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Abstract

Autoimmune disease

Terminally differentiated B cell, the plasma cell, is the sole cell type capable of producing antibodies in our body.
Over the past 30 years, the identification of many key molecules controlling B cell activation and differentiation has
elucidated the molecular pathways for generating antibody-producing plasma cells. Several types of regulation
modulating the functions of the important key molecules in B cell activation and differentiation add other layers of
complexity in shaping B cell responses following antigen exposure in the absence or presence of T cell help.
Further understanding of the mechanisms contributing to the proper activation and differentiation of B cells into
antibody-secreting plasma cells may enable us to develop new strategies for managing antibody humoral
responses during health and disease. Herein, we reviewed the effect of different types of regulation, including
transcriptional regulation, post-transcriptional regulation and epigenetic regulation, on B cell activation, and on
mounting memory B cell and antibody responses. We also discussed the link between the dysregulation of the
abovementioned regulatory mechanisms and B cell-related disorders.

Keywords: B cell, Antibody, Plasma cell, Transcription factor, microRNA, Epigenetic regulation, B cell malignancy,

Background

The life journey of B cells — from development to
activation and differentiation

B cell development begins in the fetal liver and con-
tinues in hematopoietic stem cells (HSCs) in the bone
marrow where the stromal cells provide cytokines and
chemokines, such as C-X-C motif chemokine 12
(CXCL12) and interleukin (IL)-7, for early stage B cell
development [1]. The signals from the stromal cells
allow HSCs to differentiate into common lymphoid pro-
genitor cells (CLPs), which express c-kit and IL-7 recep-
tors to provide the survival and proliferation signals for
CLPs once they encounter the ligands. Upon expression
of the transcription factors, E2A and early B-cell factor
(EBF), CLPs further develop into pro-B cells [2]. Starting
from pro-B cells, B cells in the bone marrow experience
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a sequential genetic rearrangement of heavy-chain and
light-chain immunoglobulin genes, the V(D)] recombin-
ation, resulting in the generation of the IgM-expressing
immature B cells [3]. The immature B cells migrate from
the bone marrow to the spleen, where they further dif-
ferentiate into T1 and T2 stages. B cells finally become
mature B cells that co-express IgD and IgM, after which
they wait to be activated by foreign antigens [4].

For activation and differentiation into antibody-secret-
ing plasma cells, mature B cells in the periphery lymph-
oid organs require two signals. The first signal is derived
from antigen-coupled B cell receptors (BCRs), and the
second signal can be delivered in a T cell-dependent
(TD) or T cell-independent (TI) manner. TI antigens,
such as lipopolysaccharides (LPS) and glycolipids, mostly
give rise to short-lived plasma cells that produce low-af-
finity antibodies. TD responses, initiated by antigen en-
counter and interaction with follicular helper T (Tth)
cells [5], allow B cells to either quickly become short-
lived plasma cells or enter the germinal center (GC) to
differentiate into plasma cells or memory B cells with
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higher affinity toward the antigens. The GC can be po-
larized into the dark zone, where B cells undergo som-
atic hypermutation (SHM) at the variable regions of the
BCR genes and clonal expansion, or the light zone,
where B cells go through affinity maturation via inter-
action with Tth cells and follicular dendritic cells (FDCs)
to select B cell clones with high affinity BCRs [6]. Tth
cells produce the CD40 ligand for maintaining B cell
survival, and IL-21 for promoting cell proliferation and
differentiation [7]. In GC B cells, class switch recombin-
ation (CSR) that changes the constant region of the im-
munoglobulin from one isotype to another also occurs.
GC B cells that are not positively selected by FDCs are
eliminated by apoptosis, while the selected B cells may
re-enter the dark zone to re-evolve BCRs with better af-
finity. The GC reaction allows B cells with high affinity
receptors to further differentiate into plasma cells or
memory B cells [8]. The GC-derived plasma cells circu-
late to the bone marrow and secrete antigen-specific
antibodies to become long-lived plasma cells that pro-
vide long-term protection against specific antigens [9].

Main text

Transcriptional network in mature B cells and plasma cells
B cell differentiation is tightly controlled by a transcrip-
tion regulation network. It involves the coordination of
several transcription factors to promote the expression
of antibody-secretion and plasma cell-related genes, and
downregulate the B cell identity genes. B lymphocyte-in-
duced maturation protein-1 (Blimp-1) is a critical tran-
scription regulator of plasma cell formation, which
mainly functions as a transcription repressor [10]. Defi-
ciency in Blimp-1, encoded by the PR domain zinc finger
protein 1 (Prdml) gene, in mice impaired plasma cell
differentiation, but did not affect B cell development
[11]. Blimp-1 is expressed at low levels during the plas-
mablast stage, and at high levels in mature plasma cells
[12]. Mechanistically, Blimp-1 represses the genes im-
portant for B cell identity, such as paired box protein 5
(PAXS5), B-cell lymphoma-6 (BCL6) and BTB domain
and CNC Homolog 2 (BACH2) [13, 14], and induces the
activation of interferon regulatory factor 4 (IRF4) and X-
Box Binding Protein 1 (XBP-1) [15, 16], suggesting that
it has a multifunctional role in transcription regulation.
PAXS5 is expressed throughout the early B cell develop-
mental stages and in mature B cells, and is crucial for
the maintenance of the identity of the B cell lineage [17].
Furthermore, it regulates the expression of BCR compo-
nent genes, such as CD19, CD21 and IgH, and other
transcription factors important for B cells, like IRF4,
IRF8, BACH2, lkaros family zinc finger protein 3
(IKZF3) and PRDM]1 [18]. After the B cells are activated
and enter the GC B-cell stage in the secondary lymphoid
organs, BCL6 and BACH2 expression begins.
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Upregulation of BCL6 is critical for the formation of GC
and the prevention of plasma cell differentiation [19, 20].
Signaling through IL-21 receptor in proliferating GC B
cells sustains the expression of BCL6 [21]. BACH2 is
expressed in the pro-B to mature B cell stages, and is ab-
sent in plasma cells. Loss of BACH2 causes the lack of
GC and Aicda, encoding activation-induced cytidine de-
aminase (AID), which is critical for SHM and CSR [22].
Both BCL6 and BACH2 suppress the expression of
PRDM]1 [23, 24]. In addition to Blimp-1, plasma cell for-
mation requires IRF4, which represses Bcl6, therefore in-
ducing Blimp-1 expression [25, 26]. Loss of IRF4 leads
to impaired antibody production [27]. XBP-1 functions
as a transcription regulator that is essential for Ig secre-
tion and remodeling of the endoplasmic reticulum in
plasma cells [28]. Absence of Blimp-1 causes impaired
expression of XBP-1 and its downstream genes, suggest-
ing that Blimp-1 is necessary for XBP-1 induction [29].

miRNA in B cell activation and differentiation

MicroRNAs (miRNAs) are small non-coding RNAs con-
taining approximately 22-23 nucleotides (nts) in length
that play important roles in post-transcriptional regulation
in several biological processes, including apoptosis, cell
proliferation, cell cycle, cell differentiation, hematopoiesis
and cancer [30]. Studies on miRNA functions have re-
vealed that one miRNA can specifically target hundreds of
different mRNAs, and every single mRNA can be regu-
lated by several different miRNAs [31, 32].

More than 1000 miRNAs have been identified in the hu-
man genome, which target about 60% of the human pro-
tein-encoding genes [33]. More than 100 different miRNAs
are expressed by the immune system cells [34—36]. MiR-
NAs have the potential to broadly influence the molecular
pathways that control the development and functions of in-
nate and adaptive immune responses. Global miRNA ex-
pression profiling in various B cell stages has been reported
[37]. An atlas of human mature B cell miRNAs (“miR-
Nome”) was constructed with mature B cell line-specific
short-RNA libraries coupled with low throughput sequen-
cing [36]. Furthermore, miRNA array has been extensively
used to identify miRNA expression profiles. For example,
miRNA array profiling of CD5"-activated and CD5™ -resting
B cells from human peripheral blood and tonsils revealed
that 34 miRNAs were enriched in CD5"-activated B cells,
and eight of them, including miR-323, miR-138, miR-9%,
miR-211, miR-129, miR-373, miR-135a and miR-184, were
highly expressed miRNAs capable of co-targeting ZEBI
and 7TP53 [38]. The importance of miRNAs in B cell lineage
was emphasized by a study on a mouse gene knockout
model in which Dicer, encoding a key enzyme responsible
for the generation of miRNAs from their precursors [39], is
deleted in a B cell-specific manner. B cell-specific deletion
of Dicer exhibited a developmental block at the pro-B to
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pre-B stages and revealed that miRNAs may have a role in
controlling V(D)] recombination for generating antibody
diversity in the early stage of B cell development [40].

We have investigated the changes in the miRNA ex-
pression inherent to the transcription network in plasma
cell differentiation (Fig. 1) [41]. Two large scale analyses,
deep-sequencing and miRNA microarray, were used to
elucidate the changes in the expression of miRNAs dur-
ing human plasma cell differentiation. In this study, hu-
man peripheral blood B cells were treated with the
stimuli provided by Tth-mimicking signals. Our compu-
tational analysis revealed that 34 and 60 miRNAs with
significant reads were upregulated and downregulated,
respectively, during human plasma cell differentiation.
We characterized the relationship between differentially
expressed miRNAs and transcription factors during
plasma cell differentiation. We found that several differ-
entially expressed miRNAs commonly target a single key
transcription factor. We thus called these miRNAs a
“miRNA hub”. It is noteworthy that these miRNA hubs
collaboratively regulate the expression of key transcrip-
tion factors, thereby enabling the formation of human
plasma cells in culture. Specifically, we found that upreg-
ulated miRNA hubs, including miR-34a-5p, miR-148a-
3p, miR-183-5p and miR-365a-3p, directly repressed en-
dogenous BCL6, BACH2 and FOXPI expression during
plasma cell differentiation. However, downregulated
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miRNA hubs, including miR-101-3p, miR-125b-5p and
miR-223-3p, target the PRDMI 3’ untranslated region
(UTR). We further showed that NF-xB and PRDM1 con-
tribute to the induction and repression of upregulated
and downregulated miRNA hubs, respectively, during
plasma cell differentiation. Moreover, our computational
analysis unveiled that the transcription factor, FOXP1, is
regulated by an induced miRNA hub and plays a role in
prohibiting plasma cell differentiation.

With regard to the function of miRNAs in B cells, ac-
cumulating reports have demonstrated their roles in
regulating B cell development and shaping the properties
of the effector functions of B cells. One of the first miR-
NAs identified with functional significance to B cell de-
velopment is miR-181a (now called miR-181a-5p).
Overexpression of miR-181a-5p in HSCs increased the
number of B cells in vitro and in vivo [42]. miR-181a-5p
targets the differentiation inhibitor, /D2, which sup-
presses the early differentiation of B cells [43]. MiR-150
regulates the differentiation of normal B cells into anti-
body-secreting plasma cells. Several studies have indi-
cated that miR-150 is highly expressed in mature B cells,
relatively lowly expressed in immature B cells, and has
the lowest expression during the pro-B to pre-B cell
transition [44, 45]. One key target of miR-150 is ¢-Myb,
which is required for the development of pro-B cells [46,
47]. Another study demonstrated that the p53-induced
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Fig. 1 The action of miRNAs and key transcription factors in coordinately directing plasma cell differentiation. Several factors are involved in the

negative regulation of PROM1 in mature B cells, including BCL6/BACH2/FOXPT and the miR-101-3p, miR-125b-5p, miR-223-3p miRNA hub. During B cell
activation, NF-kB induces not only PRDM1 for the initiation of plasma cell differentiation, but also the miR-34a-5p, miR-148a-3p, miR-183-5p and miR-
365a-5p hub. The induced miRNA hub including miR-34a-5p, miR-148a-3p, miR-183-5p and miR-365a-5p downregulates BCL6/BACH2/FOXP1, thereby
establishing elevated levels of PRDM1 for driving plasma cell differentiation. Induced PRDM1 in turn suppresses the expression of the miR-101-3p, miR-
222-3p and miR-223-3p hub, and BCL6/BACH2/FOXP1, resulting in commitment to the plasma cell fate. Lines with arrow and bars indicate upregulation
and downregulation, respectively. miRNAs in a red or green box represent upregulated or downregulated expression, respectively
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miRNA, miR-34a (now called miR-34a-5p), impaired B
cell development. MiR-34a targets the 3UTR of Fork-
head box protein P1 (Foxpl) mRNA, which regulates the
expression of recombination-activating genes (Ragl and
Rag2) in the pro-B to pre-B transition stages [48, 49].
MiR-155 is a highly expressed miRNA in GC B cells,
however it is expressed at relatively low levels in HSCs
and mature B cells [34, 50]. Knockout of the miR-155
gene in mice caused defective CSR and impaired differ-
entiation of antibody-secreting plasma cells, by targeting
Spil (encoding PU.1) and Aicda [51-53]. Besides miR-
155, miR-181b has been shown to negatively regulate
CSR by targeting Aicda [54]. Additionally, several other
studies have indicated that miR-9, miR-125b, the miR-17—
92 cluster and the miR-30 family are expressed in GC B
cells and enhance plasma cell differentiation [37, 55]. De-
letion of the miR-17-92 cluster in B cells in mice caused
enhanced homing of plasma cells to the bone marrow
upon TD immunization, likely owing to the effect of miR-
17-92 on Slprl, a gene important for the egress of lym-
phocytes from the lymphoid organs [56].

miRNAs in B cell malignancy and autoimmune diseases

Lymphoma, including B and T-cell lymphoma, is malig-
nancy of lymphatic cells, which affects more than a mil-
lion people worldwide. Many miRNAs that contribute to
B cell lymphomagenesis are also key regulators in nor-
mal hematopoiesis and lymphopoiesis. MiRNAs that
affect tumorigenesis are called onco-miRs or tumor sup-
pressor miRs [57, 58]. The first reported onco-miR is
miR-155, which is upregulated in normal plasma cell dif-
ferentiation and overexpressed in several types of B cell
lymphomas [59]. It is noteworthy that mice with miR-
155 overexpression in a B cell-specific manner develop
high-grade B-cell lymphoma resembling diffuse large B-
cell lymphoma (DLBCL) [59], likely owing to the effect
of miR-155 on SHIP1, which promotes TNFa-dependent
cell proliferation [60]. MiR-155 is also a key regulator of
the PI3K/AKT pathway in DLBCL. It promotes cell pro-
liferation and inhibits apoptosis of DLBCL cells [61].
The most studied tumor-suppressor miRNA is miR-34a,
which forms parts of the p53 network [62]. p53 directly
induces miR-34a expression, but at the same time miR-
34a enhances p53 expression via inhibiting SIRTI, a
regulator of p53 deacetylation, resulting in a positive
feedback loop [63]. An additional study has shown that
miR-34a reduces tumor growth in mice by targeting
Foxpl [64]. Another well-studied tumor-suppressor
miRNA in B cell malignancy is miR-101 (now called
miR-101-3p). The decreased expression of miR-101 cor-
related with the pathogenesis and prognosis of DLBCL,
while upregulation of miR-101 in DLBCL inhibited cell
proliferation and facilitated apoptosis by targeting MEKI
[65]. Furthermore, miR-183 is differentially expressed in
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the three Hodgkin’s lymphoma (HL) subtypes and in
EBV"' and EBV™ HLs. However, elucidation of the exact
mode of action of miR-183 in HL requires further inves-
tigation [66]. Another study has shown that the expres-
sion of miR-223 and miR-125b in DLBCL is higher than
in follicular lymphoma (FL), suggesting that the high ex-
pression of miR-223 and miR-125b may contribute to
the transformation of DLBCL [67]. The aberrant expres-
sion of miR-125b in mantle cell lymphoma (MCL) has
also been reported. A miRNA expression profile study
was able to segregate MCLs into three different groups
with distinct biological and clinical features [68].

Unlike DLBCL, which is usually formed from mutated
or dysregulated normal GC B cells [69], multiple mye-
loma (MM) arises from malignant plasma cells in the
bone marow [70, 71]. The molecular mechanisms under-
lying the dysregulation of p53 in MM have been inten-
sively investigated for many years [72, 73]. Recently, it
has been suggested that many miRNAs reported to
negatively regulate p53 expression may also have impli-
cations in MM cells. For example, miR-125b is an onco-
miR in hematologic malignancies as it targets p53 [74]
and other components of the p53 pro-apoptotic net-
work, including BAKI, PUMA, BMF, TRP53INPI and
Krupple-like factor 13 (KLF13) [75, 76]. Furthermore,
dexamethasone induces the expression of miR-34a in
MM cells [75, 77]. MiR-34a suppresses the expression of
SIRT1 deacetylase, and thus allows the maintenance of
acetylation and inactivation of p53. Results from a gene
microarray study showed that the onco-miRs, miR-19b
and miR-20a, were differently expressed in patients with
MM and normal controls. MiR19b/20a promotes cell
proliferation and migration, and inhibits cell apoptosis
by targeting PTEN in patients with MM [78]. Moreover,
miR-9 is another onco-miR that represses apoptosis in
MM patients and MM cell lines by regulating the
TRIM56/NF-kB pathway [79]. Taken together, these
studies indicate the roles of miRNAs in the progression
of B cell malignancy and their therapeutic potential for
the treatment of B cell malignancy.

Recently, miRNAs have also been reported to play a
role in immune dysfunction and autoimmune diseases.
Systemic lupus erythematosus (SLE) is a multisystem
autoimmune disorder that mostly affects women at
childbearing age [80]. B cells play a cardinal role in the
pathogenesis of SLE; more than 90% of SLE patients
have high levels of antinuclear antibodies in the sera, in-
cluding anti-dsDNA antibodies and anti-snRNP anti-
bodies [81]. Several miRNAs have been identified as
biomarkers during the development of SLE. miRNA
microarray analysis first revealed that miR-21 and miR-
17-5p are differently expressed in peripheral blood
mononuclear cells (PBMCs) of SLE patients [82]. The
increased expression of miR-7 downregulates the
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expression of PTEN in B cells of SLE patients and con-
tributes to hyper-activation of B cells [83]. Moreover,
miR-17-5p is downregulated in PBMCs of SLE patients
[82]. MiR-17-5p downregulates c-MYC expression dur-
ing SLE formation. Transfection of miR-17-5p mimics
into PBMCs from SLE patients caused a dramatic reduc-
tion in E2F1 and ¢-MYC expression, which resulted in
reduced mRNA levels of the IFN-inducible gene, MxA
[84]. Screening of SLE-specific miRNAs from 42 B cell-
related miRNAs by a miRNA PCR Array identified that
14 miRNAs, including miR-103, miR-150, miR-20a,
miR-223, miR-27, miR-15b, miR-16, miR-181a, miR-19b,
miR-22, miR-23a, miR-25, miR-92a and miR-93, were
significantly downregulated in the plasma of SLE pa-
tients, compared with the plasma of healthy donors [85].
Moreover, six plasma miRNAs, including miR-92a, miR-
27a, miR-19b, miR-23a, miR-223 and miR-16, were
expressed at significantly decreased levels in SLE pa-
tients than in rheumatoid arthritis (RA) patients. These
results demonstrated that these differentially expressed
miRNAs in the plasma of SLE and RA patients can po-
tentially be used as a diagnostic signature to distinguish
between these two diseases. Another study using miRNA
expression array revealed the serum miRNA expression
profiles of SLE patients and healthy donors [86], show-
ing that miR-371b-5p, miR-5100 and miR-146a-5p were
increased in active SLE. These studies suggest the poten-
tial roles of these identified miRNAs in the development
of SLE. The function of miRNAs in B cell malignancy
and autoimmune diseases was summarized in Table 1.

miRNA therapeutics

MiRNA-targeted therapeutics can be divided into
miRNA mimics [87] and inhibitors (also called anti-
miRs) [88]. The effect of modulation of miRNAs’ levels
on B cell malignancy has been demonstrated. Studies on
a mouse model of miR-155-induced lymphoma, in which
mir-155 is expressed under the control of doxycycline,

Table 1 miRNAs in B cell malignancy and autoimmune diseases

Page 5 of 13

demonstrated that doxycycline withdrawal resulted in
suppression of mir-155 expression and subsequent
tumor shrinkage [89]. In this mouse model, anti-miR-
155 treatment resulted in decreased tumor burden, indi-
cating that miR-155 inhibition has therapeutic potential
[89]. In contrast, miR-34a has been identified as a tumor
suppressor miRNA by repressing several target genes,
such as cyclin-dependent kinase 4 (CDK4), CDK6, BCL2,
MET, Notch, c-MYC, AXL and FOXPI [48, 49, 90]. Sev-
eral preclinical studies using miR-34 mimics have dem-
onstrated their potential as anticancer therapeutics. For
instance, miR-34a mimics showed promising anti-tumor
activity in mouse models of lung [91], liver [92] and
prostate [93] cancer. In these cases, significant inhibition
of tumor growth was observed, which correlated with re-
duced expression of target proteins, such as c-MYC and
BCL-2, in tumors. As a result of the above-mentioned
studies, several miRNA-targeted therapeutics have
reached clinical development. Currently, there are more
than 20 clinical trials applying miRNA and siRNA-based
therapeutics [94]. For instance, anti-miRs are single-
stranded first-generation antisense oligonucleotides,
which have been modified and designed to block the
function of miRNAs. Anti-miRs with a 2'-O-methox-
yethyl modification (2'-OM) are called antagomiRs [95].
These synthetic small RNA molecules have a comple-
mentary sequence to the target miRNA, and are able to
strongly bind to the target miRNA and thereby block its
function. MiRNA mimics are synthetic double-stranded
small RNA molecules matching the corresponding
miRNA sequence, and therefore functionally able to re-
store the loss of miRNA expression in diseases. MiR-
34a mimics reached phase I clinical trials for treating
cancer, but this trial was halted at phase I owing to im-
mune-related adverse events [94]. Effective delivery of
RNA-based therapeutics to the target tissues has been a
challenge in their therapeutic application [96]. Develop-
ment of better in vivo delivery systems to reach the

miRNA Biological function Target genes Disease type References
miR-155 Promote TNFa-dependent proliferation SHIP1 DCBCL [60]
miR-155 Promote proliferation and inhibits apoptosis PI3K/AKT pathway DCBCL [61]
miR-101 Inhibit proliferation and facilitate apoptosis MEK1 DCBCL [65]
miR-125b Inhibit apoptosis p53 MM [74,75]
miR-19b/20a Promote proliferation, migration, and inhibit apoptosis PTEN MM [78]
miR-34a Regulate cell cycle progression, cellular senescence and apoptosis SIRTT MM [771
miR-34a Reduce tumor growth Foxpl DLBCL [49]
miR-9 Inhibit apoptosis TRIM56/NF-kB pathway MM [79]
miR-7 Promote B cell hyperresponsiveness PTEN SLE [83]
miR-17-5p Inhibit IFN-inducible gene c-MYC, and E2F1 SLE [84]
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target specifically and efficiently to overcome the bottle-
neck of RNA-based therapy (including miRNA) in the
clinic is the next important task.

Epigenetic regulation in B cell activation and
differentiation

Epigenetic regulation is critical for coordination with the
abovementioned transcription regulation networks in
molecular programming during B cell activation and dif-
ferentiation. The synergistic effects of both genetically
and environmentally induced epigenetic modifications
have been demonstrated to contribute to plasma cell dif-
ferentiation and the etiopathogenetic mechanisms of the
generation of B cell- or plasma cell-related diseases, such
as autoimmune disorders and lymphomagenesis [97]. In
general, the quiescent naive B cells in peripheral lymph-
oid organs display inactive chromatin structures that
show genome-wide DNA hypermethylation [98] and
methylation of histone 3 K9 (H3K9) and H3K27 [99]. At
this stage, the expression level of genes important for
regulating B cell identify and antigen recognition is regu-
lated by histone deacetylase 7 (HDAC7) [100]. During
early B cell development, HDAC?7 represses myeloid and
T cell genes in early B cell progenitors [100]. Enhancer
of zeste homolog 2 (Ezh2) is able to catalyze H3K27me3,
which is associated with long-term repression [101]. In
GC B cells, Ezh2 is highly expressed [102]. Deletion of
Ezh2 in mice in a GC-specific manner caused impaired
GC response, memory B cell formation and antibody re-
sponses compared with the control mice, suggesting that
Ezh2 is essential for B cell functions [103]. In GC reac-
tions, a number of histone modifications, including acet-
ylated H3 and H4, and DNA double-strand breaks
(DSBs)-induced phosphorylated H2AX (YH2AX), are as-
sociated with CS [104, 105]. However, acetylated H3 and
H4 may not be linked with SHM activation. Instead, the
histone modification pattern of SHM consists of phos-
phorylation of histone H2B on serine 14 (H2B%"*P),
which is also responsive to DSBs [106].

In addition, in GC, the expression and action of AID is
regulated by a series of epigenetic mechanisms. The sup-
pression of Aicda in naive B cells is due to DNA hyper-
methylation at the promoter region [107]. The H3
acetylation level of the Aicda gene locus in naive B cells
is low compared with the global H3 acetylation levels of
other nearby genes. After B cells are stimulated, the
Aicda gene locus is demethylated and becomes enriched
with H3K4me3, H3K9ac and H3K14ac, which are associ-
ated with active histone marks [108]. Downregulation of
Aicda in memory B cells and plasma cells may result
from re-methylation of the Aicda gene locus. The his-
tone chaperone, Spt6, regulates CSR and AID expression
through two distinct types of histone modifications to
generate the euchromatin status, namely, H3K4me3 and
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H3K36me3, respectively. Spt6 is also required for the es-
tablishment of H3K4me3 marks in the IgH variable re-
gion during SHM [109]. In terms of the functional mode
of action of AID, it interacts with ubiquitinated chroma-
tin. Specifically, ubiquitination of H2BK120 and
H2AK119 is colocalized with mismatched DNA poly-
merase 1) in the AID-containing region [110].

The global levels of H3K9me2/me3 and H3K4me2 are
all upregulated after LPS and IL-4 stimulation in a B cell
culture [111]. We have also reported changes in histone
modifications in B cells treated with Tth cell-mimicking
signals (Fig. 2) [99]. We found that the global levels of
H3K9me3/me2 were reduced after stimulating mouse
spleen B cells with Tfh cell-mediated signals. Further-
more, a systemic search of the epigenetic modifiers that
contribute to the downregulation of H3K9me3/me2 re-
vealed that the histone demethylases, KDM4A and
KDM4C, were upregulated in mouse spleen B cells
treated with Tth cell-mimicking signals, whereas stimu-
lation with LPS did not induce a similar pattern of
KDM4A/KDM4C-mediated epigenetic changes. Func-
tionally, depletion of KDM4A and KDM4C in response
to Tth cell-mimicking signals accelerated B cell activa-
tion and proliferation. Our genome-wide analysis using
chromatin immunoprecipitation sequencing (ChIP-seq)
combined with ¢cDNA microarray analyses further re-
vealed KDM4A and KDM4C targets during B cell activa-
tion. Among these, WDR5, an MLL complex member
that facilitates H3K4 methylation [112], was further
demonstrated to regulate the cell cycle; in particular, the
cell cycle inhibitors, Cdkn2 and Cdkn3. Mechanistically,
de novo motif analysis of the ChIP-seq data of KDM4A
and KDMA4C revealed that NF-kB p65 interacts with
KDM4A and KDMA4C to regulate gene expression, in-
cluding WDRS5.

Less is known about epigenetic modification during
plasma cell differentiation. Genes expressed during
plasma cell differentiation correlated with the acquisition
of H3K4mel and H3K4me3 histone marks, which are
the markers of active promoters and distal enhancers
[113]. Blimp-1 is a key transcription factor in directing
plasma cell differentiation [15], thus, epigenetic regula-
tion of PRDM1 expression and function would affect the
humoral responses. BCL6 and HDAC4, - 5 or - 7 form
stable complexes to mediate the decreased levels of his-
tone acetylation on the PRDMI promoter in GC B cells
[114, 115]. Furthermore, treatment of B cells with
HDAC inhibitors, such as trichostatin A (TSA) and bu-
tyrate, induced the expression of Blimp-1 and ] chain,
but decreased the expression of c-Myc and Pax-5. TSA
treatment also promotes the expression of CD138 and
downregulates surface IgM [116]. Several Blimp-1 target
genes, including Pax5 and Spib, showed decreased his-
tone acetylation in plasma cells [117, 118]. Therefore,
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Fig. 2 Proposed model of the role of KDM4A and KDM4C in B cell activation. During activation by Tfh cell-mimicking signals, the induced
demethylases, KDM4A and KDM4C, cooperate with NF-kB to upregulate the expression of Wdr5 by removing H3K9me3/me2. WDRS5, a core
subunit of the COMPASS histone H3K4 methyltransferase complex, in turn facilitates the transcription of Cdkn2a and Cdkn3 by elevating

H3K4me3/me2. Both CDKN2A and CDKN3 are involved in the regulation of stimulated B cell proliferation

histone acetylation regulates the transcription of genes
controlling B cell differentiation. In general, Blimp-1 is a
transcription repressor able to recruit co-repressor pro-
teins and histone modifiers to induce transcription re-
pression. We have previously shown that a proline-rich
domain of Blimp-1 directly interacts with LSDI1, an
H3K4me2/1 and H3K9me2/1-specific demethylase [117].
These proteins collaboratively remodel the chromatin
accessibility of Blimp-1 targets, and thereby modulate
the expression of Blimp-1 targets [117]. Disruption of
the Blimp-1 interaction with LSD1, depletion of LSD1
expression and inhibition of LSD1 function all reduced
the formation of antibody-secreting plasma cells. The
five C2H2 zinc fingers of Blimp-1 contain a nuclear
localization signal and show DNA binding activity. They
interact with HDAC2 [118] and H3K9-specific methyl-
transferase G9a [12], both of which are histone modifiers
that facilitate the inactive chromatin and reduce tran-
scription. These findings suggest that Blimp-1 regulates
the differentiation of plasma cells by interacting with
multiple chromatin modifiers.

Dysregulated epigenetic mechanisms in B cell malignancy
and autoimmune diseases

The dysregulated epigenetic mechanism resulting in in-
adequate cell cycle is one of the major causes leading to
malignant B cells. For instance, the H3K27-specific
methyltransferase EZH2 is highly expressed in the GC,
where it cooperates with Polycomb Repressive Complex-
2 (PRC2) [119]. Mutation of Ezh2 in mice resulted in

GC hyperplasia [120], which in part may stem from the
enhanced repression of CDKNIA [120]. Furthermore,
EZH2 can restrain plasma cell differentiation by estab-
lishing the H3K27me3 marks at the Prdm1 and Irf4 loci
[103]. In human DLBCL cells, a mutant form of EZH2
silences PRDM1 through the recruitment of PRC2,
resulting in the promotion of growth of the GC-type
DLBCL [103]. Hence, 22% of GC-type DLBCL cases
carry EZH2 mutations [121]. In addition, KMT2D (also
known as MLL2 or MLL4) is a member of the SET1
family of histone methyltransferases (HMTs) that facili-
tates the establishment of H3K4me2/mel at enhancer
regions and was frequently found to be mutated in FL
(accounting for 70-80% of cases) and DLBCL [122-
124]. KMT2D regulates genes involved in the CDA40,
JAK-STAT, TLR and BCR signaling pathways [123].
Mice harboring a Kmt2d deletion in B cells showed B
cell proliferation advantages and B cell lymphoprolifera-
tive diseases through collaboration with BCL-2 [124].
The CREBBP gene encodes a H3K18 and H3K27-spe-
cific lysine acetyltransferase that tags the transcription
activation [125, 126]. Further inactivating mutations
and/or copy number losses of CREBBP occur in more
than half of the FL cases and in nearly 20% of the
DLBCL cases [127]. Accordingly, Crebbp deletion in the
GC stage in mice in the presence of BCL-2 overexpres-
sion promotes the development of FL [128].

MM is plasma-cell malignancy with a slow progress
feature [129]. One of the well studied HMTs in MM is
the H3K36me2 and H4K20me2/me3-specific lysine
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methyltransferase, MMSET (also known as WHSC1 or
NSD2) [130, 131]. MMEST is a DNA damage-responsive
protein that catalyzes H4K20 methylation and induces
the accumulation of 53BP1 at DNA damage sites [132].
Fifteen to 20 % of MM cells carry the t(4;14) transloca-
tion, which generates the fusion of MMSET to the IgH
locus, resulting in the upregulation MMSET, which cor-
relates with poor prognosis [133]. MMSET forms a com-
plex with epigenetic repressors by recruiting Sin3a,
HDACI1, HDAC2 and the H3K4-specific demethylase,
LSD1/KDM1A. The MMSET complex then indirectly
induces c-MYC levels by repressing miR-126, thereby
sustaining the proliferation of MM cells [134, 135].
Nevertheless, the t [4, 14] translocation in MM cells re-
models the chromatin structure that carries the
H3K36me2 histone activation mark and induces global
reduction in H3K27me3 by upregulating EZH2 at the
oncogenic loci [131, 133]. The extent of H3K27 methyla-
tion is associated with the malignancy of plasma cells.
EZH2 is upregulated during MM progression [136],
resulting in enhanced IL-6R expression, c-MYC activa-
tion, miR-26a downregulation and long non-coding
RNA expression, thereby affecting the proliferation and
apoptosis of MM cells [137, 138]. In contrast, mutations
of the H3K27-specific demethylase, KDM6A, are found
in 10% of primary MM samples [138, 139]. Inhibition of
EZH2 decreases the growth of KDM6A-depleted MM
cells. The KDM6A-mutated MM cells are more sensitive
to EZH2 inhibitor-induced apoptosis through reactiva-
tion of BCL6 and subsequently repression of IRF4 and c-
MYC [140]. These results showed the synergetic effect of
EZH2 and KDM6A, which collaboratively control the
expression of a set of oncogenic genes. The levels of the
H3K9-specific demethylase, KDM3A, have been demon-
strated to be increased in MM cells. It has been shown
that the KDM3A-KLF2-IRF4 axis promotes homing of
MM cells to the bone marrow and their adherence to
bone marrow stromal cells. KDM3A maintains the tran-
scriptional activity of KLF2 and IRF4 [141, 142]. KDM3A
is upregulated by hypoxia-induced HIFla that induces
the expression of the long non-coding RNA, MALATI,
which in turn facilitates the upregulation of glycolytic
and anti-apoptotic genes in MM cells [143, 144].

Recent reports have shown the significance of abnor-
mal epigenetic regulation in the pathogenesis of SLE. A
significantly reduced level of DNMTI and DNMT3A
transcripts was found in SLE patients compared with
healthy controls [145]. The high IL-6 levels produced by
SLE patients resulted in impaired induction of DNMT1,
which in turn caused the demethylation of DNA in CpG
islands in the cytoplasmic isoform of CD5, CD5-EIB.
CD5-E1B is a negative regulator of BCR signaling,
thereby establishing the immune tolerance in SLE B cells
[146, 147]. Beyond the coding genes, the DNA
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methylation state of non-coding regions in the genome
of SLE patients was also found to be altered. The hypo-
methylated long interspersed nuclear elements, but not
the short interspersed nuclear elements, in SLE B cells cor-
relate with the disease prognosis [148, 149]. Furthermore,
our previously identified KDM4A/KDM4C/WDR5/CDKNs
epigenetic pathway induced by Tth cell-mimicking signals
is dysregulated in B cells isolated from SLE patients [99].
We found that activated normal human peripheral blood B
cells exhibited a significant reduction in H3K9me2 and
H3K9me3, while the levels of H3K9me2 and H3K9me3 in
stimulated SLE B cells did not change significantly. Accord-
ingly, KDM4A and KDM4C mRNA levels were significantly
reduced in the steady state and the stimulated SLE B cells,
compared with normal B cells. Together, the effects of dys-
regulated histone modifiers on B cell malignancy and auto-
immune diseases were summarized in Table 2.

Epigenetic therapeutics

The aberrant epigenetic profiles of malignant cells, such
as in MM, have been established in past decade. To target
these aberrant epigenetic regulation mechanisms in MM,
there are three categories of epigenetic modulating thera-
peutic agents under development: DNA methyltransferase
inhibitors (DNMTi), histone deacetylase inhibitors
(HDACIi) and histone lysine methyltransferase inhibitor
(HKMTi). Several DNMTis, such as 5-azacytidine (AZA,
Vidaza) and 2-deoxy-5-aza-cytidine (DAC, Decitabine,
Dacogen), have been ideal therapeutics for myelodysplas-
tic syndrome [150, 151]. In MM, AZA and DAC have
been demonstrated to have anti-MM effects, which cause
cell cycle arrest and generation of oxidative stress to in-
duce necrosis and apoptosis [152, 153]. In recent years,
great progress has been achieved with HDACis in drug
development for cancer therapy. The anti-MM effects of
HDACis rely on their chromatin remodeling activity to in-
duce apoptosis, cell cycle arrest and autophagy, as well as
to suppress angiogenesis [154]. In particular, HDAC6 reg-
ulates deacetylation of a-tubulin and heat shock protein
90a (HSP90«), thereby affecting cell motility and cell ad-
hesion, as well as the aggresome degradation pathway in
response to misfolded proteins in MM cells [155]. Fur-
thermore, inhibition of HDAC6 shows minimal side ef-
fects on healthy cells [156]. Hence, several clinical trials
have applied HDAC6-specific inhibitors, such as Rocilino-
stat [157], ITF2357 [158] and Panobinostat [159, 160], in
MM therapy.

The bromodomain (BRD) and extra-terminal (BET)
family of BRD-containing proteins is a group of proteins
that recognize acetylated lysine residues of histones and
regulate gene expression. Hence, suppression of the activ-
ity of BRD-containing proteins is an effective way to con-
trol the histone-acetylation-dependent gene activation.
The pan-BET inhibitor, GSK525762, inhibits growth of a
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Table 2 Epigenetic controls in B cell malignancy and autoimmune diseases
Histone Biological function Target genes Disease type References
Modifier (direct or indirect)
EZH2 Promote growth CDKN1A DCBCL [120]
EZH2 Retrain plasma cell differentiation PRDMT and IRF4 Non-Hodgkin [103]
lymphomas
KDM4A Promote B cell activation and WDR5 SLE [99]
differentiation
KDM4C Promote B cell activation and WDR5 SLE [99]
differentiation
LSD1 Promote differentiation Blimp-1 targets, such as CIITA and ¢-MYC MM [117]
MMSET Promote growth c-MYC MM [135]
KDM6A Promote oncogenesis BCL-6, IRF4 and c-MYC MM [140]
KDM3A Promote homing of MM cells KLF2, and IRF4 MM [141]
WDR5 Inhibit proliferation CDKNZ2, and CDKN3 SLE [99]
CREBBP Regulate GC reaction and proliferation BCL-6 targets, such as BCL-2 and PRDM1 FL and DCBCL [128]
KMT2D Repress lymphoma development Genes in CD40, JAK-STAT, TLR and BCR FL and DCBCL [123]
pathways
DNMT1 Promote BCR signaling CD5, and CD5-E1B SLE [146]

broad spectrum of human hematological cancer cells, in-
cluding MM [161]. Other ongoing clinical studies showed
that BET inhibitors, such as OTX015 and CPI-0610,
which selectively block BRD2, BRD3 and BRD4, were also
used in the pre-clinical or clinical trials for MM or lymph-
oma [162, 163].

In addition, EZH2 inhibitors have been developed to
block MM. Currently, the EZH2 inhibitor, Tazemetostat
(EPZ-6438), is under clinical trials in combination with
immunomodulatory imide drugs (IMiDs) for treating a
subgroup of MM patients [164]. GSK2816126, another
EZH2 inhibitor, is also in clinical trials for MM. It in-
duces apoptosis in MM cells by downregulating mito-
chondrial activity [165].

Conclusions

Accumulating research efforts have been made to elucidate
the molecular pathways regulating the B cell responses and
antibody production. Studying the regulatory mechanisms
of B cell responses has become an emerging research topic
with the need to further understand the pathways that con-
trol the new coming pathogens through vaccination or to
combat cancers. In addition to the above-described regula-
tory mechanisms in B cell activation and differentiation,
there are other types of regulation involved, such as glyco-
sylation and SUMOylation. Studies on these regulatory
mechanisms open opportunities for identifying new drug-
gable targets to control B cell-related diseases such as auto-
immune diseases and B cell malignancies.
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