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Cardiac surgery-associated acute kidney injury (CSA-AKI) is the most prevalent
major complication of cardiac surgery and exerts a negative effect on a
patient’s prognosis, thereby leading to mortality. Although several risk
assessment models have been developed for patients undergoing cardiac
surgery, their performances are unsatisfactory. In this study, a machine
learning algorithm was employed to obtain better predictive power for CSA-
AKI outcomes relative to statistical analysis. In addition, random forest (RF),
logistic regression with LASSO regularization, extreme gradient boosting
(Xgboost), and support vector machine (SVM) methods were employed for
feature selection and model training. Moreover, the calibration capacity and
differentiation ability of the model was assessed using net reclassification
improvement (NRI) along with Brier scores and receiver operating
characteristic (ROC) curves, respectively. A total of 44 patients suffered AKI
after surgery. Fatty acid-binding protein (FABP), hemojuvelin (HJV), neutrophil
gelatinase-associated lipocalin (NGAL), mechanical ventilation time, and
troponin I (TnI) were correlated significantly with the incidence of AKI. RF
was the best model for predicting AKI (Brier score: 0.137, NRI: 0.221),
evidenced by an AUC value of 0.858 [95% confidence interval (CI): 0.792–
0.923]. Overall, RF exhibited the best performance as compared to other
machine learning algorithms. These results thus provide new insights into the
early identification of CSA-AKI.
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Introduction

Acute kidney injury (AKI) is the most frequent major complication of cardiac

surgery (1). Annually, over two million cardiac procedures are performed globally,

and the incidence of CSA-AKI ranges from 5% to 42.3% (2, 3). Cardiac surgery is the

second most frequent cause underlying AKI in the intensive care unit (ICU), resulting

in three- to eight-fold higher perioperative mortality, prolonged ICU and hospital

stay, and increased healthcare costs for patients with severe AKI (4, 5). At present,

renal replacement therapy is the only option available for patients with advanced

severe CSA-AKI due to the lack of effective therapies. Therefore, early detection of

AKI will provide clinicians with the necessary guidance for its prevention and
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management (6). Existing clinical risk assessments are based on

changes in the levels of serum creatinine (Scr) and reported risk

factors. However, these cannot accurately identify patients with

AKI due to limitations in their sensitivity and specificity, thus

resulting in missed optimal treatment timing. Accumulating

evidence focuses on novel biomarkers and clinical prediction

models to identify risk factors for AKI and improve its

diagnostic efficiency and accuracy (7–10).

Predictive models for cardiovascular surgery are critical for

patient selection, risk stratification, tailoring treatment, and

prognostic prediction. Accurate perioperative risk prediction

for complications such as AKI may help in better informing

these patients and their families of the risks and assist in

clinical management (11). Many perioperative prediction

models for AKI have been developed in recent years.

However, the general utility of these models is poor due to

differences in variable selection (7, 12, 13). Consequently,

there is neither a consensus nor guidelines recommending the

use of the existing predictive models for AKI after cardiac

surgery.

Machine learning algorithms and advanced statistical tools

can be used to predict the outcome of complex datasets based

on iterative learning, thereby making these models more

accurate and stable through the selection of variable features

(14, 15). Therefore, machine learning algorithms were used in

this study to develop and validate feature variables for

predicting perioperative AKI risk and generating robust

prediction models, in addition to traditional logistic regression

analyses. We collected the patients’ perioperative demographic

characteristics, clinical laboratory data, and intraoperative and

postoperative clinical data. Subsequently, a feature selection

machine learning strategy was used to develop multivariate

models to predict the risk of severe CSA-AKI.
Material and methods

Data sources

Patients who were admitted to the ICU (aged 18 years or

above) after cardiac surgery by cardiopulmonary bypass

(CPB) at the Department of Cardiothoracic Surgery of

Nanjing First Hospital between 1 December 2019, and 30

April 2020, were enrolled. The cardiac surgery procedures

included valve replacement, coronary artery bypass surgery,

large vessel surgery, combined surgery, and congenital heart

disease correction surgery.

The exclusion criteria in this study were as follows: (1) renal

insufficiency or acute and chronic kidney disease; (2) recent

administration of renal impairment drugs or glucocorticoid

drugs; (3) recent or postoperative concomitant urinary tract

infection; (4) preoperative hemodynamic instability, and (5)

emergency surgery.
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All patients provided written informed consent before

participating in this study. The study design was approved by

the Medical Ethics Committee of Nanjing First Hospital

(KY20190404-03-KS-01) and adhered to the Declaration of

Helsinki.
Diagnostic criteria and outcome
definitions

The outcome of interest was the occurrence of AKI during

the perioperative period. AKI was defined as follows: the

diagnosis was confirmed according to the latest diagnostic

criteria for AKI in the 2012 KDIGO guidelines (16) if one of

the following conditions was met: (1) Scr elevation ≥0.3 mg/dl

≥26.5 µmol/L within 48 h; (2) known or presumed Scr

elevation ≥1.5 times baseline occurring within seven days, or

(3) sustained six h urine volume <0.5 ml/kg/h. Baseline

preoperative Scr value was defined as the last Scr value

detected within seven days before performing cardiac surgery

with CPB.
Model development

First, support vector machine (SVM), least absolute

shrinkage and selection operator (LASSO) regression, extreme

gradient boosting (XGBoost), and Random Forest and Boruta

(RFB) algorithms were used for filtering out the crucial

clinical variables. Subsequently, the feature variables were

derived to construct and validate the model.

A stratified five-fold cross-validation was performed to

obtain the derivation and validation cohorts. The study

population was randomly classified into five subsets with

similar event rates. Four subsets (80%) were combined to

form the derivation cohort, whereas the remaining (20%) was

retained as the validation set. This process was repeated five

times for each outcome so that each subset could serve as the

validation set, thus accounting for inter-patient variability and

providing a risk estimate for all cases. Since five numerical

features (fatty acid-binding protein [FABP], NT-prBNP,

troponin I (TnI), ultrafiltration volume, and urine dropout)

had <20% missing data, predictive mean matching was used

to fill in the incomplete information.

Four common machine learning algorithms and

conventional logistic regression were employed to train the

models, including logistic regression with LASSO

regularization (logistic LASSO), logistic regression with

forwarding selection variables, RF, SVM, and xgboost. The

basic GLM functions were used for logistic regression. In

addition, packages including glmnet, randomForest, xgboost,

and e1071 were used for LASSO (17), RF (18), Xgboost (15),

and SVM (19) analyses, respectively. Logistic regression was
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performed along with forward stepwise selection to determine

the average C-index improvement for each added variable. In

high-dimensional problems, backward selection techniques

may be prone to greater noise. In contrast, forward selection

leads to strong theoretical guarantees and excellent empirical

behavior. In addition, logistic LASSO models were constructed

by five-rule cross-validation and default lambda based on

minimum classification errors. The number of trees for RF

was 1,000, with 50 perturbation counts. Moreover, the

number of trees for xgboost was 100, with a learning rate of 1

per tree, a maximum depth of 2 and trained through 50

iterations. Finally, two different kernels (linear and radial-

based functions) were used in the SVM algorithm to obtain

the separation function.
Model performance

Receiver operating characteristic (ROC) curves were used to

estimate the model’s discrimination capacity by calculating its

area under the curve (AUC). Confusion matrices were plotted

to assess the model’s effectiveness based on multiple metrics.

In addition, net reclassification improvement (NRI) was used

to assess the correct reassignment between risk categories

(20). Predictive calibration plots were used to plot the average

risk scores relative to the observed outcome rates. In addition,

the probability of the optimal performance model was

assessed using the Brier score, which was defined as the mean

squared error between the observed and predicted outcomes.

The Brier score ranges from 0 to 1.00, with the former

representing the best possible calibration. The prediction for

each patient was plotted in the order of their risk to assess

the predictive distribution of the model (15). Furthermore,

decision curve analysis (DCA) curves were plotted to assess

the discriminability of each selected factor to predict severe

CSA-AKI (21). Next, the nomogram of the optimal model

was constructed using the “rms” package in R. Finally, the

Hosmer–Lemeshow test was conducted to assess the fit of the

nomogram (22).
Statistical analyses

All graphs were plotted and analyses were performed using

the R software (version: 4.1.0). Continuous variables were

compared by two-tailed t-tests, whereas Fisher’s exact test was

used for categorical data. The significance level was set at P <

0.05 unless specified otherwise.
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Results

Patient characteristics and outcomes

A total of 215 patients underwent cardiac surgery under CPB

between December 1, 2019, and April 30, 2020, of which 135

were enrolled (the flow chart in Supplementary Figure S1

details inclusion and exclusion criteria and selection of the final

study cohort for further analyses). According to the KDIGO

clinical practice guidelines, 44 patients suffered from hospital-

acquired AKI within one week of cardiac surgery; the incidence

rate was 32.59%. Baseline characteristics of the patients are

shown in Table 1. Moreover, the non-AKI and AKI groups

included 49.5% and 65.9% of men and the median EF was

60.97% and 58.14%, respectively. The mean ICU length of stay

and mean mechanical ventilation time were longer in the AKI

group than those in the non-AKI group (3.05 vs. 1.48, P <

0.001; 21.27 vs. 9.63, P < 0.001). However, no significant

differences were observed in Cleveland clinical scores between

the two groups.
Machine learning algorithms for variable
selection

Thirty-four baseline clinical characteristics with at least 70%

complete data were considered predictors of CSA-AKI. Table 2

summarizes the simple logistic regression and ROC analyses of

clinical characteristics. Four machine learning algorithms

(LASSO, RFB, SVM, and XGBoost) were used for the entire

dataset to identify the most important clinical variables for

AKI prediction, yielding 15, 11, 16, and 18 clinical variables,

respectively (Supplementary Figure S2, detailed list is

provided in Table S1). In addition, five commonly shared

clinical features among the four algorithms were included as

variables in the final model, comprising FABP, hemojuvelin

(HJV), mechanical ventilation time, neutrophil gelatinase-

associated lipocalin (NGAL), and TnI (Figure 1A); their risk

ratios were statistically significant (P < 0.05).
Machine learning algorithms for outcome
prediction

We constructed a machine learning classifier by five-rule

cross-validation (Figure 1B). Subsequently, their performances

were evaluated using ROC curves (Figure 1C). The classifier

trained based on five clinical features could discriminate

patients with CSA-AKI accurately. RF exhibited the best

performance, with an AUC value of 0.858 (95% CI, 0.792–

0.923). The specific evaluation results of the six algorithms are

shown in Table 3. Among them, RF showed the best overall
frontiersin.org
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TABLE 1 Demographic and clinical characteristics of patients with or
without AKI after cardiac surgery.

Variable non-AKI
(N = 91)

AKI
(N = 44)

P
Value

Gender (%) 0.106

Male 45 (49.5) 29 (65.9)

Female 46 (50.5) 15 (34.1)

Age (mean (SD)) 59.58 (11.33) 62.52 (10.35) 0.149

Height (mean (SD)) 163.51 (8.77) 164.39 (8.79) 0.585

Weight (mean (SD)) 65.03 (10.76) 65.93 (10.13) 0.644

BMI (mean (SD)) 1.79 (0.17) 1.81 (0.16) 0.593

Smoke (%) 0.148

No 72 (79.1) 29 (65.9)

Yes 19 (20.9) 15 (34.1)

Drink (%) 0.141

No 88 (96.7) 39 (88.6)

Yes 3 (3.3) 5 (11.4)

Diabetes (%) 1.000

No 69 (75.8) 33 (75.0)

Yes 22 (24.2) 11 (25.0)

Hypertension (%) 0.634

No 40 (44.0) 22 (50.0)

Yes 51 (56.0) 22 (50.0)

CRF (%) 0.141

No 88 (96.7) 39 (88.6)

Yes 3 (3.3) 5 (11.4)

AF (%) 1.000

No 75 (82.4) 37 (84.1)

Yes 16 (17.6) 7 (15.9)

Hb (mean (SD)) 131.65 (18.38) 134.36 (21.74) 0.453

Wb (mean (SD)) 39.99 (3.01) 38.88 (3.26) 0.052

hCT (mean (SD)) 25.38 (3.65) 24.61 (4.90) 0.307

CVP (mean (SD)) 8.32 (3.18) 9.02 (3.94) 0.268

EF (mean (SD)) 60.97 (7.89) 58.14 (9.18) 0.067

TnI (mean (SD)) 0.70 (1.62) 2.06 (2.85) 0.001

FABP (mean (SD)) 3.71 (2.35) 6.28 (3.53) <0.001

NT-prBNP (mean (SD)) 556.15
(1092.79)

947.94 (735.79) 0.033

NGAL (mean (SD)) 64.53 (18.77) 85.04 (20.96) <0.001

HJV (mean (SD)) 53.72 (15.52) 65.31 (18.12) <0.001

DKK3 (mean (SD)) 1073.72
(364.45)

1265.71
(400.68)

0.006

CAG (%) 0.509

No 13 (14.3) 9 (20.5)

Yes 78 (85.7) 35 (79.5)

Interval Time (mean (SD)) 6.15 (6.24) 7.93 (15.98) 0.355

CPBT (mean (SD)) 108.96 (33.15) 123.41 (43.37) 0.034

Urine dropout (mean (SD)) 254.51 (198.94) 213.98 (173.72) 0.25

Ultrafiltration volume (mean
(SD))

1586.37
(1014.57)

1967.05
(1175.57)

0.055

(continued)

TABLE 1 Continued

Variable non-AKI
(N = 91)

AKI
(N = 44)

P
Value

Aortic occlusion time (mean
(SD))

74.13 (25.55) 80.93 (28.84) 0.167

Erythrocyte infusion (mean (SD)) 0.10 (0.30) 0.18 (0.39) 0.176

Hospitalization time (mean (SD)) 17.38 (7.19) 18.66 (5.85) 0.308

ICU length of stay (mean (SD)) 1.48 (1.06) 3.05 (3.65) <0.001

Mechanical ventilation time
(mean (SD))

9.63 (4.87) 21.27 (30.23) <0.001

Cleveland (mean (SD)) 1.68 (1.39) 2.02 (1.07) 0.153

Note: Single operation is either coronary artery bypass grafting, heart valve

surgery, great vascular surgery, valve replacement or valve plasty.

Xue et al. 10.3389/fsurg.2022.946610
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performance with an accuracy of 0.822 for predicting CSA-AKI.

Since CSA-AKI is a clinical emergency, there is a need to

accurately identify patients who are likely to develop CSA-AKI.

Thus, recall is also a crucial indicator. The RF model also had

the highest recall value (0.591). Furthermore, the RF model had

the highest Kolmogorov–Smirnov (KS) value (0.600) relative to

other models, suggesting a leading advantage in differentiating

patients with CSA-AKI. RF also exhibited the greatest

improvement in discrimination or classification of CSA-AKI as

compared to conventional logistic regression (NRI = 0.221). The

confusion matrix of the optimal model is shown in Figure 1D.

Detailed results of the confusion matrix for all six models are

provided in Supplementary Tables S1, S2.
Calibration of models and predictive
distributions

The final RF model was well calibrated. The mean Brier score

of the model for predicting CSA-AKI was 0.137 (close to 0),

indicating a well-calibrated model. Figure 1E shows the

calibration curve for the model. The prediction distribution

plot of the RF model incorporating patients sorted by risk

order suggested positive clustering of patients with CSA-AKI

(Figure 1F). Therefore, the RF model could accurately stratify

the patients at risk of developing CSA-AKI.
Construction of tools for patient
classification

The nomogram is a graphical representation of the

association between clinical variables and the probability of

a clinical event (e.g., critical illness). In addition, it provides

an intuitive way to interpret predictive models. In this

study, we constructed an intuitive nomogram to specifically

quantify the risk of developing CSA-AKI based on the
frontiersin.org
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TABLE 2 Univariate, multivariate logistic regression and ROC analysis.

Variable Univariate analysis NA Multivariate analysis NA Roc analysis
OR (95% CI) P-value OR (95% CI) P-value AUC (95% CI)

Gender 0.506 (0.240–1.068) 0.074 NA 0.582 (0.495–0.67)

Age 1.026 (0.991–1.062) 0.150 NA 0.573 (0.467–0.678)

Height 1.012 (0.971–1.055) 0.582 NA 0.537 (0.433–0.64)

Weight 1.008 (0.974–1.043) 0.641 NA 0.536 (0.434–0.639)

BMI 1.824 (0.208–16.020) 0.587 NA 0.542 (0.439–0.645)

Smoke 1.960 (0.878–4.373) 0.100 NA 0.566 (0.484–0.648)

Drink 3.761 (0.856–16.523) 0.079 NA 0.54 (0.489–0.591)

Diabetes 1.045 (0.454–2.408) 0.917 NA 0.504 (0.426–0.583)

Hypertension 0.784 (0.381–1.614) 0.509 NA 0.53 (0.44–0.621)

CRF 3.761 (0.856–16.523) 0.079 NA 0.54 (0.489–0.591)

AF 0.887 (0.336–2.343) 0.809 NA 0.492 (0.424–0.559)

Hb 1.007 (0.989–1.026) 0.448 NA 0.525 (0.415–0.635)

Wb 0.891 (0.791–1.003) 0.056 NA 0.623 (0.521–0.725)

hCT 0.953 (0.869–1.045) 0.306 NA 0.574 (0.468–0.681)

CVP 1.062 (0.955–1.182) 0.267 NA 0.544 (0.434–0.655)

EF 0.962 (0.922–1.003) 0.072 NA 0.611 (0.51–0.712)

TnI 1.415 (1.106–1.810) 0.006 1.619 (1.187–2.208) 0.002 0.718 (0.626–0.811)

FABP 1.336 (1.164–1.533) <0.001 1.105 (0.925–1.320) 0.273 0.771 (0.688–0.854)

NT-prBNP 1.001 (1.000–1.001) 0.077 NA 0.73 (0.634–0.826)

NGAL 1.057 (1.033–1.083) <0.001 1.051 (1.021–1.082) 0.001 0.772 (0.684–0.86)

HJV 1.048 (1.021–1.076) <0.001 1.034 (0.999–1.071) 0.060 0.714 (0.616–0.812)

DKK3 1.001 (1.000–1.003) 0.008 1.001 (0.999–1.002) 0.267 0.669 (0.571–0.767)

CAG 0.648 (0.253–1.657) 0.365 NA 0.469 (0.399–0.539)

Interval time 1.015 (0.982–1.050) 0.370 NA 0.471 (0.367–0.574)

CPBT 1.010 (1.001–1.020) 0.037 1.012 (0.998–1.026) 0.082 0.588 (0.481–0.696)

Urine dropout 0.999 (0.997–1.001) 0.253 NA 0.581 (0.478–0.685)

Ultrafiltration volume 1.000 (1.000–1.001) 0.058 NA 0.597 (0.494–0.701)

Aortic occlusion time 1.010 (0.996–1.023) 0.168 NA 0.558 (0.452–0.663)

Erythrocyte infusion 2.025 (0.723–5.670) 0.179 NA 0.541 (0.476–0.607)

Hospitalization time 1.027 (0.975–1.082) 0.314 NA 0.594 (0.492–0.696)

ICU length of stay 1.624 (1.178–2.239) 0.003 0.989 (0.638–1.535) 0.962 0.703 (0.613–0.793)

Mechanical ventilation time 1.084 (1.015–1.157) 0.016 1.087 (0.983–1.203) 0.104 0.661 (0.554–0.769)

Cleveland 1.223 (0.926–1.615) 0.156 NA 0.609 (0.513–0.705)

Xue et al. 10.3389/fsurg.2022.946610
predicted values of the RF model and their characteristic

clinical variables (Figure 2A). The results of the H–L test

suggested that the nomogram was well calibrated (P > 0.05,

Figure 2B). Furthermore, DCA suggested an increased net

benefit of the nomogram in predicting CSA-AKI as

compared to the RF model or the characteristic clinical

variables alone (Figure 2C).
Discussion

Accurate prediction of prognosis is essential for patient-

centric care, both for informing and selecting treatment
Frontiers in Surgery 05
strategies for inclusive decision-making. In this study, we used

five alternative machine learning algorithms to characterize

the risk of CSA-AKI incidence using postoperative

hospitalization data in patients who underwent cardiac

surgery. The RF model optimally stratified patients’ risk with

excellent calibration and good internal validation. In addition,

clinical characteristics of patient risk that may be

underestimated in clinical practice were identified, including

FABP, HJV, mechanical ventilation time, NGAL, and TnI.

These models provide a foundation for future clinical utility

for patient care and accurate outcome risk stratification.

In addition to several published reports on predictive

models or clinical scales to assess patients’ risk of developing
frontiersin.org
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FIGURE 1

Construction and evaluation of the CSA-AKI prediction model. (A) The five most important clinical features screened using four machine learning
algorithms in the entire cohort; (B) schematic diagram of six machine learning algorithms in the training set trained and validated for stable
clinical models by five-fold cross-validation; (C) comparison of AUC values among machine learning models, with RF having the largest AUC
value; (D) confusion matrix of the best model (RF) in the entire cohort; (E) calibration curve for the RF model; (F) distribution of predicted patient
risk of CSA-AKI. CSA-AKI: cardiac surgery-associated acute kidney injury.

Xue et al. 10.3389/fsurg.2022.946610
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TABLE 3 Evaluation results of models for AKI risk of patients after cardiac surgery.

Model Precision Recall F1 score Accuracy KS Error NRI

Logistic regression with a forward selection 0.765 0.591 0.667 0.807 0.577 0.193 0.000

Logistic regression with a lasso regularization 0.826 0.432 0.567 0.785 0.589 0.215 0.012

Random forest 0.812 0.591 0.684 0.822 0.600 0.178 0.221

Support vector machine (linear kernel) 0.735 0.568 0.641 0.793 0.469 0.207 0.001

Support vector machine (radial basis function) 0.758 0.568 0.649 0.800 0.471 0.200 0.002

Extreme Gradient Boosting 0.625 0.568 0.595 0.748 0.489 0.252 −0.113

Note: KS: Kolmogorov-Smirnov; NRI: net reclassification improvement.

FIGURE 2

Quantifying patients’ risk of CSA-AKI. (A) Nomogram used to quantify the risk of CSA-AKI in patients. Redline presents the detailed score of a certain
patient, with a total of 101 points and a 29.1% risk of developing CSA-AKI; (B) calibration curve for the nomogram; (C) DCA curves for performance
comparisons between clinical characteristics alone, the RF model, and the nomogram by plotting the net benefit of the prediction model and clinical
predictors against the threshold probabilities, wherein the horizontal axis represents the threshold (the reference probability of the patient receiving
treatment) and the vertical axis represents the net benefit rate after subtracting the disadvantage from the advantage. Using the model, under the
same threshold probability, a larger net benefit indicates that the patient can obtain the greatest benefit. DCA: decision curve analysis.

Xue et al. 10.3389/fsurg.2022.946610
CSA-AKI, our findings extend this knowledge in several

important ways. The commonly used validated scale in the

clinical settings to predict CSA-AKI is the Cleveland score

proposed by Thakar et al. in 2005 (23–25). However, in

clinical practice, the influence of plasma and urine markers

needs to be considered, in addition to the Cleveland score

(26–28). Moreover, intraoperative and postoperative

information is crucial to assess the risk of AKI (29). The

candidate variables included in the model presented herein

integrated intra- and postoperative clinical information of

patients and biomarkers in urine and plasma and were based

on a comprehensive set of variables that could explain the
Frontiers in Surgery 07
complex interactions and more accurately predict the

incidence of CSA-AKI. Our final model demonstrated higher

predictive efficacy as compared to traditional Cleveland scores

and predictors alone. In previous studies, logistic regression

models have been the traditional statistical approach for

event prediction; however, machine learning can handle

nonlinear interactions and combine more variables to improve

predictive efficacy for dealing with data of higher dimensions

(15, 30). We used advanced machine learning algorithms

to assess the risk of such complex syndromes, which

exhibited better performance than traditional logistic

regression analysis.
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Our model incorporated five common clinical

characteristics and laboratory results that are available in most

hospitals. However, <20% values of FABP and TnI were

missing. Previous studies have not explicitly addressed the

impact of missing values on predictive performances (15, 31,

32). Thus, we included missing variables systematically in the

modeling approach. The final model exhibited satisfactory

performance. However, it is recommended that all clinical

characteristics be collected at the time of admission to gain

more benefits from this model. Missing data for certain

variables are inevitable in the real world, especially from small

or poorly equipped hospitals. Therefore, our model also

allows for interpolation and estimation of missing values.

The existing treatment modalities for CSA-AKI are severely

inadequate, thus renal replacement therapy is the only available

choice (6). Therefore, early intervention for patients at risk of

CSA-AKI should be given high priority. In this study, we

developed a model with a higher recall value to identify those

at risk of CSA-AKI as early as possible. A total of 26 patients

with AKI were identified in the entire cohort, of which only

six were not distinguished as having AKI. The model offers

more possibilities for early intervention and its clinical and

economic value for postoperative cardiac management is high,

especially considering the unusually rapid disease progression

and the high mortality associated with CSA-AKI.
Research limitations

This study has some limitations. First, themodel did not involve

subsequent baseline characteristics of the patients due to the absence

of follow-up data. Although a dynamic model incorporating

baseline data during hospitalization may have a better phenotype,

the present model could still be used to predict the incidence of

CSA-AKI with reasonable accuracy using the postoperative

clinical data. Second, patient data were obtained from a single

hospital. Third, the predictive accuracy using clinical medications

(e.g., commonly used vasopressors, inotropic agents, and some

specific drugs used during surgery) and other data (e.g., novel

biomarkers, imaging, environmental factors, and atherosclerotic

burden) may further improve the model. The addition of these

variables could be performed in the future to improve the RF

model constructed in this study. Finally, subgroup analyses based

on various procedures were not performed because of the small

number of patients within each subgroup. Consequently, the

clinical utility of predicting postoperative CSA-AKI based on the

specific procedure type is limited.
Conclusion

In conclusion, we developed a model that integrated

advanced machine learning algorithms and easily accessible
Frontiers in Surgery 08
patient characteristics to predict the risk of developing

CSA-AKI among patients undergoing cardiac surgery. The

model may provide powerful assistance to clinicians to

identify patients with a higher risk of AKI early in the

postoperative period. Overall, the findings of this study can

assist in developing timely diagnostic and treatment

strategies for the clinical management of patients

undergoing cardiac surgery.
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