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Abstract Brain microglia and border-associated macrophages (BAMs) display distinct spatial, 
developmental, and phenotypic features. Although at steady state, the origins of distinct brain 
macrophages are well-documented, the dynamics of their replenishment in neurodegenerative 
disorders remain elusive, particularly for activated CD11c+ microglia and BAMs. In this study, we 
conducted a comprehensive fate-mapping analysis of murine microglia and BAMs and their turnover 
kinetics during Alzheimer’s disease (AD) progression. We used a novel inducible AD mouse model 
to investigate the contribution of bone marrow (BM) cells to the pool of fetal-derived brain macro-
phages during the development of AD. We demonstrated that microglia remain a remarkably stable 
embryonic-derived population even during the progression of AD pathology, indicating that neither 
parenchymal macrophage subpopulation originates from, nor is replenished by, BM-derived cells. 
At the border-associated brain regions, bona fide CD206+ BAMs are minimally replaced by BM-de-
rived cells, and their turnover rates are not accelerated by AD. In contrast, all other myeloid cells are 
swiftly replenished by BM progenitors. This information further elucidates the turnover kinetics of 
these cells not only at steady state, but also in neurodegenerative diseases, which is crucial for iden-
tifying potential novel therapeutic targets.

Introduction
Microglia are brain parenchymal macrophages that are unique among tissue-resident macrophages 
due to their primitive yolk sack origin, self-renewal properties (Ajami et al., 2007), and independence 
from adult hematopoiesis (Ginhoux et al., 2010; Schulz et al., 2012; Sheng et al., 2015). These cells 
are essential for normal neuronal development, brain function, and central nervous system (CNS) 
homeostasis, and dysfunction is associated with severe brain neuropathologies (Leng and Edison, 
2021; Sevenich, 2018). In neurodegenerative diseases, such as Alzheimer’s disease (AD), microglia 
form a barrier around amyloid plaques, thereby protecting against the neurotoxicity of aggregated 
beta-amyloid (Aβ) (Condello et al., 2015). Disruption of microglial activity, which is often related to 
aging and inflammation, can promote this neurotoxicity (Salter and Stevens, 2017) and affect the 
clearance of Aβ aggregates (Floden and Combs, 2011). The resulting increase in plaque formation 
(Spangenberg et al., 2019) leads to the progression of pathogenesis.
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In several neurodegenerative diseases, the gradual appearance of a subpopulation of CD11c+ 
activated microglia, also known as disease-associated microglia or neurodegenerative microglia, 
correlates with the progression of disease pathology (Deczkowska et al., 2018; Keren-Shaul et al., 
2017; Krasemann et  al., 2017). In AD, the accumulation of these highly phagocytic cells around 
the Aβ deposits (Kamphuis et al., 2016; Yin et al., 2017) mitigates Aβ-associated tau seeding and 
spreading (Gratuze et al., 2021). These activated microglia may play a protective role in neurode-
generation, thus implicating targeted manipulation as a therapeutic strategy. Although the origin 
of the myeloid cells that accumulate around the Aβ deposits is controversial, early studies indicated 
selective migration of monocytic cells toward the Aβ plaques (Hohsfield and Humpel, 2015), while 
more recent research suggests that these cells are derived from resident embryonic-derived microglia 
(Reed-Geaghan et al., 2020; Shukla et al., 2019).

In addition to the macrophages in brain parenchyma, microglia-independent macrophages are also 
found at the border regions, such as the subdural meninges (SDM), including the pia and arachnoid 
mater, the dura mater (DM), and the choroid plexus (CP) (Brioschi et al., 2020; Utz et al., 2020). 
Single-cell RNAseq analysis revealed that these border-associated macrophages (BAMs) represent a 
family of different subpopulations (Van Hove et al., 2019). However, the contributions of BAMs to 
CNS integrity and neurodegeneration remain to be elucidated.

To investigate the influence of AD on the macrophage CNS landscape, we analyzed the phenotype 
and turnover kinetics of different myeloid cells in the brain parenchyma and border-associated tissues. 
We used a novel AD mouse model generated by back-crossing AppNL-G-F knock-in (APP-KI) mice (Saito 
et  al., 2014) with a KitMerCreMer/R26YFP fate-mapping mouse strain (Sheng et  al., 2015) to monitor 
bone marrow (BM)-driven replenishment of brain myeloid cells during disease progression. We also 
investigated the origins of CD11c+ microglia since the ontogeny of ‘activated’ microglia in AD is still 
a matter of debate.

Results and discussion
In this study, we conducted a comprehensive fate-mapping analysis of murine brain microglia and 
BAMs and their turnover kinetics during the progression of AD.

Mouse models of AD have been instrumental in clarifying the cellular and molecular mechanisms 
underlying this irreversible brain disorder. Transgenic mice overexpressing proteins linked to familial 
AD (5xFAD), single mutant amyloid precursors (APP), or double mutant APP and presenilin (APP-PS1) 
have been used in many studies (Sasaguri et al., 2017). In our study, we exploited an APP-KI mouse 
strain expressing a mutant form of humanized APP, the parent protein of Aβ, knocked in under the 
control of the endogenous promoter. This model avoids some disadvantages associated with trans-
genic APP models, including artifacts caused by overexpression of other APP fragments in addition to 
Aβ, non-physiological cell-type expression, and potential insertion site disruption (Saito et al., 2014). 
The APP-KI mouse line expresses three human AD-associated mutations that promote the progressive 
accumulation of Aβ through its increased production of Aβ, particularly the more toxic Aβ42 form, as 
well as increasing Aβ aggregation and reducing degradation. APP-KI mice develop progressive Aβ 
accumulation from 2 months of age, thus mimicking several aspects of human AD, including microgli-
osis and synaptic loss (Figure 1—figure supplement 1A).

First, we characterized the myeloid cell landscape in different brain regions of healthy young WT 
and APP-KI mice (2 months) as well as aged WT and APP-KI mice (12 months) (Figure 1—figure 
supplement 2). In our multiparameter flow cytometry and uniform manifold approximation and 
projection analyses, we included a panel of myeloid markers to delineate microglia, activated CD11c+ 
microglia, monocyte-derived macrophages (MdCs), F4/80intCD11a+ infiltrating macrophages (Shukla 
et al., 2019), border-associated macrophages (BAMs), neutrophils, monocytes and, eosinophils.

P2RY12+ microglia were the main CD45int F4/80hi cell population in the brain parenchyma of all 
mice and their absolute numbers are significantly enhanced in brains of 12-month-old APP-KI mice 
due to microgliosis occurring during the development of AD (Sevenich, 2018). AD mice showed also 
a substantial increase in the absolute numbers of P2RY12lowCD11c+ activated microglia, which were 
absent in the brain of young mice and constituted only a minor fraction in aged mice (Figure 1A–C 
and E). Immunofluorescent analysis showed that CD11c+ activated microglia aggregate around Aβ 
amyloid plaques (Figure 1D) In accordance with reports of the appearance of activated microglia 
during neurodegeneration in other AD transgenic mouse models, such as 5xFAD and APP/PS1 
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Figure 1. Myeloid cell profiling in healthy and AD parenchymal brains. (A) Representative gating strategy used to visualize distinct 
myeloid cell subpopulations in young WT (aged 2 months), WT (aged 12 months), and diseased APP-KI (aged 12 months) mice. Microglia: 
CD45intF4/80hiP2RY12+CD11c−; activated microglia: CD45intF4/80hiP2RY12lowCD11c+; cDCs: CD45hiCD11chiMHCII+; neutrophils: CD45hiCD11bhiLy6G+; 
monocytes: CD45hiF4/80intCD11bintLy6C+MHCII−; monocyte-derived macrophages (MdCs): CD45hiF4/80intCD11bintLy6C−MHCII+; CD11a+ cells: 

Figure 1 continued on next page
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(Keren-Shaul et al., 2017; Mrdjen et al., 2018), this phenotype was recapitulated in APP-KI mice 
in our study (Figure 1—figure supplement 1B,C). The remaining myeloid cell subsets detected in 
the brain parenchyma, such as neutrophils (Ly6G+), monocytes (Ly6Chi), F4/80int Ly6CnegMHCIIhi MdCs, 
peripheral-derived myeloid F4/80intMHCII−CD11a+ cells (Shukla et al., 2019), eosinophils (Siglec-F+), 
and cDCs (CD11chiMHCIIhi), were mainly restricted to the CD45hi gate (Figure 1A). Surprisingly, we 
did not observe an enhanced infiltration of BM-derived inflammatory cells in the brain during disease 
progression. Even in aged APP-KI mice, the infiltration by Ly6Chi monocytes and Ly6G+ neutrophils 
was comparable to that in age-matched controls (Figure 1A–B and E).

In all three separately analyzed CNS border-associated tissues, a predominant F4/80hiCD206+ BAM 
fraction could be further separated into MHCII+ and MHCIIlow subpopulations, which is consistent 
with previous reports (Van Hove et  al., 2019; Figure 2A–D, Figure 2—figure supplement 1). A 
large population of CD206+MHCIIlow BAMs was preferentially localized in the SDM and CP, whereas 
these cells were less abundant in the DM. Interestingly, a significant transition from CD206+MHCIIlow 
to CD206+MHCII+ BAMs was observed with aging and AD progression (Figure 2B and C). Similarly, 
increased MHCII+ CNS-associated macrophages were also observed during EAE induced neuroin-
flammation (Jordao et al., 2019). All other myeloid cell populations, including neutrophils, mono-
cytes, MdCs, CD11a+ cells, eosinophils, and DCs, were present in each tissue, although at different 
frequencies (Figure 2A–D, Figure 2—figure supplements 1 and 2). Similar to the brain parenchyma, 
monocyte and neutrophil frequencies were not augmented in any of the three border regions of the 
aged WT and APP-KI mice, which excludes the possibility that an enhanced inflammatory cell infiltra-
tion is caused by aging or neurodegenerative disease progression (Figure 2A–C, Figure 2—figure 
supplements 1 and 2).

To investigate the origins and replenishment kinetics of distinct brain macrophage subpopulations, 
we crossed the APP-KI mouse line with the KitMerCreMer/R26YFP fate-mapping mouse strain. The resulting 
APP-KI/KitMerCreMer/R26YFP inducible adult fate-mapping mouse model allowed us to irreversibly label 
Kit-expressing BM-progenitors and trace them in different brain regions during the progression of 
AD. To induce the YFP label in Kit-expressing BM progenitor cells, APP-KI/KitMerCreMer/R26YFP mice and 
the corresponding KitMerCreMer/R26YFP controls were administered TAM at 2, 4, 6, and 8 months of age. 
Parenchymal and non-parenchymal brain cells were isolated separately and analyzed by multicolor 
flow cytometry.

In the parenchyma of 10-month-old mice, a strong YFP signal was limited to CD45hi cells and was 
barely detectable in the CD45int fraction, which included the microglia and activated CD11c+ microglia, 
in both WT and AD mice (Figure 3A–C). In fact, microglia showed minimal YFP-labeling, which further 
confirmed their embryonic origin and BM-independence (Sheng et al., 2015). During AD progres-
sion, microglial YFP-labeling remained minimal, indicating that the ongoing neurodegeneration did 
not promote their replenishment by BM-derived cells. Similarly, activated CD11c+ microglia, which 
were increasingly formed during AD progression (Figure 1—figure supplement 1B-C), maintained 

CD45hiF4/80intCD11bintLy6C−MHCII−CD11a+ and eosinophils: CD45hiF4/80intCD11bintSiglec-F+. (B) UMAP analysis displaying 30,000 randomly sampled 
cells from young WT, aged WT, and APP-KI mouse brains analyzed by multicolor flow cytometry (n=3 mice/group). (C) Heatmap demonstrating the 
mean fluorescent intensity of 10 myeloid lineage markers across eight different brain parenchyma myeloid cell populations. The color in the heatmap 
varies from blue for lower expression to red for higher expression. (D) Representative confocal image of Iba-1+ (red), CD11c+ (green) microglia 
accumulating around Aβ plaques (white) in a  12-month-old APP-KI mouse brain. Blue visualizes DAPI positive nuclei. Scale bar, 20 μm. (E) Bar charts with 
individual dots illustrating the absolute numbers of different myeloid cell populations within the total parenchymal brain CD45+ cell population. Each 
dot represents the percentage of cells obtained from one brain (n=4 mice/group). Young mice: gray, aged mice: blue, and APP-KI mice: red. Samples 
were analyzed by two-way ANOVA. **p<0.01; ***p<0.001; ****p<0.0001. For clarity, non-significant values are not shown. AD, Alzheimer’s disease.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Absolute numbers of different myeloid cell populations within the total parenchymal brain CD45+ cell population.

Figure supplement 1. APP-KI AD mouse model.

Figure supplement 1—source data 1. Frequency of activated CD11c+ microglia obtained from WT and AAP-KI mice aged 3, 6 and 9 months.

Figure supplement 2. No difference in myeloid cells between  8-week young WT and APP-KI mice.

Figure supplement 2—source data 1. Absolute numbers of different myeloid cell populations within the total parenchymal brain CD45+ cell 
population of young WT and APP-KI (2 months).

Figure 1 continued

https://doi.org/10.7554/eLife.71879
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Figure 2. Characterization of myeloid cells in distinct brain border regions in health and AD. (A) Representative gating strategy used to visualize 
distinct myeloid cell subpopulations in the dura mater (DM), subdural meninges (SDM), and choroid plexus (CP). Young WT mice (aged 2 months) were 
analyzed. Cell classification as shown in the legend of Figure 1. (B) UMAP analysis displaying 8500 (DM), 13,000 (SDM), and 3700 (CP) randomly sampled 
cells from young WT, aged WT, and aged APP-KI DM, SDM, and CP analyzed by multicolor flow cytometry (n=9 mice). (C) Violin plots with individual 
dots illustrating the frequency of BAMs (CD206+MHCIIlow and CD206+MHCII+), Mdc, and monocytes within the total non-parenchymal CD45+ cell 
population of the DM, SDM, and CP. Young mice: gray, aged mice: blue, and APP-KI mice: red. Each dot represents the percentage of cells obtained 

Figure 2 continued on next page
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a low YFP-labeling profile, suggesting that despite their phenotypic shift, these cells preserved their 
embryonic signature and were not replaced by BM-derived cells during evolution of the disease 
(Figure 3A–C). Differently, the kinetics of monocyte replacement was extremely rapid, with all mono-
cytes YFP-labeled 2 months after induction, indicating that these cells are exclusively BM-derived 
(Figure 3A and B, lower panel, middle). In contrast, fetal-derived MdCs were gradually replaced by 
BM-derived cells over time and were fully replenished at 8 months post-induction, with no significant 
difference between WT and AD mice (Figure 3A and B, lower panel, left). Likewise, CD11a+ macro-
phages were clearly BM-derived and showed high YFP-labeling and turnover kinetics comparable to 
monocytes and neutrophils (Figure 3A and B, lower panel, right).

To verify whether activated CD11c+ microglia retained their fetal lineage, we performed E7.5 embry-
onic labeling of APP-KI/KitMerCreMer/R26YFP mice and analyzed microglia and activated CD11c+ microglia 
obtained from disease-affected offspring aged 9 months. Despite the AD-associated pathology, we 
not only confirmed that activated CD11c+ microglia maintained their embryonic origin, but showed 
that microglia and activated CD11c+ microglia share the same yolk sac origin, whereas all other tested 
myeloid cells (monocytes, Mdc, CD11a+ macrophages, and neutrophils) did not arise from embryonic 
progenitors of the yolk sac (Figure 3D).

Using our fate-mapping mouse model, we then analyzed myeloid cells residing in distinct CNS 
border-associated regions. In adult fate-mapping, non-parenchymal monocytes, MdCs, and CD11a+ 
macrophages were swiftly replaced by BM cells, with 100%  YFP-positivity at 2 months post-induction 
(Figure 4, right, Figure 4—figure supplement 1). In contrast, both CD206+ BAM subpopulations 
showed weaker YFP-labeling compared to other macrophages such as MdCs, which were already fully 
replenished within 2 months in all three regions (Figure 4). In the DM, YFP-labeling was significantly 
higher in CD206+MHCII+ BAMs than that in CD206+MHCIIlow BAMs (Figure 4, upper panel). Dural 
CD206+MHCII+ BAMs were characterized by a slow, but consistent BM-cell replacement over time, 
reaching approximately   35% YFP-positivity by 8  months post-induction. In contrast, the turnover 
rate of both BAM populations located in the SDM was markedly slower (Figure 4, middle panel), 
which suggests that their niche is less accessible to BM-dependent replenishment. With its fenes-
trated blood vessels, the DM has a greater capacity to support peripheral cell traffic. In addition, skull 
BM-derived monocytes, which seed DM through tiny vascular connecting corridors (Cugurra et al., 
2021), can also contribute to the refilling of dural BAMs. In contrast, the strong tight junctions of the 
blood vessels in the SDM limit cell exchange with the periphery (Mastorakos and McGavern, 2019). 
Previous studies have shown a rapid BAM turnover in the CP supported by partial input from the 
circulation (Goldmann et al., 2016; Van Hove et al., 2019). However, although both MHCIIlow and 
MHCII+CD206+ BAMs displayed a dual origin in our fate-mapping mouse model, their replenishment 
from BM-derived cells was extremely slow, with the YFP signal reaching only 10–15% by 8 months 
after induction. More than  85% of CP BAMs retained their embryonic phenotype (Figure 4, lower 
panel). Consistent with the lowest levels of YFP labeling observed in MHCIIlowCD206+ BAMs located in 
SDM and CP (Figure 4, left panels) we found a significantly increased YFP labeling only in this partic-
ular BAM subpopulation obtained from the progeny of E7.5 TAM-treated mice (SDM MHCIIlowCD206+ 

from pooled border regions (n=2–3 pooled mice). Samples were analyzed by two-way ANOVA. *p<0.05; **p<0.01. For clarity, non-significant values are 
not shown. (D) Heatmap demonstrating the mean fluorescent intensity of 10 myeloid lineage markers across eight different myeloid cell populations 
in DM, SDM, and CP. The colour in the heatmap varies from blue for lower expression to red for higher expression. AD, Alzheimer’s disease; UMAP, 
uniform manifold approximation and projection.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Frequency of BAMs (CD206+MHCIIlow and CD206+MHCII+), Mdc, and monocytes within the total non-parenchymal CD45+ cell population 
of the DM, SDM, and CP.

Figure supplement 1. Characterization of myeloid cells in distinct brain border regions in health and AD.

Figure supplement 2. Violin plots with individual dots illustrating the frequency of different myeloid cell populations (CD11a+ macrophages, DCs, 
neutrophils, and eosinophils) within the total non-parenchymal CD45+ of the DM, SDM, and CP.

Figure supplement 2—source data 1. Frequency of different myeloid cell populations (CD11a+ macrophages, DCs, neutrophils, and eosinophils) 
within the total non-parenchymal CD45+ of the DM, SDM, and CP.

Figure 2 continued

https://doi.org/10.7554/eLife.71879
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Figure 3. Microglia and disease-associated microglia maintain their embryonic origin during Alzheimer’s disease. KitMerCreMer/R26YFP and APP-KI/ 
KitMerCreMer/R26YFP mice (aged 2, 4, 6, and 8 months) received 4 mg tamoxifen (TAM) by oral gavage for 5 consecutive days and were sacrificed at 
10 months of age. (A) Representative flow cytometry contour plots indicating the YFP-labeling of parenchymal microglia, activated CD11c+ microglia, 
MdCs, CD11a+ cells, monocytes, and neutrophils obtained from KitMerCreMer/R26YFP and APP-KI/KitMerCreMer/R26YFP mice (  8-month labeled mice). (B) Bar 
charts with individual data points showing the percentage of YFP+ parenchymal microglia, activated CD11c+ microglia, MdCs, monocytes, and CD11a+ 
cells obtained from KitMerCreMer/R26YFP (red bars) and APP-KI/KitMerCreMer/R26YFP mice (blue bars) after normalization to the percentage of YFP+ neutrophils. 
Data represent the mean± SD (n=5 mice). Student’s t-test (two-tailed). For clarity, non-significant values are not shown. (C) UMAP representation 
showing the YFP-labeled myeloid cell populations in green and the YFP-negative fraction in blue. (D) Embryonic fate-mapping. A single pulse of 
tamoxifen was administered to APP-KI/KitMercreMer/R26YFP pregnant mice at E7.5. Offspring were analyzed at 9 months of age. Bar charts with individual 
data show the percentages of YFP-labeled parenchymal microglia, activated CD11c+ microglia, MdCs, monocytes, CD11a+ cells and neutrophils. Data 
represent the mean± SD (n=4 mice). UMAP, uniform manifold approximation and projection.

Figure 3 continued on next page
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BAMs: 10% ; CP MHCIIlowCD206+ BAMs: 15%) (Figure 4—figure supplement 2). These data indicate 
that some of these SDM and CP MHCIIlowCD206+ BAMs are descendants of yolk sac precursors.

The lack of a significant difference in the YFP-labeling profiles of BAMs from healthy or AD mice 
indicates that the development of AD neither supports nor accelerates BAM replacement by BM-pro-
genitors (Figure 4).

The contribution of monocytes to the pool of microglia is still unclear. The monocyte-to-microglia 
transition occurs in the brain, but only under certain conditions of inflammation or injury, such as 
meningitis (Djukic et al., 2006) and neonatal stroke (Chen et al., 2020). However, the original yolk 
sac embryonic microglia identity is preserved during experimental autoimmune encephalomyelitis 

The online version of this article includes the following source data for figure 3:

Source data 1. Frequency of YFP+ parenchymal microglia, activated CD11c+ microglia, MdCs, monocytes, and CD11a+ cells.

Figure 3 continued

Figure 4. AD does not accelerate the turnover kinetics of border-associated macrophages (BAMs). Mice were treated and analyzed as described 
in the legend of Figure 3. Bar charts with individual data points showing the percentages of YFP+ non-parenchymal BAMs (CD206+MHCIIlow and 
CD206+MHCII+ cells) and MdCs obtained from KitMerCreMer/R26YFP (red bars) and APP-KI/KitMerCreMer/R26YFP mice (blue bars) after normalization to the 
percentage of YFP+ neutrophils. Upper panel: DM; middle panel: SDM; and lower panel: CP. Data represent the mean± SD (n=4 samples of 2–3 pooled 
mice). Student’s t-test (two-tailed). For clarity, non-significant values are not shown. AD, Alzheimer’s disease; CP, choroid plexus; DM, dura mater; MdC, 
monocyte-derived macrophage; SDM, subdural meninges.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Percentages of YFP+ non-parenchymal BAMs (CD206+MHCIIlow and CD206+MHCII+ cells) and MdCs.

Figure supplement 1. Bar charts with individual data points showing the percentages of YFP+ non-parenchymal CD11a+ cells and monocytes obtained 
from KitMerCreMer/R26YFP (red bars) and APP-KI/KitMerCreMer/R26YFP mice (blue bars) after normalization to the percentage of YFP+ neutrophils.

Figure supplement 1—source data 1. Percentages of YFP+ non-parenchymal CD11a+ cells and monocytes.

Figure supplement 2. Embryonic E7.5 fate-mapping of border-associated myeloid cells.

Figure supplement 2—source data 1. Embryonic E7.5 fate-mapping of border-associated myeloid cells.

https://doi.org/10.7554/eLife.71879
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(Ajami et al., 2011; Jordao et al., 2019), although infiltrating monocytes are recruited to the brain 
during the progression of this neuroinflammatory disease. In an elegant parabiosis experiment using 
two different mouse models of AD (APPPS1-21 and 5xFAD), it was shown that peripheral mono-
cytes do not contribute to the microglial pool surrounding the Aβplaques (Wang et al., 2016). Here, 
we extended our analysis and demonstrated that, in the steady state, microglia, activated CD11c+ 
microglia and BAMs are a remarkably stable embryonic-derived population and their turnover remains 
unaffected in AD; the progression of this neurodegenerative disease does not promote or sustain 
their replacement by BM-derived progenitors. Furthermore, we confirmed that the transformation 
from homeostatic microglia to activated CD11c+ microglia is not mediated by infiltrating inflamma-
tory BM-marrow derived cells, but imprinted by the local brain microenvironment that is severely 
perturbed by the AD pathology. This new understanding will be valuable in manipulating the transi-
tion of microglia to activated microglia as a therapeutic strategy in AD.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation

Source or  
reference Identifiers Additional information

Antibody
Anti-CD45
(rat, monoclonal) BD Biosciences

Cat#: 748719;  
RRID:AB_2873123 FACS (1:600; 100 μl per test)

Antibody
Anti-Siglec-F
(rat, monoclonal) BD Biosciences

Cat#: 746668;  
RRID:AB_2743940 FACS (1:600; 100 μl per test)

Antibody
Anti-CD11b
(rat, monoclonal) BioLegend

Cat#: 101226;  
RRID:AB_830642 FACS (1:600; 100 μl per test)

Antibody
Anti-CD11b
(rat, monoclonal) BD Biosciences

Cat#: 565976;  
RRID:AB_2738276 FACS (1:600; 100 μl per test)

Antibody
Anti-F4/80
(rat, monoclonal) BioLegend

Cat#: 123110;  
RRID:AB_893486 FACS (1:600; 100 μl per test)

Antibody
Anti-F4/80  
(rat, monoclonal) BioLegend

Cat#: 123114;  
RRID:AB_893490 FACS (1:600; 100 μl per test)

Antibody
Anti-Ly6c
(rat, monoclonal) BioLegend

Cat#: 128030;  
RRID:AB_2562617 FACS (1:600; 100 μl per test)

Antibody
Anti-I-A/I-E
(rat, monoclonal) BioLegend

Cat#: 107636;  
RRID:AB_2734168 FACS (1:1000; 100 μl per test)

Antibody
Anti-CD11c
(hamster, monoclonal) BioLegend

Cat#: 117318;  
RRID:AB_493568 FACS (1:600; 100 μl per test)

Antibody
Anti-CD11c
(hamster, monoclonal) BioLegend

Cat#: 117336;  
RRID:AB_2565268 FACS (1:600; 100 μl per test)

Antibody
Anti-P2RY12
(rat, monoclonal) BioLegend

Cat#: 848006;  
RRID:AB_2721469 FACS (1:600; 100 μl per test)

Antibody
Anti-CD11a
(rat, monoclonal) Invitrogen

Cat#: 48-0111-82; 
RRID:AB_11064445 FACS (1:600; 100 μl per test)

Antibody
Anti-CD206
(rat, monoclonal) BioLegend

Cat#: 141734;  
RRID:AB_2629637 FACS (1:600; 100 μl per test)

Antibody
Anti-Ly6G
(rat, monoclonal) BioLegend

Cat#: 127606;  
RRID:AB_1236494 FACS (1:600; 100 μl per test)

Antibody
Anti-Iba-1
(rabbit, polyclonal) Fujifilm Wako Shibayagi

Cat#: 019-19741; 
RRID:AB_839504 IHC (1:200; 100 µl per test)

Antibody
Anti-CD11c
(hamster, monoclonal) Self-made N/A IHC (1:100; 100 µl per test)

Antibody
Anti-amyloid beta  
(mouse, monoclonal)

IBL-Immuno-Biological- 
Laboratories Co.

Cat#: 10323;  
RRID:AB_10707424 IHC (1:200; 100 µl per test)

Antibody
Anti-IgG
(goat, polyclonal) BioLegend

Cat#: 405502
RRID:AB_315020 IHC (1:200; 100 µl per test)

https://doi.org/10.7554/eLife.71879
https://identifiers.org/RRID/RRID:AB_2873123
https://identifiers.org/RRID/RRID:AB_2743940
https://identifiers.org/RRID/RRID:AB_830642
https://identifiers.org/RRID/RRID:AB_2738276
https://identifiers.org/RRID/RRID:AB_893486
https://identifiers.org/RRID/RRID:AB_893490
https://identifiers.org/RRID/RRID:AB_2562617
https://identifiers.org/RRID/RRID:AB_2734168
https://identifiers.org/RRID/RRID:AB_493568
https://identifiers.org/RRID/RRID:AB_2565268
https://identifiers.org/RRID/RRID:AB_2721469
https://identifiers.org/RRID/RRID:AB_11064445
https://identifiers.org/RRID/RRID:AB_2629637
https://identifiers.org/RRID/RRID:AB_1236494
https://identifiers.org/RRID/RRID:AB_839504
https://identifiers.org/RRID/RRID:AB_10707424
https://identifiers.org/RRID/RRID:AB_315020


 Short report﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Wu et al. eLife 2021;10:e71879. DOI: https://doi.org/10.7554/eLife.71879 � 10 of 14

Reagent type (species) 
or resource Designation

Source or  
reference Identifiers Additional information

Antibody
Anti-IgG
(donkey, polyclonal) BioLegend

Cat#: 406418
RRID:AB_2563306 IHC (1:200; 100 µl per test)

Antibody
Anti-IgG
(goat, polyclonal) BioLegend

Cat#: 405308
RRID:AB_315011 IHC (1:200; 100 µl per test)

Antibody
Anti CD16/32
(rat, monoclonal) Self-made N/A Blocking step (1:100; 1000 μl per sample)

Chemical compound, 
drug DAPI

Thermo 
Fisher Scientific Cat#: D1306 (1:1000)

Chemical compound, 
drug Collagenase D Roche Cat#: 11088882001 1 mg/ml

Chemical compound, 
drug Dispase II Gibco Cat#: 17105041 2 U/ml

Chemical compound, 
drug DNase Roche Cat#: 04536282001 2 U/ml

Chemical Compound, 
drug Percoll Merck Cat#: P4937-500ML

Chemical compound, 
drug Progesterone Sigma-Aldrich Cat#: P0130 1 mg/mouse

Chemical compound, 
drug Tamoxifen Sigma-Aldrich Cat#: T5648

For adult labeling, 4 mg TAM for 5 consecutive days by 
oral gavage; For embryo labeling, pregnant mice (E7.5) 
were injected via oral gavage once with 2 mg TAM

Chemical compound, 
drug IMDM

Thermo 
Fisher Scientific Cat#: 12440046

Software, algorithm FlowJo TreeStar
FlowJo 10.6
RRID:SCR_008520

Software, algorithm GraphPad Prism GraphPad Software
GraphPad 9.0
RRID:SCR_002798

Strain, strain 
background (mouse)

APPNL-G-F

(called APP-KI) Japan Saito et al., 2014

Strain, strain 
background (mouse)

KitMerCreMer/Rosa26- 
LSL-eYFP (called 
KitMerCreMer/R26YFP)

Nanyang Technological 
University, Singapore Sheng 
et al., 2015

Strain, strain 
background (mouse) APP-KI/ KitMerCreMer/R26YFP

Nanyang Technological 
University, Singapore Described here

 Continued

Mice
Fate-mapping KitMerCreMer/R26YFP mice were generated as previously described (Sheng et al., 2015). 
The KitMerCreMer/R26YFP fate-mapping mouse line was crossed with the AD mouse model (APPNL-G-F), 
a knock-in mouse line that co-expresses the Swedish (KM670/671 NL), Beyreuther/Iberian (I716F), 
and Arctic (E693G) mutations and mimics AD-associated pathologies, including amyloid plaques, 
synaptic loss, and microgliosis as well as astrocytosis (Saito et al., 2014); the generated mouse line 
was designated APP-KI/KitMerCreMer/R26YFP. Mice were bred and maintained in a specific pathogen-free 
animal facility at the Nanyang Technological University (Singapore). All animal studies were carried 
out according to the recommendations of the National Advisory Committee for Laboratory Animal 
Research and ARF SBS/NIE 18081, and 19093 protocols were approved by the Institutional Animal 
Care and Use Committee of the Nanyang Technological University.

Tamoxifen-inducible embryonic and adult fate-mapping mouse model
KitMerCreMer/R26YFP and APP-KI/KitMerCreMer/R26YFP fate-mapping mice were used to determine the 
turnover rates of distinct brain macrophages under normal steady-state or diseased conditions. 
For adult labeling, a total of 4  mg tamoxifen (TAM) (Sigma-Aldrich, St. Louis, MO) per mouse 
was administered for 5 consecutive days by oral gavage as previously described (Sheng et al., 
2015). Mice were sacrificed at different time points for brain collection, subsequent cell isolation, 

https://doi.org/10.7554/eLife.71879
https://identifiers.org/RRID/RRID:AB_2563306
https://identifiers.org/RRID/RRID:AB_315011
https://identifiers.org/RRID/RRID:SCR_008520
https://identifiers.org/RRID/RRID:SCR_002798
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and multiparameter flow cytometric cell analysis. For embryonic labeling, KitMerCreMer/R26YFP and 
APP-KI/KitMerCreMer/R26YFP fate-mapping mice were mated overnight and separated early the next 
morning. Pregnant mice (E 7.5) received one dose of 2 mg TAM with 1 mg progesterone via oral 
gavage.

Isolation of microglia and border-associated macrophages
Brains were removed and DM, SDM, and CP were carefully separated from the brain parenchyma. For 
the DM isolation, the dorsal part of the skull was removed and the dura was peeled away from the 
skull cap and placed in  2% fetal bovine serum (FBS) in Iscove’s modified Dulbecco’s medium (IMDM). 
The SDM was micro-dissected using micro suture forceps and placed on ice-cold  2% FBS IMDM. For 
collection of the CP, the ventricles were exposed and the CP was carefully micro-dissected from the 
lateral ventricles and placed on 2%  FBS IMDM.

All tissues were cut into small pieces, which were subsequently incubated with digestion buffer 
(IMDM supplemented with 2%  FBS, 1 mg/ml Collagenase D [Roche], 2 U/ml DNase I [Life Technol-
ogies], and Dispase II [Roche]). The digested brain parenchyma, DM, SDM, and CP were separately 
homogenized with a syringe and the resulting homogenous cell suspensions were filtered through a 
40 μm cell strainer. Only the parenchyma cells were resuspended in a 40%  Percoll (GE Healthcare Life 
Sciences) and centrifuged at 700×g for 10 min. All obtained cell pellets were resuspended in  0.89% 
NH4CL lysis buffer for 5 min at room temperature (RT) to remove contaminating red blood cells. After 
centrifugation at 350×g for 5 min, the supernatant was discarded and cell pellets were collected for 
flow cytometry staining.

Flow cytometry staining
Isolated cells were pre-incubated with 10 μg/ml anti-Fc receptor antibody (2.4G2) on ice for 20 min. 
Subsequently, cells were stained with different antibodies for 20  min on ice. After washing, cells 
were further stained with DAPI to exclude dead cells. Finally, cells were washed and resuspended in 
PBS/ 2% FBS for analysis on a five-laser flow cytometer (FACSymphony A3 Cell Analyser, BD Biosci-
ences, San Jose, CA). Data were analyzed with FlowJo software (TreeStar, Ashland, OR).

Immunofluorescence staining and microscopy
Mice were perfused with 10 ml  1× PBS and 20 ml  4% paraformaldehyde (PFA). After extraction, the 
brains were post-fixed with  4% PFA for 24 hr. Tissues were then transferred to  15% sucrose solution 
for 24 hr, followed by immersion in  30% sucrose solution for another 24 hr. After that, the brains were 
then embedded in the Optimal cutting temperature compound and cut into 5 μm thick sections. For 
the immunofluorescence staining, sections were dried at  37°C for 10 min, then wash with  1× PBS at 
RT for 5 min. Sections were incubated with  5% BSA at RT for 30 min, followed by primary antibody 
staining at  4°C for overnight (mouse anti-82E1 [1:200], hamster anti-CD11c [1:100], and rabbit anti-
Iba-1 [1:200]), three times washings with 1× PBS and an incubation with the correspondent secondary 
antibodies (Goad anti-hamster FITC [1:200], Donkey anti-rabbit Alexa Fluor 594 [1:200], and Goat 
anti-mouse APC [1:200]). Stained sections were then incubated with DAPI for 10 min and mounted 
with fluorescence mounting medium and visualized by fluorescent microscopy (Zeiss). Images were 
post-processed by Zen software.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 9.0.1 software (GraphPad Software, La Jolla, 
CA). All values were expressed as the mean± standard deviation as indicated in the figure legends. 
Samples were analyzed by Student’s t-test (two-tailed) or two-way ANOVA. A p-value <0.05  was 
considered to indicate statistical significance. The number of animals used per group is indicated in 
the figure legends as ‘n’.
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