected gene transcripts
clustered for protection. Data are presented as the mean value of samples from three non-CSWs HIV-
(HIV-1-uninfected control women from the general population), three CSWs HIV- (HIV-1-uninfected
2.5–5-year CSWs “early HESNs”), four HESNs (HIV-1-uninfected ≥ 10 years CSWs), and three CSWs
HIV+ (HIV-1-infected CSWs).
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3.3. Multicolor Flow Cytometry Analyses Expose Important Effector and Regulatory Capacities in
Blood Monocytes from HESNs

Similarly, to the idea described above, we performed multicolor flow cytometry
analyses on blood monocytes of each group of participants by using selected panels of mon-
oclonal antibody (mAb) cocktails targeting important markers we previously associated
with effector, antiviral, and immunoregulatory properties in HESNs [3–5]. Total, as well
as CD14+CD16- classical, CD14+CD16+ intermediate, and CD14low/dimCD16++ non-
classical monocyte populations were assessed with these mAb panels. Gating strategies as
well as the differential CCR2 and CX3CR1 expression profiles of monocyte populations are
provided in Figures S1 and S2, respectively. Consistent with the elevated gene expression
levels of NR4A1 (Figure 1), flow cytometry analyses demonstrate a trend towards slightly el-
evated relative frequencies of intermediate and non-classical monocyte populations, which
highly express NR4A1 [14,15], in the blood of HESNs when compared to women from
the general population (Figure 2A). This was also observed for HIV-uninfected 2.5–5-year
CSWs “early HESNs” and HIV-infected CSWs. Moreover, NR4A1 expression levels tended
to be slightly greater for these populations in HESNs, early HESNs, and HIV-infected CSWs
when compared to women from the general population (Figure 2D,E), and the pattern of
CD83 expression was similar (Figure S2). Upon analysis of CD16 (FCRG3A), we found
that as for HIV-infected CSWs, intermediate and non-classical monocytes from HESNs
and early HESNs presented elevated expression levels when compared to women from
the general population (Figure 3C,D). Linear regression analyses show that this is more
obvious in early HESNs when compared to HESNs (Figure 3G,H). In addition, HLA-DR
surface expression levels tended to be more elevated in intermediate and non-classical
monocytes of HESNs and early HESNS when compared to both HIV-infected CSWs and
women from the general population (Figure 3K,L). As for CD16, linear regression analyses
show that this is more obvious in early HESNs when compared to HESNs (Figure 3O,P). In
a similar scheme, CD11b (ITGAM) protein expression levels were slightly elevated in all
monocyte populations of HESNs and early HESNs when compared to both HIV-infected
CSWs and women from the general population (Figure 4A–D). As for CD16 and HLA-DR,
linear regression analyses show that this is more obvious in early HESNs when compared
to HESNs (Figure 4E–H). CD11c (ITGAX) protein expression levels by monocyte popu-
lations of HESNs and early HESNs presented a similar profile to that of CD11b when
compared to women from the general population and HIV-infected CSWs (Figure 4I–L).
Linear regression analyses show that for intermediate and non-classical monocytes, this is
more accentuated in early HESNs when compared to HESNs (Figure 4O,P).

Upon assessment of HLA-G surface expression levels, we clearly show that they
are significantly increased by all monocyte populations of HESNs when compared to
women from the general population and HIV-infected CSWs (Figure 5A–D). Although, we
find a trend for this increase by monocytes from early HESNs, linear regression analyses
depict that this is greater in the HESNs group (Figure 5E–H). Ex vivo IL-10 intracellular
expression levels were comparable amongst all HIV-uninfected groups and tended to be
higher than that observed on monocytes from HIV-infected CSWs (Figure 5I–L), especially
when compared to classical monocytes from HESNs (Figure 5J). Linear regression analyses
show that ex vivo IL-10 expression levels are greater for HESNs when compared to early
HESNs (Figure 5M–P). Consistent with our data obtained through selected transcriptomic
analyses, these flow cytometry results demonstrate that monocytes from HESNs bear
important effector and regulatory capacities. We find that early HESNs are also endowed
with a similar profile. These features seem to be shared characteristics of highly HIV-
exposed individuals and are likely to confer an important advantage in their fight against
HIV infection. Although, certain features observed in monocytes from HESNs and/or early
HESNs were comparable to those of monocytes from HIV-infected CSWs, these are likely
to reflect frequent HIV and/or microbial exposure.
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Figure 2. Flow cytometry analyses of relative frequencies of live blood monocyte populations and
NR4A1 protein expression levels. (A) Relative frequencies of CD14+CD16− classical, CD14+CD16+
intermediate, and CD14low/dimCD16++ non-classical monocyte populations were calculated vs. total
live CD14+ monocytes. (B–E) Levels of expression of NR4A1, as determined by geometric mean
fluorescence intensity (GeoMFI), by (B) total, (C) classical, (D) intermediate, and (E) non-classical
monocytes. Data are presented as the mean value ± SD of samples from 7 non-CSWs HIV- (HIV-1-
uninfected control women from the general population), 9 CSWs HIV- (HIV-1-uninfected 2.5–5-year
CSWs “early HESNs”), 11 HESNs (HIV-1-uninfected ≥ 10 years CSWs), and 9 CSWs HIV+ (HIV-1-
infected CSWs). Significance levels are shown as * (p < 0.05), ** (p < 0.01), *** (p < 0.001). (F–I) Linear
regression analyses are shown for CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”)
and HESNs (HIV-1-uninfected ≥ 10 years CSWs).
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Figure 3. Flow cytometry analyses of CD16 and HLA-DR expression levels by live blood mono-
cyte populations. (A–D) Levels of expression of CD16 and (I–L) HLA-DR proteins, as determined by
geometric mean fluorescence intensity (GeoMFI), by (A,I) CD14+ total, (B,J) CD14+CD16− classical,
(C,K) CD14+CD16+ intermediate, and (D,L) CD14low/dimCD16++ non-classical monocytes. Data
are presented as the mean value ± SD of samples from 7 non-CSWs HIV- (HIV-1-uninfected con-
trol women from the general population), 9 CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early
HESNs”), 11 HESNs (HIV-1-uninfected ≥ 10 years CSWs), and 9 CSWs HIV+ (HIV-1-infected CSWs).
Significance levels are shown as * (p < 0.05), ** (p < 0.01), *** (p < 0.001). (E–H, M–P) Linear regression
analyses are shown for CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”) and HESNs
(HIV-1-uninfected ≥ 10 years CSWs).
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Figure 4. Flow cytometry analyses of CD11b and CD11c expression levels by live blood mono-
cyte populations. (A–D) Levels of expression of CD11b and (I–L) CD11c proteins, as determined
by geometric mean fluorescence intensity (GeoMFI), by (A,I) CD14+ total, (B,J) CD14+CD16− clas-
sical, (C,K) CD14+CD16+ intermediate, and (D,L) CD14low/dimCD16++ non-classical monocytes.
Data are presented as the mean value ± SD of samples from 7 non-CSWs HIV- (HIV-1-uninfected
control women from the general population), 9 CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs
“early HESNs”), 11 HESNs (HIV-1-uninfected ≥ 10 years CSWs), and 9 CSWs HIV+ (HIV-1-
infected CSWs). Significance levels are shown as * (p < 0.05). (E–H,M–P) Linear regression anal-
yses are shown for CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”) and HESNs
(HIV-1-uninfected ≥ 10 years CSWs).
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Figure 5. Flow cytometry analyses of HLA-G and IL-10 expression levels by live blood monocyte
populations. (A–D) Levels of expression of surface HLA-G and (I–L) ex vivo IL-10 proteins, as deter-
mined by geometric mean fluorescence intensity (GeoMFI), by (A,I) CD14+ total, (B,J) CD14+CD16−
classical, (C,K) CD14+CD16+ intermediate, and (D,L) CD14low/dimCD16++ non-classical monocytes.
Data are presented as the mean value ± SD of samples from 7 non-CSWs HIV- (HIV-1-uninfected
control women from the general population), 9 CSWs HIV- (HIV-1-uninfected 2.5-5 years CSWs
“early HESNs”), 11 HESNs (HIV-1-uninfected ≥ 10 years CSWs), and 9 CSWs HIV+ (HIV-1-infected
CSWs). Significance levels are shown as * (p < 0.05), ** (p < 0.01). (E–H, M–P) Linear regression
analyses are shown for CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”) and HESNs
(HIV-1-uninfected ≥ 10 years CSWs).
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3.4. Flow Cytometry Analyses Suggest That Monocytes and Plasmacytoid DC (pDC) Antiviral
Capacities Are Preserved in HESNs When Compared to HIV-Infected CSWs

An assessment of ex vivo intracellular IFN-α expression levels demonstrates a sig-
nificant increase by all monocyte populations from HESNs, and a trend for early HESNs
when compared to monocytes from women of the general population (Figure 6A–D). Lin-
ear regression analyses show that this expression profile seems to drop with increasing
years of sex work above 12 years (Figure 6E–H). We have taken advantage of our staining
cocktails to track pDC relative frequencies (Figure 7A), and their HLA-DR expression levels
(Figure 7B), CD83 expression levels (Figure 7C), and ex vivo intracellular IFN-α expression
levels (Figure 7D) in the blood of HESNs and controls. We find that the latter is significantly
elevated in HESNs when compared to HIV-infected CSWs (Figure 7D). This is in contrast
to that observed for monocyte populations, whereby ex vivo intracellular IFN-α expression
levels were not diminished for HIV-infected CSWs, the pattern clearly showing dichotomy
amongst this group when compared to HESNs (Figure 6A–D). These results demonstrate
that monocytes and pDC from HESNs, and to some extent early HESNs, are endowed with
antiviral capacities, which are likely to contribute to their battle against HIV infection.
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Figure 6. Flow cytometry analyses of IFN-α expression levels by live blood monocyte popula-
tions. (A–D) Levels of expression of ex vivo IFN-α proteins, as determined by geometric mean
fluorescence intensity (GeoMFI), by (A) CD14+ total, (B) CD14+CD16− classical, (C) CD14+CD16+
intermediate, and (D) CD14low/dimCD16++ non-classical monocytes. Data are presented as the mean
value ± SD of samples from 7 non-CSWs HIV- (HIV-1-uninfected control women from the gen-
eral population), 9 CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”), 11 HESNs
(HIV-1-uninfected ≥ 10 years CSWs), and 9 CSWs HIV+ (HIV-1-infected CSWs). Significance
levels are shown as * (p < 0.05), ** (p < 0.01), *** (p < 0.001). (E–H) Linear regression analy-
ses are shown for CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”) and HESNs
(HIV-1-uninfected ≥ 10 years CSWs).
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Figure 7. Flow cytometry analyses of pDCs. (A) pDC relative frequencies were calculated vs.
total live PBMCs, (B) HLA-DR, (C) CD83, and (D) ex vivo intracellular IFN-α expression levels as
determined by geometric mean fluorescence intensity (GeoMFI). Data are presented as the mean
value ± SD of samples from 7 non-CSWs HIV- (HIV-1-uninfected control women from the general
population), 9 CSWs HIV- (HIV-1-uninfected 2.5–5-year CSWs “early HESNs”), 11 HESNs (HIV-1-
uninfected ≥ 10 years CSWs), and 9 CSWs HIV+ (HIV-1-infected CSWs). Significance levels are
shown as * (p < 0.05). (E–G) Linear regression analyses are shown for CSWs HIV- (HIV-1-uninfected
2.5–5-year CSWs “early HESNs”) and HESNs (HIV-1-uninfected ≥ 10 years CSWs).

4. Discussion

We have characterized the blood monocyte compartment of Beninese HESNs and
relevant controls (“early HESNs”, HIV-infected CSWs, low-risk HIV-negative women
from the general population). Based on previous observations [3–5], we have herein
concentrated our efforts on expression profiles of genes and proteins associated with effector
functions, protection/control against HIV, antiviral capacities, and with tolerogenicity and
immune regulation. Together, our transcriptomic and flow cytometry analyses provide
strong evidence that total blood monocytes of HESNs are endowed with a unique profile
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suggestive of distinct effector, protective, and regulatory capacities when compared to the
other groups.

Interestingly, a gene signature associated with partial protection in several non-human
primates (NHP) vaccine trials [28] was recently reported in a human trial using the par-
tially protective human RV144 vaccine regimen when compared to the non-protective
human HVTN 505 vaccine regimen [30]. This enriched gene signature is associated with a
decreased risk of HIV acquisition and increased vaccine efficacy. Importantly, transcrip-
tomic analyses of PBMCs from vaccinees with the RV144 regimen [29] show that this
gene signature is primarily expressed by myeloid cells, and especially monocytes, and
involves molecules associated with effector functions, such as antibody-dependent cellular
phagocytosis (ADCP), suggested to be a potential mechanism of vaccine protection. As
such, robust ADCP responses were reported in the South-African RV144 vaccine trial [31].
In line with these observations, our data show that monocytes from HESNs present an
increased expression of distinct FcRs as well as complement and scavenger receptors, all
of which are solicited in the course of ADCP [32]. It is thus mandatory that we explore
ADCP efficiency in our cohort. Of interest, HESNs present increased transcripts for the
FCGR2C gene, encoding a low-affinity IgG FcR, which polymorphisms were shown to
associate with HIV protection in the Thai RV144 vaccine trial [33]. Intriguingly, when a
similar vaccine regimen was tested in South Africa in the HVTN702 trial, an allele shown
to be protective in Thai vaccinees was rather significantly associated with increased odds of
disease progression [34]. The Thai and South African populations are distinctly different at
the FCGR2C gene locus [33,34], and whether polymorphisms confer protection in Beninese
HESNs is of major interest and needs further attention.

Unlike monocytes from HESNs, we show that those from HIV-infected CSWs rather
present increased gene transcripts for IgG-activating FcRs such as FCGR1A, FCGR2A, and
FCGR3A, and this possibly reflects the overall inflammation we previously described for
these individuals [2]. Consistently, upon assessment of CD16 surface expression levels
(FCGR3A), we find non-classical monocytes from HESNs present lower levels when com-
pared to that of HIV-infected CSWs, however still present significantly elevated when
compared to women from the general population. This is compatible with our findings
with blood NK cells of HESNs, which bear elevated surface levels of CD16 [35]. CD16
is required for antibody-dependent cell cytotoxicity (ADCC) by NK cells [36] and has
been shown to be indispensable for ADCC activity by monocytes [37]. Interestingly, blood
derived from IgG1- and IgG3-mediated ADCC activity toward the HIV Envelope (Env)
V1V2 region was shown to correlate with protection in the Thai RV144 trial [38,39]. We
could speculate that HESNs have strong ADCC capacities, which could contribute to their
protection against HIV infection. However, when using highly sensitive and HIV-1 specific
assays, we found no HIV-1 specific IgG mediating ADCC or neutralizing activities in
the blood or genital samples of Beninese HESNs in contrast to HIV-infected CSWs [40].
It is possible, however, that ADCC activities in HESNs are mediated by IgG endowed
with cross-reactivity, that were discarded for our assays. As such, we have detected some
IgG1 with HIV Env gp41 subunit reactivity in genital samples of Beninese HESNs [41],
which could be derived from cross-reactive, possibly first-line B-cell pools, as most gp41
Abs are known to cross-react with microbiota [42]. These observations may imply that
natural immunity to HIV in Beninese HESNs is not mediated by HIV-1 highly-specific IgG
neutralizing or ADCC responses, and may involve other Abs and/or responses, such as
ADCP as stated above, that can confer some level of protection, as is now being suggested
by a growing body of evidence [43–45].

As such, it was shown that in certain RV144 vaccinees, non-neutralizing IgA blocked
in vitro binding of HIV Env glycoproteins to Galactosylceramide (GalCer), and mediated
in vitro ADCP by monocytes [46]. In addition, it was recently shown that the gp41-specific
broadly neutralizing antibody 2F5 under the IgA isotype (2F5-IgA), which triggers ADCC
and cooperates with 2F5-IgG to increase HIV-1-infected cell lysis [47], induces ADCP not
only of gp41-coated beads but also of primary HIV-1-infected cells in a FCRA1-dependent
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manner [48]. Although we report that monocytes from HESNs distinctively express in-
creased gene transcripts for the IgA FcR FCRA when compared to the other groups, we
did not assess HIV-1 reactivity of IgA in the blood of Beninese HESNs. Moreover, upon
assessment of genital samples, we could not detect substantial IgA1 or IgA2 reactivity to
HIV Env in HESNs [41]. To date, studies have reported contradictory results regarding
anti-HIV-1 specific IgA responses in various cohorts with HESNs [2]. Discrepancies are
likely to result from factors, such as the relatively small sample size and/or the different
techniques used to detect Env-reactive Abs. In addition, the fact that most genital Igs are
found in the mucus [49], may preclude substantial detection of certain Ig isotypes in genital
samples. It is thus mandatory that we deploy further efforts in order to better characterize
IgA reactivity in blood and genital samples from Beninese HESNs.

Overall, our data suggest that particular functional features of monocytes are likely
to contribute to protection in Beninese HESNs. However, factors such as genetics, inflam-
matory status, opsonization length, frequency, and type of other phagocytes, as well as
combination of expression of FcR and complement receptors, scavenger receptors, antibody
specificity, isotype, subclass, and glycoforms may all influence the outcome of functional
responses [32], and deserve further investigation.

Along with increased ADCP potential, the RV144-associated gene signature also
showed that SEMA4A, SLC36A1, SERINC5, IL17RA, CTSD, CD68, and GAA were the most
protective genes, and mostly expressed by monocytes [29]. This prompted us to investigate
the levels of expression of these genes in our total monocyte RNA-Seq data bank. We found
that along for the scavenger receptor CD68 (Figure 1), CTSD, and GAA (Figure S3) tran-
scripts were significantly or tended to be increased, respectively, in monocytes from HESNs
when compared to women from the general population. Moreover, gene transcripts for
SERINC5 and GAA were significantly or tended to be increased, respectively, in monocytes
from HESNs when compared to HIV-infected CSWs. Interestingly, TNFSF13, the gene
encoding A proliferation-inducing ligand (APRIL), was found to be of the most protective
genes in the NHP trials [28], and we found the expression levels of this gene to be increased
in monocytes from HESNs when compared to the other groups. Of interest, APRIL has
been associated with slower HIV disease progression in LTNP [50]. Therefore, our data
suggest that natural immunity to HIV in HESNs shares some highly protective features
elicited by vaccine regimens known to confer some level of protection in humans and NHP.

Our observations also suggest that the differential molecular profile of blood mono-
cytes from HESNs reflects regulated functions, which is compatible with our previous
observations in the FGT of these individuals [5]. As such gene transcripts encoding IL-10,
as well as transcription factors involved in regulation of IL-10 such as BHLHE40 [51],
recently shown to confer protection in the NHP trials [28], and Ahr [52] were increased in
monocytes from HESNs when compared to the other groups. Importantly, gene expression
levels of NR4A1 were most pronounced for HESNs, as were those of NR4A2 and NR4A3
when compared to the other groups. The elevated expression levels of NR4A1-3 may allow
for more regulated functions, as has been found for Tregs [53], and non-classical monocyte
populations [14,15]. Furthermore, we have recently described that marginal zone precursor
(MZp) B-cells highly express NR4As and are endowed with a Breg function, which involves
CD83 signaling [18]. CD83 being a regulatory molecule [54], with its expression directly
modulated by NR4As [55]. Growing evidence support that expression levels of NR4As
are affected in pathogenic contexts [56], and synthetic regulation of NR4As expression is
currently used for treating patients with certain leukemia/lymphomas [57] and could be
envisaged for immunomodulatory purposes. In this view, it has been shown that increasing
NR4A1 expression levels lead to diminished MoDC and T-cell activation profiles [58].

The increased NR4A1 gene transcripts we found in total monocytes from HESNs is
consistent with the elevated frequencies of intermediate and non-classical populations, and
their elevated NR4A1 protein expression levels [14,15]. However, in contrast to NR4A1
gene expression, these latter features were also observed for early HESNs and HIV-infected
CSWs when compared to women from the general population. NR4As are early-induced
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transcription factors in response to a multitude of activating stimuli, and observations on
gene transcripts vs. protein expression may involve several contributing factors [59], of
which the identification is out of the scope of the present study.

Frequencies of intermediate/non-classical monocytes are expanded in blood in the
context of several infectious diseases including HIV infection [12], and possibly frequent
HIV exposure as suggested by our data. Moreover, this is also reported in the context of
malaria [60], which is endemic in Benin and may help at the interpretation of our findings.
Intermediate monocytes appear to bear elevated antigen presentation and inflammatory
potential [61], while non-classical monocytes are known to sense nucleic acids and viruses
via TLR7 and TLR8, and are important sources of CCL3, CCL5, and IFN-α [62,63]. They also
have the capacity to generate anti-inflammatory tolerogenic responses via HLA-G/ILT4 [63].
These are consistent with our findings with HESNs. Although our RNA-Seq analyses show
that gene transcripts encoding total HLA-G and LILRB2 (ILT4) are more pronounced in
monocytes from HIV-infected CSWs when compared to HESNs, analyses by flow cytometry
show significantly elevated expression levels of total HLA-G by all monocyte populations
from HESNs, when compared to HIV-infected CSWs. This is consistent with the high levels
of released soluble HLA-G, which we found in the blood of HIV-infected CSWs from the
same cohort [64].

We believe alterations in the ratios of monocyte populations may dramatically influ-
ence MoDC-mediated immunity. In human, there are contradictory results as to whether
non-classical monocytes differentiate into macrophages [65] or MoDCs [66] in vitro. MoDCs
derived from non-classical monocytes presented a differential transcriptomic signature and
expressed CD103, RALDH2, and TCF4 typical of mucosal DCs thought to play a role in
mucosal homoeostasis [66]. Furthermore, in a model of transendothelial migration [67],
non-classical monocytes preferentially acquired DC features. Suggesting that the elevated
frequencies of non-classical monocytes bearing a regulatory/tolerogenic profile may confer
an advantage to HESNs, by generating MoDCs with similar features.

The events involved in increasing frequencies of intermediate and non-classical mono-
cytes presenting effector/regulatory and antiviral profiles in the blood of HESNs have
yet to be determined and are likely to be multifactorial. As a result of the cross-sectional
design, the present study cannot address whether the blood monocyte profile of HESNs
has a protective role against HIV infection. Although comparison between HESNs and
early HESNs, of which the sex work period goes from 2.5 to 5 years, controls to some
extent the effects of sex work itself on monocyte immunology, a sex work period of four
years was previously considered enough to confer an HESN status. We prefer to design
these individuals as potentially evolving towards an HESN status. The total monocyte
gene expression profile of these early HESNs differed from that of HESNs, and the flow
cytometry analyses showed variation in time for certain markers, however the overall
regulatory/tolerogenic profile was attributable to HESNs. Longitudinal studies and fur-
ther phenotypic and functional characterizations are required to confirm markers with
a protective role. Based on our observations, the differential molecular profile of blood
monocytes from HESNs reflects enhanced effector, antiviral and regulatory functions, and
seems concomitant with natural immunity against HIV. Harnessing such populations could
lead to novel preventive strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Flow-cytometry analyses of CX3CR1, CCR2 and CD83 expression levels by live blood monocyte
populations, Figure S3: RNA-Seq analyses of gene transcripts highly associated with protection in
vaccine regimens; Table S1: RNA-seq p-values for t-test statistical analysis between each group.
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