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Introduction: In developed countries, the age structure of the population is currently
undergoing an upward shift, resulting a decrease in general bone quality and surgical
durability. Over the past decade, oblique lumbar interbody fusion (OLIF) has been globally
accepted as a minimally invasive surgical technique. There are several stabilization options
available for OLIF cage fixation such as self-anchored stand-alone (SSA), lateral plate-
screw (LPS), and bilateral pedicle screw (BPS) systems. The constructs’ stability are crucial
for the immediate and long-term success of the surgery. The aim of this study is to
investigate the biomechanical effect of the aforementioned constructs, using finite element
analysis with different bone qualities (osteoporotic and normal).

Method: A bi-segmental (L2–L4) finite element (FE) model was created, using a CT scan of
a 24-year-old healthy male. After the FE model validation, CAD geometries of the implants
were inserted into the L3–L4 motion segment during a virtual surgery. For the simulations,
a 150 N follower load was applied on the models, then 10 Nm of torque was used in six
general directions (flexion, extension, right/left bending, and right/left rotation), with
different bone material properties.

Results: The smallest segmental (L3–L4) ROM (range of motion) was observed in the BPS
system, except for right bending. Osteoporosis increased ROMs in all constructs,
especially in the LPS system (right bending increase: 140.26%). Osteoporosis also
increased the caudal displacement of the implanted cage in all models (healthy bone:
0.06 ± 0.03 mm, osteoporosis: 0.106 ± 0.07mm), particularly with right bending, where
the displacement doubled in SSA and LPS constructs. The displacement of the screws
inside the L4 vertebra increased by 59% on average (59.33 ± 21.53%) due to osteoporosis
(100% in LPS, rotation). BPS-L4 screw displacements were the least affected by
osteoporosis.

Conclusions: The investigated constructs provide different levels of stability to the spine
depending on the quality of the bone, which can affect the outcome of the surgery. In our
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model, the BPS system was found to be the most stable construct in osteoporosis. The
presented model, after further development, has the potential to help the surgeon in
planning a particular spinal surgery by adjusting the stabilization type to the patient’s bone
quality.

Keywords: degenerative disc disease, spine surgery, finite element analysis, osteoporosis, oblique lateral interbody
fusion, stand-alone

INTRODUCTION

Lumbar interbody fusion (LIF) is a gold-standard surgical
treatment option for a range of spinal disorders, including
degenerative pathologies, infection, trauma, and neoplasia
(Mobbs et al., 2015; Resnick et al., 2005). LIF can be achieved
via different approaches and techniques, each with its own
unique instruments, implants (exp. cages), advantages,
disadvantages, indications, and limitations. The age structure
of the global population is currently undergoing an upward shift
due to decreasing fertility rates and increasing life expectancy
(Fuster, 2017), resulting in the changing epidemiology of diseases
and spinal disorders (Fehlings et al., 2015). Advancement in
minimally invasive spinal fusion technology (Yue et al., 2010)
can provide an answer for the challenges posed by the ageing
population (Shamji et al., 2015). The minimally invasive anterior
approach to the lumbar spine through retroperitoneal access was
first described by Mayer (1997). Silvestre et al. (2012) used
Mayer’s minimally invasive retroperitoneal anterior approach
for LIF, and it was referred to as oblique lumbar interbody fusion
(OLIF). The OLIF technique is widely accepted (Mobbs et al.,
2015; Phan et al., 2016) and provides, from the patient’s left side,
a safe access corridor from L2 to L5 vertebra between the psoas
and the aorta. Through the corridor, the surgeon can resect the
disc, remove the cartilage endplate, insert a large intervertebral
cage, and achieve the goal of intervertebral fusion and indirect
decompression (Mehren et al., 2016) by keeping the lumbosacral
plexus safe (Phan et al., 2016; Mehren et al., 2016; Chung et al.,
2017). During the OLIF procedure, different additional fixation
methods can be applied, and there is no consensus about the
indication for choosing a particular type. Self-anchored stand-
alone (SSA) OLIF cages contain a screw fixation part besides the
intervertebral spacer. Lateral plate-screw (LPS) fixation has a
longer history in spinal trauma, but a new plate design has
recently emerged, dedicated for OLIF. Percutaneous bilateral
pedicle screw (BPS) fixation can be used after turning the patient
to prone position, which, in general, increases the operation time
(Li et al., 2020) and the invasiveness by the posterior incisions
used to insert the pedicle screws. For experienced spine surgeons,
there is no difference in the complexity of the 3 procedures.
Several other fixation methods and a combination of these have
been reported considering their technical specifications.
However, only a few studies have investigated the
biomechanical characteristics of OLIF with various fixation
options (Hah and Kang, 2019), especially focusing on the
effect of osteoporosis, which is widely present in the ageing
population (Fehlings et al., 2015). Biomechanical characteristics
of the different OLIF constructs can significantly influence the

short- and long-term implant-related complication rate, as well
as the possibility of achieving bony fusion, thus the therapeutic
outcome.

The first application of finite element analysis (FEA) in
biomechanics was published by Brekelmans et al. (1972). In
the last decades, FEA contributed to the understanding of the
spine, its components, and its behavior in healthy, diseased, or
damaged conditions (Fagan et al., 2002), complementing the
in vitro experiments. FEA has become a common research
method in the field of in silico medicine (Viceconti et al., 2008).

To the best knowledge of the authors, there is no study
comparing the 3 aforementioned OLIF implants with different
bone material properties in the current literature. The aim of
this study was to use FE analysis to evaluate the stability of
different OLIF fusion constructs (BPS, LPS, and SSA) in
normal and osteoporotic conditions. While a direct
validation of the outputs of the models for this specific
application was not the goal of this study, the present
comparative computational approach enables to highlight
the importance of bone material strength and stiffness
reduction (ageing, metabolic bone diseases, etc.) in the
surgeon’s decision-making process of choosing between
different fixation options.

MATERIALS AND METHODS

Generation of L2–L4 Lumbar Spine
Bi-Segment Finite Element Model
A CT scan (Hitachi Presto, Hitachi Medical Corporation, Tokyo,
Japan) of a 24-year-old patient’s lumbar spine was selected from a
study of 270 patients who underwent different treatments due to
lower back pain in our clinic (MySPINE, Project ID: 269909,
Funded under: FP7-ICT). The imaging protocol was previously
defined in the MySPINE project (Castro-Mateos et al., 2015),
(Rijsbergen et al., 2018), and the images were reconstructed with a
voxel size of 0.6 × 0.6 × 0.6 mm3. The L2–L3 and L3–L4
segments were not affected by any musculoskeletal
pathology. The data were extracted from the hospital
PACS in DICOM file format. To comply with the ethical
approval of the patient data protection, de-identification of
the DICOM data was performed using Clinical Trial
Processor software (Radiological Society of North America,
https://www.rsna.org/ctp.aspx) (Aryanto et al., 2015). In
order to define the 3D geometry, we performed a
segmentation procedure using Mimics image analysis
software (Mimics Research, Mimics Innovation Suite v23.
0, Materialise, Leuven, Belgium) via the Hounsfield
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thresholding algorithm and manual segmentation tools. To
evaluate the accuracy of the segmentation process, we
calculated the Dice Similarity Index (DSI) (Zou et al.,
2004; Bharatha et al., 2001) based on two segmentation
sessions of the same geometry.

From the segmented masks, a triangulated surface mesh
was automatically generated in STL (Stereolithography)
format. In 3-Matic (Mimics Research, Mimics Innovation
Suite v21.0, Materialise, Leuven, Belgium) software, surface
smoothing (iteration: 6, smoothing factor: 0.7, with shrinkage
compensation) and uniform remeshing (target triangle edge
length 0.6 mm, sharp edge preservation, sharp edge angle 60°)
were applied on the 3D geometries.

In 3-Matic, the vertebrae were divided into posterior and
anterior parts (Shirazi-adl et al., 1984). The anterior parts were
divided into a cortical shell (thickness: 1 mm), vertebral bony
endplates (thickness: 0.5 mm), and a cancellous core. Facet joints
were modeled manually, with 0.25 mm cartilage height and a
minimum 0.5 mm gap between the two facets (Dreischarf et al.,
2014) (Figure 1A). The intersection-based non-manifold

assembly was exported to Hypermesh software (Altair
Engineering, Inc., Troy, Michigan, United States), and all of
the surfaces were remeshed with a uniform triangulated
surface mesh (target tringle edge length: 1 mm). From the
resulting 3D surfaces, an adaptive tetrahedral volume mesh
was generated, with the exception of the bony endplates,
where pyramid elements were used (Table 1).

The annulus fibrosus (AF) and the nucleus pulposus (NP)
defining the intervertebral disc were modelled manually
according to the literature (Figure 1B) (Shirazi-Adl et al.,
1986), (Schmidt et al., 2007). The NP accounted for 45% of
the intervertebral volume and was moved in the posterior
direction, so that the sagittal thickness of the posterior AF
substance became 80% of the anterior AF (Shirazi-Adl et al.,
1986). The fluid-like behavior of the NP was modeled using an
isotropic, hyperelastic Mooney-Rivlin formulation (hexahedral
mesh) (Schmidt et al., 2007). The AF consisted of 2 times 6
annulus fiber sets embedded into a hexahedral ground substance
matrix of six layers with alternating orientations about ±30° to the
mid-cross-sectional area of the disc (Lu et al., 1996). The fiber

FIGURE 1 | FEmodel of the intact L2–L4 spine bi-segment. (A)Model of the vertebral body, bony endplates, cortical shell, trabecular core, posterior elements, and
articular facet. (B) Model of the intervertebral disc, nucleus pulposus, annular collagen fibers, and ground substance. (C) Intact L2–L4 lumbar spine bi-segment FE
model, with facet joints and ligaments from a left posterior-lateral view.
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cross-sectional areas were calculated using the assumed collagen
fiber volume fractions: 23% at the outermost layer, gradually
decreasing to 5% at the innermost layer (Shirazi-Adl et al., 1986;
Lu et al., 1996). The cartilaginous endplate thickness was set to 0.5
mm with hexahedral elements (Table 1), (Finley et al., 2018).

In total, seven ligaments were modeled as tension-only
spring elements with non-linear material properties,
namely, the ALL (anterior longitudinal ligament), PLL
(posterior longitudinal ligament), LF (ligamentum flavum),
ISL (interspinal ligament), SSL (supraspinal ligament), ITL
(intertransverse ligament), and CL (capsular ligament)
(Table 2). The attachment points, orientation and the
element number of the ligaments were adopted from a
previous study (MySPINE, Project ID: 269909, FP7-ICT),
(Figure 1C). The material properties were adopted from the
literature (Rohlmann et al., 2006). The facet cartilage material
was described by using a Neo-Hookean model, and a surface-

to-surface contact without friction was set between the facet
surfaces (Lu et al., 1996).

Cage, Implant Construct and Surgical FE
Model Development
A PEEK (polyether-ether-ketone) OLIF cage (EMERALD™,
Sanatmetal, Eger, Hungary, 45 mm × 22 mm × 12 mm, with
6⁰ lordosis) was scanned using a ScanBox 3D scanner (Smart
Optics Sensortechnik GmbH, Bochum, Germany). The
obtained point cloud was used to reconstruct the virtual
3D cage model using 3-Matic software. The model was
exported in STL format to Autodesk Fusion 360
(Autodesk Inc., San Rafael, CA, United States) CAD
(Computer Aided Design) software and served as a base
for creating a simplified cage mesh (Figure 2A). The
resulting geometry was used in all three (BPS, LPS, and

TABLE 1 | Material properties and mesh type assigned to the FE model.

Material Element type Constitutive law Young’s
modulus (MPa)

Poisson
ratio (-)

References

Normal cortical bone C3D4 Linear elastic 12,000 0.3 Shirazi-adl et al. (1984)
Osteoporotic cortical
bone

C3D4 Linear elastic 8,040
(67% of normal)

0.3 (Polikeit et al., 2003), (Zhang et al., 2010),
(Salvatore et al., 2018)

Normal cancellous bone C3D4 Linear elastic 100 0.2 Shirazi-adl et al. (1984)
Osteoporotic cancellous
bone

C3D4 Linear elastic 34 (34% of normal) 0.2 (Polikeit et al., 2003), (Zhang et al., 2010),
(Salvatore et al., 2018)

Normal post. elements C3D4 Linear elastic 3,500 0.25 Shirazi-Adl et al. (1986)
Osteoporotic post.
elements

C3D4 Linear elastic 2,345
(67% of normal)

0.25 (Polikeit et al., 2003), (Zhang et al., 2010),
(Salvatore et al., 2018)

Normal bony endplate C3D4,C3D5,
C3D8

Linear elastic 1,000 0.4 Silva et al. (1997)

Osteoporotic bony
endplate

C3D4,C3D5,
C3D8

Linear elastic 670 (67% of normal) 0.4 (Polikeit et al., 2003), (Zhang et al., 2010),
(Salvatore et al., 2018)

Cartilaginous endplate C3D8 Linear elastic 23.8 0.4 Lu et al. (1996)
Facet cartilage C3D6 Neo-Hooke C10 � 5.36; D1 � 0.04 Finley et al. (2018)
AF ground substance C3D8 Neo-Hooke C10 � 0.3448; D1 � 0.3 Rohlmann et al. (2009)
AF fibre T3D2 Nonlinear stress–strain curve Cross-sectional areas were calculated

by a layer from volume fractions; 23%
at the outermost layer to 5% at the

innermost fibre layer

Shirazi-Adl et al. (1986), Lu et al. (1996)

Nucleus pulposus (NP) C3D8H Mooney–Rivlin C10 � 0.12; C01 � 0.03; v � 0.4999 Schmidt et al. (2007)
Ligaments SPRINGA Nonlinear stress–strain curve

(Table 2)
NA NA Rohlmann et al. (2006)

Bone graft C3D4 Linear elastic 100 0.2 Akamaru et al. (2005)
PEEK cage C3D4 Linear elastic 3,600 0.3 Zhang et al. (2018)
Titanium (screw, plate,
and rod)

C3D4 Linear elastic 110,000 0.3 Zhang et al. (2018)

TABLE 2 | Properties of the ligaments (Rohlmann et al., 2006).

Ligament Stiffness (N/mm) Strains between (%) Stiffness (N/mm) Strains between (%) Stiffness (N/mm) Strains higher than (%)

ALL 347 0–12.2 787 12.2–20.3 1864 20.3
PLL 29.5 0–11.1 61.7 11.1–23 236 23
LF 7.7 0–5.9 9.6 5.9–49 58.2 49
CL 36 0–25 159 25–30 384 30
ITL 1.4 0–13.9 1.5 13.9–20 14.7 20
SSL 2.5 0–20 5.3 20–25 34 25
ISL 0.3 0–18.2 1,8 18.2–23.3 10.7 23.3
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SSA) FE models in the same central position. In order to
simulate the surgical nucleotomy, the NP, 4 inner layers of
the AF, and the cartilage endplates were removed from the
investigated motion segment (L3–L4), and a window was
created to insert the cage from the left side of the disc
(Figure 2B). For the BPS model, 4 identical simplified
transpedicular screws (5.5 mm × 70 mm) were placed inside
the L3 and L4 pedicles. The screwheads were connected using a
5.5-mm titanium rod (Figure 2C). A lateral plate (32 mm ×
23 mm × 4 mm) was designed to match the geometry of the L3
and L4 vertebrae with a coronal and an axial curvature for the
LPS model, and 4 simplified lateral screws (40 mm × 5.5 mm)
were inserted to fix the plate. There was no connection between
the plate and the inserted cage (Figure 2D). For the SSA

model, a smaller bicurved plate (26 mm × 23 mm × 4 mm)
was anchored to the cage using a simplified screw (15 mm ×
5.5 mm), and the 4 lateral screws were inserted at a different
(diverging) axial angle compared to the LPS model
(Figure 2E). “Tie constraint” was defined between
bone–titanium, titanium–titanium, and PEEK–titanium
contact surfaces to simulate rigid fixation, and in order to
model the knurled surface of the PEEK cage, a 0.2-friction
coefficient was set for the bony endplate–PEEK contact
surfaces (Ambati et al., 2015). The material properties used
in the intact and surgical models can be seen in Table 1.
Osteoporotic bone mineral density was modeled by decreasing
Young’s modulus of elasticity by a set amount (Table 1),
(Polikeit et al., 2003), (Salvatore et al., 2018). Figure 3

FIGURE 2 | 3D models of the implants. (A) Physical OLIF cage and virtually simplified CAD geometry obtained via 3D scanning (point cloud). The 3D surface mesh
model oriented the design simplification process. (B) Position of the cage inside the intervertebral space. The internal space of the cage is filled with bone graft. (C)
Bilateral pedicle screw fixation (BPS) model. (D) Cage model and lateral plate fixation system with screws (LPS). The cage is not connected to the plate (blue box: axial
plane section, red box: sagittal plane section). (E)Cage connects to the plate with a screw (SSA) forming a self-anchoring mechanism (blue box: axial plane section,
red box: sagittal plane section).
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presents the construction of OLIF models with various fixation
options (BPS, LPS, SSA).

Material Properties, Boundary and Loading
Conditions, FE Model Validation
The intact L2–L4 and the six surgical bi-segment FE models
(3 normal and 3 osteoporotic) were exported to Abaqus/
CAEv11 (Dassault Systemes, Simulia Corp, Providence, RI,
United States) software. Material properties and mesh types
assigned to the FE models are summarized in Tables 1, 2. In
order to validate the created L2–L4 intact model, a pure
torque of 7.5 Nm was applied to the L2 vertebral body
upper endplate in 3 general directions (flexion-extension,
right/left bending, and right/left rotation), while the lower
endplate of the L4 vertebra was fixed in place. The intact
L2–L3 and L3–L4 segmental range of motions was compared
to a cadaveric study (Ilharreborde et al., 2011). The lower
endplate of the L4 vertebra was fixed in the case of the six
surgical models as well. The simulations were conducted in
two steps: first, a 150 N follower load was applied between the
vertebral bodies; second, a pure 10 Nm torque was applied to
the L2 vertebral body’s upper endplate in the three general
directions used for the validation process.

RESULTS

Model Validation
In order to evaluate the accuracy of the L2–L4 segmentation
process, two investigators created the 3D geometries of the
L2–L4 bony structures separately. The obtained DSI value for
the vertebrae was 94%, indicating the high accuracy of the
segmented models (Yao et al., 2016). The FE mesh quality was
evaluated by defining the aspect ratio (AR) of the volume
elements (Supplementary Table S1) and interpreted
according to the literature (Burkhart et al., 2013), (Zhu
et al., 2017).

The resulting ROMs were in accordance with the findings of a
previous cadaveric study by Ilharreborde et al., 2011
(Ilharreborde et al., 2011), (Figure 4). The ROM of the
L2–L3 segment in flexion–extension, lateral bending, and
axial rotation was 5.86°, 9.01°, and 4.59° respectively. In the
cadaveric experiment, the corresponding ROM of the L2–L3
segment was 6.8° ± 2.5°, 7.3° ± 2.3°, and 4.7° ± 2.7°, respectively.
For the L3–L4 segment, the ROM for flexion–extension, lateral
bending, and axial rotation was 6.19°, 7.92°, 4.72°, respectively in
our model and 6.6° ± 3.5°, 7.9° ± 4.5°, and 5.5° ± 3.9° for the
cadaveric experiment, respectively.

The ROM comparison’s results suggested that the intact
L2–L4 FE model in the present study was successfully
constructed and could be used for further investigation.

ROM, Displacement, and Cortical Endplate
Stress Distribution
In order to compare the primary stabilizing properties of the 3
investigated implants, the ROMs of the virtually operated motion
segments were compared. To evaluate the interaction between the
inserted cage and the bony endplate below it, the cage’s caudal
displacement and the endplate’s surface stress distribution were
investigated. Additionally, the osteoporosis-induced increase in L4
screw displacement was studied to better understand which implant’s
screws are the least affected by osteoporosis. A total of six surgical
constructs were modeled and analyzed, corresponding to the BPS,
LPS, and SSA fixation options with normal and osteoporotic bone
material properties. The ROM of the surgical models under a
combined load of 150N follower load and 10Nm torque is shown
in Figure 5A. After the OLIF cage was inserted, the predicted ROM at
the surgical level (L3–L4) decreased under all motion conditions
compared with the intact model (Figures 4, 5A). Osteoporosis
increased the ROM in all directions compared to the normal bone
material property models. The highest impact caused by osteoporosis
on the ROM occurred in the LPS fixation construct, where the ROM
increased by 97.3% in flexion, 86.3% in extension, 30.14% in left
bending, 140.26% in right bending, 50.96% in left rotation, and 53.38%
in right rotation. The BPS provided the most stable primary fixation
with low ROM values in normal and osteoporotic conditions with the
exception of the right-bending scenario. The highest difference
between the BPS and lateral plate systems (LPS, SSA) was found
in the left- and right-side rotations. For normal bone, the difference in

FIGURE 3 | 3D geometry of the bi-segment (L2–L4) model with the three
investigated (OLIF) fixation constructs: OLIF cage with bilateral pedicle screws
(BPS), OLIF cage with lateral plate system (LPS), OLIF cage with self-
anchoring stand-alone system (SSA). Lateral left–right, and frontal view.
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BPS vs LPSwas 99% and BPS vs SSAwas 119.73%, and for the porotic
bone, BPS vs LPS was 158.94% and BPS vs SSA was 145.49%.

Osteoporosis increased the cage’s displacement in the caudal
direction (U3) for all of the fixation constructs (Figure 5B). The
highest increase in displacement was found in right bending for
the LPS (from 0.115 to 0.24 mm, 109%) and for the SSA (from
0.113 to 0.237 mm, 110%) fixation. With the exception for flexion
and left bending, the BPS fixation had lower displacement values
both for normal and osteoporotic conditions compared to the
LPS and SSA fixation. Overall, the cage displacement values were
similar for the SSA and LPS fixation.

The von Mises stress peaks on the L4 upper cortical endplate
are shown in Figure 5C. Compared to the normal bone, the stress
peaks increased in the osteoporotic models for extension, right
bending, and right rotation. In flexion and left bending, the stress
peaks for the BPSmodel were much higher compared to the other
models (LPS, SSA) regardless of the bone material properties
(Von Mises stress peaks for BPS were 10.92 and 13.31 MPa for
flexion and left bending in normal bone, respectively, and 14.43
and 16.06 MPa in osteoporotic condition, respectively). To
investigate this phenomenon, the von Mises stress distribution
on the L4 upper cortical endplates was visualized using contour
plots (Figure 6). This showed that the exceeding von Mises stress
peaks in flexion and left bending for the BPS models are stress
concentrations at the place of the fenestration made on the AF
and the OLIF cage border.

The screw displacement was measured by highlighting the screw
tips inside the L4 vertebra in the 3 constructs. The distance between
two points were measured: Point 1: screw tip location before applying
the forces. Point 2: screw tip location after the last “step” (“step” is a
basic concept in Abaqus FE solver software) (Manual, 2020) of the
simulation in a direction, and the result was the average of the 2 values
(there were always 2 screws inside the L4 vertebra).

Osteoporosis increased the screw displacement in the L4
vertebra in all motion conditions compared to the normal
bone models (Figure 5D). The highest increase was found in
the case of LPS fixation for left (100%) and right (100%) rotation.
The impact of osteoporosis on the BPS fixation’s screw
displacement was lower in all of the six modeled motions,
compared to the other two implants (screw displacement
increase in the BPS model for flexion: 61.38%, extension:

40.38%, left bending: 31%, right bending: 39%, left rotation:
36.32%, and right rotation: 33.48%).

DISCUSSION

In the past decade, due to the advancement in minimally invasive
spinal fusion technologies (Yue et al., 2010), the OLIF procedure
has emerged, and it has been used ever more often by spine
surgeons. The advantages of the OLIF surgical technique
include the preservation of the posterior structures of the
lumbar spine, reduced blood loss, and shorter hospital stay
(Phan et al., 2016). Despite the fact that OLIF has been
successfully adopted in the clinical environment, the risks
of cage subsidence and screw loosening are possible
postoperative complications related to this technique
(Quillo-Olvera et al., 2018). Biomechanical failure of the
stabilization construct (cage subsidence and loosening of
the screws) is a multifactorial phenomenon (damage to
endplates during preparation, overdistraction, cage design,
etc.) (Quillo-Olvera et al., 2018). Bone quality as well as the
biomechanical stability of the whole fusion construct can play
a significant role in the development of this complication,
possibly influencing the short- and long-term therapeutic
outcome. The present study aimed to investigate the effect
of bone quality on the stability of a fused segment with the aid
of FEA models in 3 different fixation options.

First, an intact L2–L4 bi-segment FEmodel was developed and
validated by comparing the ROMs (ante-retroflexion, lateral
flexion, and rotation) under a pure 7.5 Nm torque to the
findings of a previous cadaveric study by Ilharreborde et al.
(Ilharreborde et al., 2011). The adequate validation results
(Figure 4) allowed us to take a step further and modify the
FE model to establish different OLIF construct models: BPS, LPS,
and SSA with normal and osteoporotic bone material properties
(Figure 3).

The ROM of the surgical models under a combined load of
150 N follower load and 10 Nm torque (Figure 5A) showed
different behaviors based on the fixation type and bone
material properties (normal/osteoporotic). The BPS
fixation provided the most stable primary fixation in both

FIGURE 4 | Comparison of the computed range of motions given by the intact L2–L4 bi-segmetal model with experimental results for 7.5-Nm pure moments.
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normal and osteoporotic conditions. These findings are in
accordance with the study by Guo et al. (Guo et al., 2020) who
used a L3–L5 bi-segment FE model to evaluate OLIF
constructs with various fixation options under the same
combined loading of 150 N follower load and 10 Nm
torque. They applied normal bone material properties and
found similar results for the ROMs and also found that the
BPS fixation provides the highest stability compared to
lateral-only fixations.

To our knowledge, the first study to apply FE models to
establish an osteoporotic spine model (L1–S1) to research the
single-segment (L3–L4) biomechanical stability of OLIF with
different fixation methods was recently published by Song et al.
(Song et al., 2021). They found a similar trend in their results
that the BPS fixation provides a more stable fixation than lateral
plates in normal and osteoporotic conditions despite the
differences between their (boundary conditions: axial
compressive preload of 400 N, and torsional moment of
10 Nm) and our models. Song’s lateral plate fixation design
concept differed from our model (the lateral plate was fixed to
the vertebral body with 2 screws in their model, while 4 screws

were used in our constructs), and his investigation did not
include the SSA OLIF cage concept. Based on our results,
osteoporosis increased the ROM in all motion conditions
compared to the normal bone material property models. The
highest impact caused by osteoporosis on the ROM occurred in
the LPS fixation construct. The highest difference between the
BPS and lateral plate systems (LPS, SSA) was found in rotational
movements.

Osteoporosis increased the cage displacement in the caudal
direction (U3 in Abaqus) for all of the fixation options
(Figure 5B). Overall, the cage displacement values were
similar for the SSA and LPS systems. The highest increase in
displacement was found in right bending for the LPS and SSA
implants. With the exception of flexion, and left bending BPS
fixation had lower displacement values both for normal and
osteoporotic conditions. Parallel to the caudal displacement,
the opposite side of the cages can move in the cranial
direction (Supplementary Figure S1). The complex
mechanism of subsidence involving the upper and lower
endplates supported by radiologic findings is still widely
investigated (Quillo-Olvera et al., 2018).

FIGURE 5 | Results of the simulations extracted from the surgically reconstructed bi-segmental FEA model according to the six loading scenarios in normal and
osteoporotic conditions. (A)Range of motion (ROM) values for the operated L3–L4 segment containing the investigated implant constructs (BPS: bilateral pedicle screw,
LPS: lateral plate-screw, SSA: self-anchored stand-alone). (B) Cage displacement in the caudal direction (U3 in Abaqus). (C) Von Mises stress peaks on the L4 cranial
bony endplate. (D) Measured L4 screw displacement increase (%) caused by osteoporotic bony conditions compared to L4 screw displacements inside the
normal bone.
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Compared to normal bone, in the osteoporotic models we have
measured increased values for the von Mises stress peaks on the L4
upper cortical endplate (Figure 5C) for extension, right bending, and
right rotation. In flexion and left bending, the BPS model’s peek
stress values were much higher compared to the other models (LPS,
SSA) regardless of the bone material properties. Stress
concentrations at the place of the AF fenestration and the OLIF

cage border occurred in the BPS model in flexion and left bending
(Figure 6). In the other loading scenarios, higher stresses can be
observed on the endplate surface for the LPS and SSA models
compared to the BPS model. Song’s study found that on the
investigated L4 endplate, the stress increases with osteoporosis,
but it is lower for the BPS implants compared to lateral plate
fixation (Song et al., 2021).

FIGURE 6 | Von Mises stress distribution on the cranial bony endplate of the L4 vertebra, with various fixation options (BPS: bilateral pedicle screw, LPS: lateral
plate-screw, SSA: self-anchored stand-alone) in normal and osteoporotic conditions under six loading scenarios. Color bar (blue/green/red), scale (0–10 MPa), top view.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7499149

Bereczki et al. Stability of Different OLIF Constructs

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Osteoporosis increased the screw displacement in the L4
vertebra in all motion conditions compared to normal bone
models (Figure 5D). The highest increase was found in the
case of LPS fixation for left (100%) and right (100%) rotation.
The impact of osteoporosis on the BPS fixation screw
displacement was lower in all of the six modeled motions
compared to the other fixations.

The results of this study highlight that the possible advantages of
the LPS and SSA fixations (e.g., lower operation time and
invasiveness due to the lack of the
posterior–percutaneous–fixation steps) could be hindered in
osteoporotic patients. In osteoporotic patients, the BPS fixation
provides a more stable fixation than the LPS and SSA fixation,
which is important to avoid mechanical complications and provide
optimal therapeutic outcome.

Although the FE analysis has many advantages over in vitro
experiments, it has limitations as well, for example, its inability to
“perfectly”mimic the human tissue mechanics. In order to simulate
certain biomechanical processes inside the human body,
simplifications need to be performed due to the limitations of in
silico software. Osteoporotic and normal bone qualities are not
uniformly distributed within the human skeleton. There can be
vertebrae and regions inside the vertebrae that are more affected by
osteoporosis and can lead to weaker spots. This line of thought leads
to an infinite amount of bone material property distribution models,
so we have chosen the path of creating a uniform bone material
model for our investigations. The osteoporosis FE model was
constructed by decreasing the elastic modulus of the normal
uniform cortical and cancellous bone by a certain proportion.
However, in the literature, more complex approaches are
described to model osteoporosis, by integrating micro-level
trabecular structural mechanics (McDonald et al., 2010). With
ageing, degenerative changes can occur in the spine not only
affecting the vertebral bone material properties but also the
geometry (exp. stabilizing osteophytes) (Margulies et al., 1996)
and the internal structure of the intervertebral disc as well.
Therefore, in an osteoporotic model, the non-surgically treated
discs and bony structures should be altered accordingly.

In this study, the osteoporotic model had the same bony
geometry and intervertebral disc material properties as the
normal bony model.

The developed model investigated the primary stability of the
constructs right after the surgery, not taking into consideration
the expected fusion process because long-term bony fusion is
often the desired result of an adequately chosen implant and
correctly executed surgery.

CONCLUSION

Bilateral pedicle screw (BPS) and rod fixation provided superior
primary biomechanical stability for OLIF cages, compared to self-
anchored stand-alone (SSA) or lateral plate-screw fixated (LPS) cages

in both normal and osteoporotic conditions. Osteoporosis amplified
the difference between the stability of the bilateral pedicle screw
fixation and the two other investigated fixation methods. Clinically,
in the case of decreased bone quality (primary or secondary
osteoporosis), the surgeon has to take into consideration the limits
of the SSA and LPS fixations, despite the advantage that there is no
need for a second step in the surgery by turning the patient to the
prone position to perform the percutaneous pedicle screw fixation.
This study highlights the need for further investigation (experimental
and clinical trials) to adjust the indication of the fixation methods in
OLIF to the patient’s bone quality.
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