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In early preclinical drug development, potential candidates are tested in the
laboratory using isolated cells. These in vitro experiments traditionally involve
cells cultured in a two-dimensional monolayer environment. However, cells
cultured in three-dimensional spheroid systems have been shown to more
closely resemble the functionality and morphology of cells in vivo. While
the increasing usage of hepatic spheroid cultures allows for more relevant
experimentation in a more realistic biological environment, the underlying
physical processes of drug transport, uptake and metabolism contributing
to the spatial distribution of drugs in these spheroids remain poorly under-
stood. The development of a multiscale mathematical modelling framework
describing the spatio-temporal dynamics of drugs in multicellular environ-
ments enables mechanistic insight into the behaviour of these systems.
Here, our analysis of cell membrane permeation and porosity throughout
the spheroid reveals the impact of these properties on drug penetration,
with maximal disparity between zonal metabolism rates occurring for
drugs of intermediate lipophilicity. Our research shows how mathematical
models can be used to simulate the activity and transport of drugs in hepatic
spheroids and in principle any organoid, with the ultimate aim of better
informing experimentalists on how to regulate dosing and culture conditions
to more effectively optimize drug delivery.
1. Introduction
The discovery of potential toxicity in vitro remains an important process in
providing preclinical safety assurances during drug development. However,
conventional two-dimensional in vitro experiments, such as monolayer cell cul-
ture, tend to be poorly predictive of toxicity, and emerging three-dimensional
systems are shown to be more physiologically relevant and predictive of the
in vivo environment [1,2]. Accordingly, three-dimensional cell culture systems
such as multicellular spheroids are increasingly being used in drug development
and hepatic safety assessment [3,4]. Although three-dimensional spheroid
systems offer improvements in terms of physiological relevance and in vivo-
like functionality, the mechanistic interaction between these systems and drugs
is not yet fully understood.

Multiscale in silicomethods can improve the application of three-dimensional
spheroid models to assess the hepatotoxicity of drug candidates [5,6]. Indeed,
mechanistic mathematical modelling of drug metabolism and transport in
three-dimensional microtissues is important for the pharmaceutical industry as
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it facilitates an improved platform for both preclinical drug
development and in vivo extrapolation [7]. This utilization of
mathematical models, devised to tackle pharmacological
research challenges in a systems biology approach, has
become known as part of the evolving field(s) of systems
pharmacology and/or systems toxicology [8,9]. This approach
is a multiscale, multidisciplinary field that employs holistic,
integrative methods in order to enhance the understanding
and prediction of emergent system properties. Moreover, this
methodology is strictly quantitative requiring the integration
of quantitative data and modelling to develop mechanistic
knowledge of the system and reveal pharmacological and
toxicological properties. Consequently, systems pharmacology
models are becoming an increasingly important part of the
toolkit to improve capabilities and drive innovation for
in vitro safety assessment [10–12].

In this study, we have characterized the spatio-temporal
dynamics of drugs in an in vitro hepatic spheroid system by
simulating relevant physical processes in silico. A data-driven,
multiscale, mathematical modelling framework combining
mechanistic information relating to the diffusion, transport
and metabolism of chemical species in a hepatocyte spheroid
is presented. A microscale single-cell model is analysed to
study different transport mechanisms by varying boundary
conditions on the cell membrane. This model is then coupled
to amulticellularmodel developed to evaluate the effects of cel-
lular arrangement and density on the transport and penetration
of drugs, simulating the in vitro microtissue environment.
Such effects include a nonlinear relationship between drug
lipophilicity and spheroid penetration, whereby drug delivery
to the spheroid core is minimized for drugs of intermediate
lipophilicity. The integration of experimental data allows for
the development of realistic geometries and parametrization
of the multiscale model for a range of drugs. Ultimately,
by accurately simulating the processes of drug transport
and metabolism we aim to enhance the understanding of
underlying mechanisms and optimize the use of these
systems in vitro.
2. Material and Methods
2.1. Microscale transport: crossing the cell membrane
To simulate the distribution of drugs throughout a three-
dimensional tissue comprisingmultiple hepatocytes, it is necessary
to determine how drugs penetrate and cross the cell membrane.
This membrane comprises a phospholipid bilayer, providing a
hydrophobic protective barrier for the cell. Consequently, this
chemical barrier property is a key determinant in the effective
permeability of any drug. Many factors affect drug permeability
in tissues such as ionization, aqueous diffusion between lipid
barriers and protein binding, but the partition into the membrane
(determined by lipid solubility) is one of the most important [13].
Highly lipophilic substances can more readily penetrate the
membrane via free diffusion, while relatively hydrophilic sub-
stances (highly soluble in polar solvents such as water or blood)
cannot enter the cell easily and require specific transporters
(figure 1a). The relative role of transporter proteins in intracellular
drug transport is still debated and there remain different views as
to whether passive diffusion or carrier-mediated transport is the
major mechanism [14–18]. For the entirety of this study, we refer
to the two main types of transport: passive diffusion—entering
cells down a concentration gradient directly through the mem-
brane (passive) and carrier-mediated transport—entering cells
via specific transporter proteins embedded in the plasma
membrane (passive or active).

The mathematical representation of microscale drug transport
across a cell membrane can be studied with a simple model con-
sidering the processes governing drug concentration dynamics
in two phases, inside and outside the cell, with a permeable
barrier in between. Once inside the cell, the drug is removed via
metabolism. We assume diffusion occurs at different rates inside
(DI) and outside (DE) the cell, which we initially assume is
spherical of radius R, but relax this assumption in §2.3. The
drug concentration (C ) dynamics inside the cell are given by
the partial differential equation (PDE)

@C
@t

¼ DIr2C� VmaxC
Cþ Km

, ð2:1Þ

where Vmax is the maximummetabolic rate and Km represents the
drug concentration at which metabolism is half maximal. Since
there is no flow within the in vitro system, and the dominant
form of removal within the multiscale model is assumed to be
due to intracellular metabolism, we assume that outside the cell
drug transport is governed by diffusion processes only

@C
@t

¼ DEr2C: ð2:2Þ

For simplicity, we assume that the problem is radially symmetric
and rescale the model with respect to cell radius and internal
diffusion time (such that the cell boundary is now given by r = 1)
to give

@C
@t

¼ 1
r2

@

@r
r2
@C
@r

� �
� VmaxC
Cþ Km

, r � 1 ð2:3Þ

and

@C
@t

¼ D
r2

@

@r
r2
@C
@r

� �
, r . 1, ð2:4Þ

whereD =DE/DI due to rescaling (see supplementarymaterial for
details). We impose the following boundary conditions at the cell
centre (r = 0), for radial symmetry, and a distance away from the
cell (r = rmax)

@C
@r

¼ 0, r ¼ 0 ð2:5Þ

and

C ¼ Crmax , r ¼ rmax, ð2:6Þ
where Crmax is a constant supply term. Assume that the flux at the
cell boundary is equal such that mass is conserved, i.e.

DI
@CI

@r
¼ DE

@CE

@r
, r ¼ 1, ð2:7Þ

where CI and CE are used to distinguish between interior and
exterior drug concentrations at the cell membrane boundary. A
further boundary condition must be specified at the cell mem-
brane boundary in order to solve the coupled PDE system and
investigate the effects of different means of drug transport.
2.1.1. Passive diffusion
The following boundary condition is imposed to describe the
flux of drug into the cell due to passive diffusion:

DI
@CI

@r
¼ DE

@CE

@r
¼ Q(CE � CI), r ¼ 1, ð2:8Þ

where Q is the permeability coefficient. The mathematical model
can be solved numerically in Matlab R2017b. For methodological
details regarding derivations, numerical solutions and simulations
of microscale transport, see the electronic supplementary material.
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Figure 1. Modelling transmembrane transport in a single cell. (a) Drug transport schematics across the cell membrane. Two modes of transport are considered,
passive diffusion ( pink substrates/circles) and carrier-mediated transport (green substrates/circles). Drugs that permeate the cell via passive diffusion move down a
concentration gradient directly through the membrane and are limited by their associated permeability coefficient. This coefficient is dependent on the physico-
chemical properties of the drug, and drugs which cross the membrane via this mechanism are typically small and lipophilic. Other drugs may require the action of
specific membrane-bound transporter proteins to enter the cell (carrier-mediated transport). In this study, it is assumed that this mechanism is dependent on carrier
proteins/receptors (depicted in cyan) which can reversibly bind to the substrate and undergo conformational changes to transport the substrate across the mem-
brane. Species within the figure are annotated with symbols related to mathematical models described in the main text and supplementary material. (b) Variation in
the permeability coefficient determines the steady-state concentration profile of drug concentration in a single cell for the passive diffusion transport mechanism.
Low permeability results in a discontinuity at the cell membrane ðD ¼ 2, Vmax ¼ 10, Km ¼ 0:5, Crmax ¼ 1Þ. (c) For specific parameter choices within the carrier-
mediated transport model, a steady-state can be reached such that the drug is transported against its concentration gradient, implicitly simulating an active process
ðD ¼ 2, Vmax ¼ 1, Km ¼ 0:5, Crmax ¼ 1, T0 ¼ 1, a1 ¼ 0:5, a2 ¼ 1, a3 ¼ 0, a4 ¼ 0, a5 ¼ 0Þ. Full spatio-temporal dynamics can be found for (b) and (c)
in supplementary animations.
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The impact of the permeability coefficient, Q, on the steady-
state distribution of drug concentration can be seen in figure 1b
(for temporal dynamics, see electronic supplementary animations).
For low permeability coefficients (Q≪ 1), there is less drug
penetration per unit time and so there is a low steady-state value
inside the cell and a large discontinuity at the cell membrane. As
Q increases, relatively more drug enters the cell per unit time and
in the limit, as Q→∞, the steady-state solutions converge such
that the drug concentration profile is continuous (CE =CI) at the
cell membrane boundary (which now provides no effective barrier
or resistance) and the steady-state profile represents the balance of
supply via diffusion and removal via intracellular metabolism.

2.1.2. Carrier-mediated transport
For drugs whose physico-chemical properties prohibit direct
permeation across the cell membrane, specific transporter proteins
are required that can mediate the transfer process. The reliance
on transporter (or carrier) proteins dictates that the flux is now
saturable with an explicit dependence on the surface area concen-
tration, binding affinities and activity of transporters in the cell
membrane. In this scenario, the boundary condition representing
membrane transport cannot be sufficiently represented by the pas-
sive diffusion condition in equation (2.8) and so we implement a
simple carrier model as applied in other similar physiological
membrane transport models, e.g. Keener & Sneyd [19] and
Wood & Whitaker [20]. This carrier model can be applied
to define the flux boundary condition for the carrier-mediated
transport model scenario

DI
@CI

@r
¼ T0(CE � a1CI)

a2 þ a3CE þ a4CI þ a5CECI
, r ¼ 1, ð2:9Þ

where T0 represents transporter protein concentration on the cell
membrane and α1, α2, α3, α4 and α5 represent algebraic expressions
dependent on kinetic rates in the carrier model such as binding
rates (see electronic supplementarymaterial formore information).

The barrier effect provided by the carrier-mediated transport
of drugs across the cell membrane allows for a discontinuity in
the steady-state profile of the drug concentration distribution
when there is a constant external supply that diffuses towards
a metabolically active cell (as before with the passive diffusion
case with low permeability). Indeed the carrier-mediated trans-
port condition can be reduced to the passive diffusion
condition mathematically with appropriate parametrization
(e.g. T0 =Q, α1,2 = 1, α3,4,5 = 0). Furthermore, the flexibility of the
carrier-mediated condition facilitates the implementation of
implicit active processes whereby the flux of drug can move
uphill against its concentration gradient (e.g. figure 1c). This
can be achieved with appropriate parametrization of the
simple carrier model such that α1 < 1, e.g. when binding
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affinity/dissociation in the interior is lower/higher than exterior
binding/dissociation.

2.2. Parametrization
For the full multiscale model, describing the transport and
metabolism of drugs in a multicellular in vitro environment, it
is useful to include quantitative, dimensional parameter values
based on experimental data to directly represent the laboratory
scenario for drugs with a range of physico-chemical properties.
Therefore, it is important to identify relevant parameter ranges
for the microscale model before upscaling the problem to the
multicellular/tissue level by introducing hepatic spheroid geo-
metry. There are currently three key processes that determine
drug dynamics in our system and require parametrization: diffu-
sion, metabolism and permeation. For simplicity and more
general applicability, we will focus on the passive diffusion
case and not cover carrier-mediated transport during analysis
of the multicellular model.

2.2.1. Diffusion of small-molecule drugs
Most drugs, and nearly all drugs that cross the cell membrane via
passive diffusion, are categorized as small-molecule drugs. These
are low molecular weight (MW) compounds and comprise most
drugs on the market today [21]. For a sample database of 321 such
drugs [22], we calculated diffusion coefficients based on physical
measurements of weight and density (MW approx. 100–1200 Da;
density approx. 0.6–2.6 g m−3). Thus, we propose the feasible diffu-
sion coefficient range of approximately 5 × 10−10 to 1 × 10−9 m2 s−1

(further information in the electronic supplementary material).
This narrowrange supports theassertion that themaindeterminants
of drug disposition are the ability to translocate across hydrophobic
diffusion barriers (permeability) and chemical transformation
(metabolism), while variations in the aqueous diffusion rate
have only minor effects on overall pharmacokinetics [13].
A representative value of 7.5 × 10−10 m2 s−1 for both DI and DE

will be considered as default for further simulations.

2.2.2. Permeability as a function of lipophilicity
The permeability of a drug transported via passive diffusion is
related to its lipophilicity, a measurable physico-chemical property
that can be used to define our permeability coefficient,Q. Ménochet
et al. [23,24] discovered a log-linear relationship for hepatic uptake
between passive diffusion clearance, Pdiff, and lipophilicity

logPdiff ¼ 0:6316� logD7:4 � 0:3143, ð2:10Þ
where Pdiff has units of μl min−1 10−6 cells and logD7.4 is a partition
coefficientmeasure of lipophilicity at a physiologically relevant pH
(pH 7.4). This relationship allowed us to derive,Q, as a function of
Pdiff, and the radius of the cell, R, by taking into account passive
uptake across the whole-cell membrane of surface area 4πR2:

Q ¼ Pdiff

4pR2 ¼
1
106

10(0:6316� logD7:4�0:3143)

4pR2 : ð2:11Þ

For the full derivation, see the supplementary material. logD7.4

values between 1 and 5 are considered within this study to
represent relatively lipophilic, small-molecule drugs (relevant for
passive diffusion), with logD7.4 = 3 as default.

2.2.2. Simplified drug metabolism in hepatocytes
Metabolism represents the principal sink/removal term in our
model and the metabolic rate is likely to vary greatly depending
on the chemical makeup of the drug of study, as well as the quan-
tity and activity of metabolizing enzymes present. Therefore, this
term is likely to have a significant impact on the overall disposition
of drug concentration in a metabolically active in vitro spheroid
system. Metabolic rates are assumed to be independent of space
in the model for simplicity, although zonal variation may exist.
Brown et al. [25] reported kinetic parameters for a range of com-
pounds to predict metabolic clearance by using cryopreserved
human hepatocytes. This publication provided pharmacologically
feasible Vmax (5 × 10−6 to 4.5 × 10−1 mol m−3 s−1) and Km (5 × 10−4

to 1.4 × 10−1 mol m−3) ranges for drugs primarilymetabolized in the
liver and were thus used as conservative guidance for this model
parametrization, given that cells cultured in three-dimensional
often display improved drug metabolism functions. As default,
we consider parameter values of Vmax = 5 × 10−3 mol m−3 s−1 and
Km= 1×10−2mol m−3.

2.3. Macroscale: hepatocyte spheroid geometry
The impact of the hepatic spheroid environment on drug transport
is considered by upscaling our microscale model to consider
multiple discrete cells in a realistic spheroid geometry within an
extracellular space (culture medium). This hepatocyte spheroid
geometry was generated based upon histological staining of hepa-
tic spheroids to provide representative cell sizes, number, and
arrangement thereby replicating the in vitro scenario within the
multiscale mathematical model.

2.3.1. Mathematical description of spheroid geometry
Histological staining of a hepatocyte spheroid revealed the spatial
distribution of the cell nuclei within a section (figure 2a). This
spatial information, as well as the spheroid boundary, was quan-
tified digitally with WebPlotDigitizer [26] and imported into
Matlab. Owing to the abundant expression of extracellular
matrix in the hepatic spheroid histological images, it was not poss-
ible to visualize and/or quantify the location of the hepatocyte
membranes. Therefore, we estimated the location of cell bound-
aries using Voronoi tessellation (figure 2b). Briefly, Voronoi
tessellation involves assigning regions to each nucleus such that
any point in space within that region is closer to that nucleus
than any other. The boundaries of these regions can be deter-
mined by drawing perpendicular bisectors between adjacent
pairs of nuclei. This technique has been shown to provide viable
estimates for the qualitative morphology of cells in a tissue [27].

Cellular ultrastructure was visualized by transmission elec-
tron microscopy (TEM). TEM revealed that the space between
hepatocytes was narrow (approx. 0.1–0.5 µm, figure 2c). These
values are supported by the literature which states intercellular
spaces from 100 nm to the µm scale [28,29]. Furthermore, it
should be noted that fixation methods can shrink such morpho-
logical features [30] and therefore we consider both narrow and
wide intercellular space geometries. This was achieved by con-
tracting the vertices of each model cell towards the cell’s
respective centre of mass by 1% (‘narrow’, approx. 0.2 µm) or
10% (‘wide’, approx. 2 µm) (figure 2d ).

2.3.2. Experimental methods
Primary rat hepatocyte spheroids with an initial seeding density
of 5000 cells were produced using the liquid-overlay technique as
described by Kyffin et al. [31]. After 11 days in culture, the spher-
oids were washed in phosphate-buffered saline, fixed in 4%
paraformaldehyde and subjected to routine histological proces-
sing before staining with haematoxylin or processed for TEM
analysis. For TEM imaging, spheroids were fixed in 3% glutaral-
dehyde and processed as previously described [31]. Ultrathin
(approx. 70–90 nm) sections were examined using an FEI
Tecnai Transmission Electron Microscope at an accelerating
voltage of 80 kV and images taken using a Gatan digital camera.

2.3.3. Numerical simulation
The finite-element simulation software, COMSOL Multiphysics®
5.3, was used to solve the multiscale model PDEs. The
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two-dimensional spheroid slice geometry was imported into
COMSOL and the PDEs were defined as before to calculate the
dynamics of drug concentration, C, for two separate phases
(intracellular, CI, and extracellular, CE):

@CI

@t
¼ DIr2CI � VmaxCI

CI þ Km
, C ¼ CI ð2:12Þ

and

@CE

@t
¼ DEr2CE, C ¼ CE, ð2:13Þ
with boundary conditions at every cell membrane within the
spheroid,

(DIrCI) � n ¼ (DErCE) � n ¼ Q(CE � CI), ð2:14Þ

for the general inward fluxes, where n is the unit normal vector
pointing out of each cell. An illustrative example of the multi-
scale model steady-state with a constant supply of drug at the
outer boundary of the media phase ðCrmax ¼ 500 mMÞ can be
seen in figure 2e, simulated for a drug with physico-chemical
properties based on the default parameter set described above.
Note that permeability Q is related to logD7.4 according to
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equation (2.11). A one-dimensional cross-section is plotted in
figure 2f for visualization, highlighting the discontinuities
in drug concentration between intra- and intercellular space
and the heterogeneity in drug concentration between cells in
different regions.
3. Results
3.1. Impact of drug permeability on spatio-temporal

distribution throughout spheroid
The diffusion rate of a drug dependsmainly on size, a property
that has minimal variation in small-molecule drugs (a detail
supported byour analysis of over 300 compounds during para-
metrization) and thus has relatively little impact upon drug
distribution when compared with the ability to translocate
across the hydrophobic diffusion barrier of the cell membrane
[13]. This translocation ability is determined by the lipophili-
city of the drug during passive diffusional transfer across
the membrane. Therefore, we consider the impact that drug
permeability (as determined by lipophilicity) has upon the
overall dynamics within the representative in vitro spheroid
system. This analysis is illustrated by simulating the model,
dosed for three example drugs with different permeability
coefficients (corresponding to logD7.4= 1, 3, 5, within the other-
wise default parameter set) via constant supply at the external
boundary and comparing the steady-state spatial distribution
of drug concentration (figure 3). Spatio-temporal dynamics
can be found in supplementary animations.

The results indicate that for highly lipophilic drugs
(logD7.4 = 5), the cell membrane does not represent a signifi-
cant barrier to drug penetration and there is relatively little
difference between drug concentrations in cells and the
intercellular space. For relatively lowly lipophilic drugs
(logD7.4 = 1), the membranes represent a significant barrier.
Drug concentration is very low within the cells but relatively
high in the intercellular space throughout the spheroid.
However, in the intermediate case (logD7.4 = 3), there is a rela-
tively little drug in the spheroid centre, both inside and
outside of the hepatocytes. This is due to the balance between
the overall processes of drug transport towards the spheroid
centre (diffusion, permeability and metabolism), impacting
penetration potential. Overall, it is clear that an increase in
permeability results in higher intracellular drug concen-
tration but there is a nonlinear response in the intercellular
space as permeability is increased, with a potential local
minimum for drugs of intermediate lipophilicity. The same
observations are made for narrow intercellular spaces and
when varying transporter expression in the carrier-mediated
transport model (data not shown). This result highlights
the potential importance of not only permeability but also
intercellular space on overall drug delivery.

3.2. Impact of intercellular dimensions on spatio-
temporal distribution throughout spheroid

Many mathematical models of cellular spheroids consider
geometrical simplifications such as radial symmetry and a
homogeneous continuumof cells. The consideration of a spher-
oid with individual hepatocytes modelled as discrete regions
in space, and accompanying intercellular space, has a visible
impact upon the radial drug concentration profile. This can
be seen most clearly in the case of low permeability
with large fluctuations in the drug concentration between
intra- and intercellular space (figure 3). There is a considerable
range of intercellular gap sizes within spheroids, a feature
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which can be magnified by fixation issues and cell type, with
tumour spheroids notoriously exhibiting higher porosities
[32]. Therefore, it is prudent to also consider the impact of
porosity (gap size) on drug delivery by simulating our model
for both narrow and wide intercellular space geometries, as
well as a model without intercellular space altogether for com-
parison. Steady-state spatial distributions in figure 4 suggest
that intercellular space has a considerable impact on drug
penetration, with increased porosity resulting in higher
drug concentration for the spheroid interior.
3.3. Translating the multiscale model to a simple
continuum model

From figure 4 it is clear that, when using quantitative, measur-
able, microscale parameters, the assumption of a homogeneous
continuumof hepatocytes in the spheroidwill be insufficient for
simulating spatial drug distributions, particularly for wider
intercellular spaces. Therefore, we consider if there are any par-
ameter modifications that can bemade such that the continuum
model can be said to sufficiently replicate the simulations
provided by the more spatially complex discretized model.
Such a model would be highly beneficial for the quantification
of drug dynamics with greater computational efficiency. For
this investigation, we compare the average behaviour of the
full discrete, multiscale, dimensional model (cell-based model)
with the idealized radially symmetric, homogenized sphere
model (continuum model) in two-dimensional (cylindrical
coordinates) given by

@CS

@t
¼ DEff

I

r
@

@r
r
@CS

@r

� �
� VmaxCS

CS þ Km
, r � RS ð3:1Þ

and

@CO

@t
¼ DE

r
@

@r
r
@CO

@r

� �
, r . RS, ð3:2Þ

where CS and CO represent spheroid and outer drug concen-
trations, respectively, and RS = 135 µm (the average radius
of the hepatocyte sphere slice in figure 2), with boundary
conditions

DEff
I

@CS

@r
¼ 0, r ¼ 0 ð3:3Þ

and

DEff
I

@CS

@r
¼ DE

@CO

@r
¼ QEff(CO � CS), r ¼ RS, ð3:4Þ
for effective parameters DEff
I and QEff which represent the

parameters to bemodified. These parameters are logical targets
for the translation since they determine interior transport via
internal diffusion and translocation across cell membranes in
the cell-based model. Homogenization here can be thought
of as an extreme modification of the spheroid structure such
that we reduce the system to a very large single cell with a
single permeable membrane. The effective parameter values
of the continuum model were optimized to fit the average
behaviour of the cell-based models for both intercellular
space geometries and a physico-chemically relevant range of
permeability coefficients (corresponding to logD7.4= 1, 2, 3, 4,
5). For information regarding parameter optimization, see the
supplementary material.

The required modifications of effective parameters, both
collectively and individually as functions of drug lipophili-
city and intercellular space, are summarized in figure 5, as
well as corresponding error metrics. A combined parameter
change metric in figure 5e is introduced to quantify the rela-
tive amount of modification required for each scenario
(intercellular width and lipophilicity) and defined as

DP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEff

I �DI

DI

� �2

þ QEff �Q
Q

� �2
s

: ð3:5Þ

From figure 5, it is clear that ΔP is dominated by relative
changes in the effective permeability coefficient, QEff (compare
figure 5e with figure 5a,b). Permeability must be increased to
account for the intercellular space in the cell-based models (all
lipophilicities), i.e. QEff/Q≥ 1 for all logD7.4 (figure 5b). This
effectively makes the spheroid boundary in the continuum
model more porous (virtually simulating gaps between cells)
and the discontinuity at the spheroid boundary is reduced. It
should be noted that in the dimensional cell-based models,
while DI remains constant throughout all simulations, Q will
change dependent on logD7.4 (recall equations (2.10)–(2.11)).
This is seen in figure 5c,d with absolute changes in QEff and
Q. Permeability must be increased by a greater amount for
wider intercellular spaces to be effectively simulated by the con-
tinuum model (e.g. figure 5d) for all logD7.4. This is expected
due to the increased porosity provided by wider gaps. Finally,
effective permeability must be increased by a greater amount
for low lipophilicities. This can be seen in figure 5b where the
effective permeability QEff decreases towards the dimensional
value Q with increasing lipophilicity, for both gap sizes, in a
monotonic fashion. This reflects the increased discrepancy
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between transport through cells and transport between cells
found for drugs that are poorly lipid soluble.

In order for the continuum model to effectively simulate
intercellular space, intracellular diffusion must be decreased
for all lipophilicities, i.e. DEff

I , DI for all logD7.4 (figure 5a).
The primary effect of decreasing this parameter in the
model is to increase the gradient of concentrations within
the spheroid. For high lipophilicity and narrow intercellular
spaces, the continuum model can provide a representative
simulation of the cell-based model by reducing DEff

I alone.
This property is observed by comparing the negligible
changes in QEff relative to DEff

I at high lipophilicity and
narrow intercellular spaces. For example, when logD7.4 = 4
and 5, DI is decreased by 94 and 86%, while Q is unchanged
(figure 5a,b). Theoretically, given a high enough value of
logD7.4, this behaviour is expected for wide spaces too, but
this is beyond relevant parameter space.

Regardless of lipophilicity, the optimized continuum
model compares better with the cell-based model of narrow
intercellular gaps (figure 5f, solid lines). This is likely due to
the relatively lower amount of fluctuations in the mean
one-dimensional profiles as there is less extracellular space in
general within the spheroid. These fluctuations represent the
local drug concentration variation at the cellular scale due to
discrepancies between intra- and extracellular phases, which
can be very high for drugs that are poorly lipid soluble (e.g.
figure 3 one-dimensional profiles). Prior to any optimization
and rescaling of dimensional parameters to their effective
counterparts ðDI ! DEff

I , Q ! QEffÞ, there was a clear pattern
in the fit quality between the simple continuum model
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approximation and the cell-based models of different sized
intercellular spaces (figure 5f, dashed lines). Generally, the
continuum model fits the narrow spaces better for low
membrane permeability and wider spaces better for high per-
meability. This feature appears to be correlated to the overall
higher intracellular drug concentrations found in spheroids
with wider spaces (since there is proportionally less transport
across metabolizing cells). The (pre-optimized) continuum
model exhibits very low drug concentration within the spher-
oid at low permeability and so fits the narrow-spaced model
better. At higher permeabilities, the continuum model has
relatively high interior concentration and so fits the wide
spaced cell-based model better (electronic supplementary
material, figure S1). This switch in behaviour is likely due to
the continuum model only providing a single barrier to
permeation (spheroid boundary), which, once penetrated,
facilitates drug penetration via diffusion solely.

Interestingly, figure 5e indicates that the cell-based model
with wider intercellular spaces requires more parameter modi-
fication for all drug lipophilicities. Despite the intra-spheroidal
gradients being vastly different between the (pre-optimized)
continuumand narrow cell-basedmodel at high permeabilities
(electronic supplementary material, figure S1), the boundary
intracellular drug concentrations are similar. Therefore, the
continuum model can be optimized via sufficient reduction
in DEff

I while maintaining the original permeability coefficient
(QEff =Q). However, in order to simulate the wide cell-based
model, and account for different concentrations in boundary
cells, a relatively greater change inQEff was required (compare
relative changes in effective parameters at logD7.4= 4 and 5 for
DEff

I and QEff for both models, figure 5a,b).
3.4. Investigating the impact of permeability on the
dynamic process of drug delivery in different
regions of the spheroid for a bolus dose

Intercellular space has a discernible impact on the spatio-
temporal drug dynamics in the in vitro spheroid environment
and moreover, a nonlinear effect was revealed for local concen-
trations within intercellular space as permeability is increased
(figure 3). Since this phenomenon (i.e. a monotonic decrease
in intracellular drug concentration with decreasing per-
meability, but a non-monotonic response in the intercellular
regions) cannot be described by the simple continuum model,
it is worth considering the potential impact of this feature on
drug penetration. Here, we choose to examine drug delivery
and subsequent effects by calculating the total uptake/
metabolism of the drug in different regions of the spheroid.
To investigate drug delivery via metabolism, we introduce
the following ‘metabolism’ variable, M, with dynamics

@M
@t

¼ VmaxC
Cþ Km

, C ¼ CI, ð3:6Þ

which corresponds to accumulated drug metabolized and is
only relevant inside model cells. Corresponding model simu-
lations are conductedwith a finite bolus dose initially supplied
in the outermedium, uniformly distributed in the extracellular
space outside the spheroid, and zero-flux boundary con-
ditions are imposed on the outer boundary of themedia phase.

Two separate regions are defined, ‘outer’ and ‘inner’, corre-
sponding to cells of comparable size in the outer boundary
layer of the spheroid, (x, y) = (−10 µm, 110 µm), and the
spheroid centre, (x, y) = (0 µm, 0 µm). Simulations are run to
the drug-free steady-state whereby all of the initial dose has
been removed from the system and accumulated in the effec-
tive sink variable, M. For highly lipophilic drugs, the
concentration dynamics are relatively similar between inner
and outer regions as the drug is able to be transported through-
out the spheroid quickly, unrestricted by permeability.
However, the outer cells are exposed to slightly higher concen-
trations and consequently more drug is metabolized in this
region, demonstrated bysimilar rates ofmetabolism (figure 6a).
Simulations of lowly lipophilic drugs require much longer
timespans in order to reach equilibrium due to the reduced
uptake rate at the cellmembranes.However, due to the intercel-
lular transport via diffusion, even centrally located cells receive
relatively high local drug exposure and metabolize at a similar
rate to outer cells (figure 6c). It is the in silicodrugs of intermedi-
ate lipophilicity in this model scenario that exhibits the most
striking discrepancies between inner and outer cells (figure 6b).
The impact of these varying rates of metabolism between drug
lipophilicities and regions of the spheroid can be evaluated
by comparing the total drug metabolized (figure 6d). The
greatest discrepancy in drug uptake between outer and
inner hepatocytes is revealed for drugs of intermediate
permeability (1250% increase from inner to outer cells for
logD7.4 = 4 compared with just +13% for logD7.4 = 1 and
+219% for logD7.4 = 6). Furthermore, outer cells in this case
receive the most drug out of all three cases studies and the
inner cells receive the least (figure 6d). This effect can poten-
tially be exacerbated when carrier-mediated transport kinetics
are modelled at the cell membrane, due to the saturating effects
of this uptake mechanism (arbitrary transporter parametriza-
tion, data not shown). This feature has the potential to
significantly impact experimental design considerations and
in vitro drug efficacy and toxicity evaluation.
4. Discussion
The enhanced sophistication of current cell culture method-
ologies due to increasing advancements in scientific
understanding and technological developments has allowed
for in vitro studies to become more physiologically relevant.
There is a range of different in vitro models that span varying
levels of complexity, reproducibility, high-throughput potential
and cost. Spheroids represent an intermediate experimental
model that allows for increased physiological relevance over
two-dimensional monolayers due to the three-dimensional
environment, as well as more appropriate cell morphology
and functionality while remaining cost-effective, consistent
and easy to use [1]. The subsequent prevalence of liver spher-
oid cultures for studying hepatocyte behaviour in vitro is
evident and represents a key component of drug development
such that drug candidates can be tested for efficacy and toxic
potential in a three-dimensional environment with physiologi-
cal gradients [31,33–35]. Data-driven multiscale mathematical
models provide an ideal platform from which to try and
enhance mechanistic understanding of new biotechnologies
by simulating the underlying physical processes. Additionally,
the development of spatio-temporal data generated by three-
dimensional cell imaging offers tremendous opportunities for
developing, parametrizing and testing multiscale mathemat-
ical models and in response, mathematical modelling can be
successfully used to optimize these developing technologies.
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Figure 6. Impact of drug lipophilicity on uptake and metabolism in different regions of the spheroid. Metabolism rates are plotted against time as a result
of model simulations following a bolus dose of 100 µM, initially uniformly distributed in the medium for varying drug lipophilicities (logD7.4 = 6 (a), 4 (b),
2 (c)). (d ) Total metabolized drug (after complete clearance) is compared for inner and outer hepatocytes within the spheroid for a range of drug lipophilicities
(logD7.4 = 1–6).
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In this study, we developed a mathematical model of drug
transport andmetabolism in amultiscale spheroid framework,
accounting for microscale processes such as membrane trans-
port kinetics and how they relate to the physico-chemical
properties of a drug, and macroscale features such as the
geometry of a hepatocyte spheroid, informed by imaging
data. Cellular uptake of drugs was modelled by the two
major processes of transport across the cell membrane, passive
diffusion and carrier-mediated transport [17]. The carrier-
mediated transport microscale model was innately more
complex, depending on quantities such as transporter protein
expression, binding kinetics and rates of conformational
change and this complexity allowed for a wider array of
dynamic mechanisms such as enzymatic saturation and
active processes. The extensive parametrization required to
quantify the carrier-mediated transport model depends on
more compound-specific information, and so the passive diffu-
sion case became the main focus of investigations within the
generalized multiscale framework, more relevant for relatively
lipophilic compounds.

The explicit representation of individual hepatocytes
based on imaging data allowed for an investigation into the
effects of including a distinct cell-based geometry in the
model. The model suggests that steady-state intracellular
drug concentrations increase monotonically with increasing
drug lipophilicity. However, a non-monotonic relationship
was revealed between drug lipophilicity and intercellular
drug concentration (figure 3), while the width of the intercel-
lular space further impacted spatial drug distribution
(figure 4). Intercellular space geometry, or spheroid porosity,
is therefore a key physiological feature of the multicellular
structure but is both difficult to accurately quantify and
known to vary widely between cell types. This is particularly
relevant in the case of tumour-derived spheroids, whose mor-
phology tends to be more porous [32], and organoids that are
increasingly being used in efficacy testing for tumour cells
[36]. We, therefore, studied two different average intercellular
widths informed by TEM data and the literature which
suggested a range of 102–103 nm scale, with results varying
due to cell type, tumour phenotype and experimental artefacts
such as fixation [29,30,37].

While it is important to account for intercellular space
within spheroids to correctly model drug delivery, the conse-
quent increase in complexity by modelling this feature
explicitly renders detailed analytic work intractable and deriv-
ing numerical solutions is costly with respect to time and
computational power requirements. Therefore, it is appropriate
to consider the application of simplified models that consider
averaged or homogenized system behaviour and under what
conditions they can provide valid approximations [38]. We
have shown how to approximate the cell-based models using
a simple, symmetric, continuum model by reparametrizing
dimensional parameters to re-scaled effective counterparts.
For relatively narrow intercellular gaps, these approximations
are more accurate and the required parameter changes are
reduced. The differences between the models, due to the expli-
cit representation of intercellular space (porosity) within the
cell-based model, are largely accounted for by increasing the
effective permeability parameter. This increase in the effective
permeability increases the drug transport across the spheroid
boundary in the continuummodel. This is particularly impor-
tant at lower lipophilicities when permeability limitations are
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maximized. For higher lipophilicities and narrow intercellular
space, the spatially averaged dynamics of the cell-basedmodel
can be effectively simulated with the symmetric continuum
model by appropriate reductions in the effective internal diffu-
sion parameter only. Further work is required to determine the
impact of spatially varying quantities that might exist within a
spheroid such as intercellular space or transporters that vary
zonally [39], and how these might compare between conti-
nuum models and cell-based models. Metabolic rates are also
known to vary in space throughout multicellular structures
due to gradients in environmental factors such as oxygen
and glucose [40]. Alternative model simplifications that
might expedite analysis can be made by careful consideration
of potentially redundantmodel complexities such as intracellu-
lar diffusion, which may be neglected in some scenarios.
The model currently neglects any intracellular binding of the
drug for simplicity, focusing on the dominant mechanisms of
transport and removal (metabolism) that drive the spatio-
temporal dynamics. However, for specific future applications
of the model, intracellular binding could be considered by
ascertaining the relevant fraction unbound for a particular
drug, as this will lower the rate of metabolism for those
drugs which bind strongly to intracellular proteins and
nuclear structures.

The discovery of an apparent local minimum in drug
penetration, whereby intercellular concentrations are lower
for intermediate membrane permeation, motivated an investi-
gation into corresponding effects on drug delivery, uptake and
metabolism in spheroid centres for a bolus dose (figure 6). The
results of this investigation indicated that, indeed, it is feasible
to observe minimal drug uptake at the spheroid centre for
drugs of intermediate lipophilic properties (with the majority
of the drug being metabolized at the outer regions). These
mechanistic insights and modelling results have potential
impact for the dosing of spheroid systems in vitro as well as
relevance for analogous in vivo systems such as avascular
tumours. It is not necessarily sufficient to assume that increas-
ing a chemical’s lipid solubility will enhance its metabolism at
the spheroid centre. Lowly lipid soluble drugs may require a
much longer time in culture but ultimately metabolize the
drug more uniformly throughout the spheroid. Accounting
for reduced penetration due to the intermediate lipophilic
property may be alleviated somewhat by increasing the dose,
but this could have potentially toxic consequences from over-
dosing cells at the spheroid boundary. Other experimental
design options include manipulating permeability (by chemi-
cal modification or intervention, but this could potentially
further increase the divergent amounts of drug being metab-
olized in different regions of the spheroid) or using smaller
spheroids. These investigations could be conducted within
the in silico framework, in the first instance, to guide strategy.
The implications of drug delivery characteristics based on per-
meability parameters could potentially be translated to
targeting delivery in tissues of multiple cell types expressed
zonally. For example, targeting the central zone of a spheroid
that contains cells of a different phenotype (e.g. cancerous/
hypoxic) may be aided by manipulating these properties
regarding permeability, i.e. making certain that the per-
meability is either relatively high or relatively low to ensure
delivery to the spheroid centre. Validation of these in silico
investigations could involve emerging technologies such as
MALDI (matrix-assisted laser desorption/ionization)-mass
spectrometry imaging, which provide label-free mass spectro-
metric detection within tissue sections [41]. This detection
methodology is rapidly being developed to provide a quanti-
tative measure of drug penetration within a tissue/spheroid
at different time-points that could potentially be compared
with our model. The combination of mathematical modelling
with experimental imaging provides a convenient in silico
testing toolkit to optimize the use of three-dimensional cell
culture systems in the laboratory and maximize the potential
of spheroid models aiding drug discovery, toxicity testing
and dose optimization.
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