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Purpose: The existing panels of COVID-19 vaccines are based on the spike protein of an earlier SARS-CoV-2 strain
that emerged in Wuhan, China. However, the evolving nature of SARS-CoV-2 has resulted in the emergence of
new variants, thereby posing a greater challenge in the management of the disease. India faced a deadlier second
wave of infections very recently, and genomic surveillance revealed that the B.1.617 variant and its sublineages
are responsible for the majority of the cases. Hence, it's crucial to determine if the current vaccines available can
be effective against these variants.
Methods: To address this, we performed molecular dynamics (MD) simulation on B.1.617 along with K417G
variants and other RBD variants. We studied structural alteration of the spike protein and factors affecting
antibody neutralization and immune escape via In silico docking.
Results: We found that in seven of the 12 variants studied, there was a structural alteration in the RBD region,
further affecting its stability and function. Docking analysis of RBD variants and wild-type strains revealed that
these variants have a higher affinity for the ACE2 (angiotensin 2 altered enzymes) receptor. Molecular interaction
with CR3022 antibody revealed that binding affinity was less in comparison to wild type, with B.1.617 showing
the least binding affinity.
Conclusions: The results of the extensive simulations provide novel mechanistic insights into the conformational
dynamics and improve our understanding of the enhanced properties of these variants in terms of infectivity,
transmissibility, neutralization potential, virulence, and host-viral replication fitness.
1. Introduction

COVID-19, a serious and continuously spreading pandemic
affecting the world, creates severe ailments and apparently everlasting
health problems. A few vaccines have exhibited potential & defensive
effects upon COVID-19, mostly targeting the trimeric spike glycopro-
tein, which is involved in host cell interaction and gives passage to
cell entry as well as the essential target for neutralizing antibodies.
Essentially those were aimed against the earlier SARS-CoV-2
strain that emerged in 2019 in Wuhan China [1,2]. Due to the
perceived ease of transmission and expansive mutations in spike pro-
teins, the speedy evolution of new variants of SARS-CoV-2 is of high
concern. B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2
(Delta) are SARS-CoV-2 variants of concern (VOC) strains, whereas
B.1.617.1 (Kappa) and B.1.617.3 (Deltaþ) are SARS-CoV-2 variations
of interest (VOI) strains, according to the World Health Organization
(VOI).
18 March 2022; Accepted 22 M

icrobiologists. Published by Else
The SARS-CoV-2 B.1.617 lineage, which was initially discovered in
India, has spread around the world. B.1.617.1, B.1.617.2, and B.1.617.3
are the three sublineages that make up this lineage. Within the RBD of the
S protein, mutations are identified in all of the sublineages [3]. The fast
spread of the B.1.617 variation in India is thought to be related to the
presence of several critical point mutations in the RBD, which may be
enhancing the virus's cellular entrance, allowing it to infect a wider
spectrum of target cells [4]. These alterations are also said to be the
primary cause of their improved immune evasion ability. There are eight
mutations in the SARSCoV-2 S protein of the B.1.617.1 (kappa) variant
[5]. Seven of the eight mutations are found in the S1 region, while one is
found in the S2 subunit. Two mutations in the RBD (L452R, E484Q), the
area important for viral entry, are present in this variation. It was noted
that several mutations of the receptor-binding domain (RBD), are
essential for the interaction of Human angiotensin 2 altered enzymes
(ACE2) [6] and antibodies, as well as region that neutralizes antibodies.
The in-silico investigation revealed thatACE2 and potential antibodies
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vier B.V. All rights reserved.

mailto:parimal@bhu.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmmb.2022.03.009&domain=pdf
www.sciencedirect.com/science/journal/02550857
www.journals.elsevier.com/indian-journal-of-medical-microbiology
https://doi.org/10.1016/j.ijmmb.2022.03.009
https://doi.org/10.1016/j.ijmmb.2022.03.009
https://doi.org/10.1016/j.ijmmb.2022.03.009


Table 1
Prediction of RBD based variants interaction with antibody and ACE2 receptor.

Interaction between
Ab (CR3022_6YLA)-
RBD_variants

Docking
score

Interaction
between ACE2-
RBD_variants

Docking
score

Structure
hampered in
the region of
RBD

F486L 18,538 F486L 19,150 YES
B.1.617 strain
(L452R &E484Q)

17,370 B.1.617 (L452R
&E484Q)

18,434 YES

Q493N 17,722 Q493N 17,814 YES
R408I 18,984 R408I 17,656 YES
L455Y 18,758 L455Y 19,032 YES
K417G 19,428 K417G 18,734 YES
E484K 17,848 E484K 18,014 YES
A570D 20,342 A570D 17,856 NO
N501T 20,286 N501T 17,602 NO
N501Y 21,498 N501Y 17,600 NO
Q498Y 22,218 Q498Y 17,102 NO
N439K 20,556 N439K 17,174 NO
Spike_Wild 21,050 Spike_Wild 17,910 NO
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bind in a similar area on the spike protein [7,8] An antibody becomes
very effective when forestalling viral spread by impeding the ACE2
binding site in the RBD. CR3022 antibody showed the most elevated
binding affinity with SARS-CoV-2 protein RBD [9,10].

Here, in this study, we retrieved 28 different spike protein variants,
and out of these 28 variants, 12 variants belong to the RBD region only.
Here, we focused to know the impact of B.1.617 RBD variants that affect
the interaction of CR3022 Abs and ACE2R to bind with the SARS-CoV-2
RBD as compared to others RBD variants and used molecular dynamics
(MD) simulations to understand the conformational dynamics.

2. Materials and methods

2.1. Retrieval of crystal structures

Crystal structures of spike protein (PDBID-7AD1), ACE2 (PDBID-
6ACG) and antibody CR3022 (PDBID 6YLA) were retrieved from PDB
RCSB (https://www.rcsb.org/). All water molecules and hetero-atoms
were removed by using Discovery studio visualization software (BIO-
VIA 2020). (http://accelrys.com/products/collaborative-science/biovia
-discovery-studio/visualization- download.php).

2.2. Homology modeling and energy minimization

Based on high similarity, 7AD1 (crystal structure of SARS-CoV-2) was
selected as template for homology modeling of RBD mutant variants
using the SWISS-MODEL [11]. Energy minimization and structural
analysis of RBD mutant variants were done with UCSF Chimera [12].
Evaluation of the modeled structure was done by PDB-Sum (http://
www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pd
bcode¼index.html).

2.3. Docking analysis

Docking of RBD mutant variants with selected targets (ACE2 receptor
and antibody structure CR3022) was carried out by PatchDock server
[13] by choosing parameter RMSD esteem 4.0 and complex type as
default. Docking investigation was based on geometric shape comple-
mentarities score. Higher score indicates higher binding affinity.
Outcome of the results is based on the docking scores and interaction at
the RBD regions. Protein-protein and antibody-protein interactions were
visualized by LigPlot plus v2.2 [14].

Molecular interactions of antibody CR3022 and ACE2 receptor with
RBD variants were performed by antibody script under antibody loop
numbering scheme i.e. KABAT Scheme and DIMPLOT script algorithm
package built into LigPlot plus v2.2 respectively.

2.4. Molecular dynamics simulation

The equilibrium and the dynamic behavior of wild and mutant
variants of RBD Spike protein was studied by using GROMACS [15,
16]. MD simulation brings about time-dependent conformational
changes and adjustment of protein, which opens to the alteration in
unique nature after establishment of mutation in protein. We used
GROMOS96 54a7 force field [17] for MD simulation study. We added
solvent water around protein to facilitate from spc216.gro as a
non-exclusive equilibrated 3-point dissolvable water model in a do-
decahedron. Here, we kept the protein in the centre at least 1.0 nm
from the case edges.

Further, the steepest descent algorithm was utilized for energy
minimization, to remove the steric conflicts and unstable conformations.
Further we equilibrate the system via NVT ensemble (constant Number of
particles, Volume and Temperature) and NPTensemble (constant Num-
ber of particles, Pressure and Temperature). After achieving equilibrium
process, we moved for MD run to 10ns.Data analysis was done by Gro-
macs tools i.e. gmx rms for RMSD (Root Mean Square Deviation),
414
gmxrmsf for RMSF (Root Mean Square Fluctuation), gmx gyrate for
radius of gyration (Rg), gmxhbond for H-bond (for intra-protein H-bonds
and for H-bonds between protein and water), and gmxsasa for SASA
(solvent accessible surface). We further used GRACE software for data
visualization.

3. Results

3.1. Docking analysis

We retrieved 28 variant mutants (S1) in spike protein identified to
date. We found 12 variants/mutants in the RBD region. The RBD re-
gion is important for ACE2 and Antibody interactions. A few RBD
variants have already shown to affect the vaccine efficacy as docu-
mented earlier by wet lab and dry lab results (S2 Table), however,
the vaccine efficacy against the B.1.617 and K417G variants is yet to
be elucidated. We have done structural analysis of all 12 RBD
mutant variants and compared them with wild type. We found that
seven mutant variants (F486L, Q493N, B.1.617 (L452R & E484Q),
R408I, L455Y, K417G and E484K) have structural changes in RBD
region (S3). We analyzed interactions between RBD variants and ACE2
receptor. Moreover, we also checked the interactions between anti-
body and RBD variants. We found that seven structurally changed
variants (F486L, Q493N, B.1.617, R408I, L455Y, K417G and E484K)
have high docking score against ACE2 receptor compared with wild
type and less docking score against antibody (CR3022) unlike wild
type (Table 1). Out of seven variants, B.1.617 (B.1.617 <Q493N <

E484K < K486L < L455Y < R408I < K417G) demonstrates lowest
binding energy against antibody. Molecular interactions of antibody
and ACE2 receptor with RBD variants are depicted in S4–S5. Our in-
silico study suggests that the B.1.617 and K417G variants may affect
vaccine efficacy.
3.2. Molecular dynamics (MD) simulations

To examine the dynamic behavior, MD simulation runs for 10 ns to
contemplate the structural stability of RBD mutant variants (F486L,
Q493N, B.1.617, R408I, L455Y, K417G and E484K) in comparison to
wild type. Various parameters studied all through the simulation tra-
jectory, such as RMSD, Rg, RMSF, SASA, total number of intra-molecular
hydrogen bonds of protein and H-bond between protein and water with
the time dependent function of MD to examine the functional and
structural impact of a mutant on wild protein.

The RMSD and RMSF (Figs. 1 and 2) of C-alpha chain atoms of all
RBD mutant variants showed significant fluctuations in stability as
well as in flexibility in comparison to Wild one. Rg and SASA analysis

https://www.rcsb.org/
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization-
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Fig. 1. RMSD analysis of RBD mutant variants along their wild type over 10 ns simulation. Black dot plot showed wild type whereas red indicates mutant.
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(Figs. 3 and 4) depicted much fluctuation between mutant and wild
type. The fluctuations of hydrogen bonds are easily shown in all RBD
mutant variants as compared to wild type (total intra-molecular H-
bond and H-bond between protein and water) (S6, S7 & S8 Table).
These molecular simulation data showed hampered structural stability
and complexity of all seven RBD mutant variants as compared to wild
type.

4. Discussion

The newly emerged variants make our fight against global
pandemic tougher as these variants might provide an evolutionary
advantage, are more transmissible and harder for immune systems to
detect. The 20I/501Y.V1 variant of the lineage B.1.1.7, first discov-
ered in the UK, has eight major mutations in the spike genes that may
affect vaccine efficiency, antibody therapy, and pose a threat of re-
infection. In addition to remaining susceptible to antibody
415
neutralization, the B.1.1.7 (alpha) variant does not seem to be a major
burden for available vaccines [18,19]. B.1.351 (Beta variant), a
variant first encountered in South Africa, is of greater concern as this
variant is incompliant to NTD mAbs neutralization, mainly due to
E484K mutations. In addition, we have also evidence that B.1.351 was
more opposing to neutralization by convulsive plasma (9.4-fold) and
vaccinated sera (10.3–12.4-fold) [20]. The SARS-CoV-2 P.1, the Bra-
zilian variant of B.1.1.28 lineage, has 10 mutations in spike gene viz.
D614G, T20N, D138Y, L18F, R190S, and P26S in the NTD and K417T,
E484K and N501Y in the RBD region and H655Y within the furin
cleavage site. It shares mutations similar to B.1.35. P.1 on the same 3
RBD residues which are resistant to neutralization by the RBD targeted
mAbs. Shared E484K mutation is the main culprit, which emerged in
more than 50 lines independently along with B.1.526, recently iden-
tified in New York. A significant loss of neutralizing activity has been
shown by vaccinated serum and convalescent plasma towards P.1, but
the decrease is not as good as compared to what was found against



Fig. 2. RMSF analysis of RBD mutant variants along their wild type over 10 ns simulation. Black dot plot showed wild type whereas red indicates mutant.
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B.1.351, Accordingly, the risk of re-infection by P.1 or dropped effi-
cacy of vaccine protection may not be severe like B.1.351 [21]. The
mRNA-1273 vaccine's neutralizing activity towards number of variants
like B.1.351, B.1.1.7 þ E484K, B.1.1.7, P.1, B.1.427/B.1.429, D614G,
20A.EU2, 20E [EU1], N439K-D614G, and previously identified mutant
in Denmark mink cluster 5 were identified and found to have the same
neutrality level as Wuhan-Hu-1 (D1414) [22]. Limited loss in antibody
neutralizing activity against B.1.1.7 while significant loss against
B.1.35 was shown by the AstraZeneca ChAdOx1 vaccine, thus main-
taining its efficacy towards B.1.1.7 and demonstrating a major loss of
efficacy against the benign version of B.1.151. Although the efficacy
against B.1.1.7 was found to have retained by the BNT162b2 Pfi-
zer/BioNTech COVID-19 vaccine. The Novavax vaccine
(NVX-CoV2373) reported differential protective immunity in the
clinical trials i.e. 96%, 60%, and 86% against parental strain, B.1.351
and B.1.1.7, respectively [23].

The consequences of the current examination propose that the new
B.1.617 (along with 6 others RBD mutant strain) inside the receptor-
restricting site could lessen the immunization adequacy and higher
the probability of reinfections by influencing the SARS-CoV-2 connec-
416
tion with the CR3022 antibody and ACE2 receptor. Our docking anal-
ysis observed that the binding affinity of mutant strain with ACE2
receptor is increased and is low with antibody compared to other
variants.

The RMSD, RMSF, Rg, SASA, Intramolecular H-bond and H-bond
between protein and water molecules were plotted to analyze the sta-
bility as well as flexibility of structurally hampered mutant RBD variants.
Comparison of wild with mutant RBD protein, significant RMSD fluctu-
ations were observed in all variants (B.1.617 0.25–0.5 nm, E484K nm
0.25–0.4 nm, F486L 0.2–0.3 nm, K417G 0.2–0.4 nm, L455Y 0.2–0.4 nm,
L455Y 0.2–0.4 nm, Q493N 0.2–0.4 nm and R408I 0.25–0.45 nm).
However more fluctuation was observed in B.1.617 as compared to
others. The RMSD output showed that the protein stability could be
influenced. We observed lower RMSF values of variant in comparisons to
wild that confirms the compressed behavior of mutant trajectory. Higher
value of Rg was noticed in all mutants’ cases which indicate the possi-
bility of lower compactness of protein. High fluctuations of SASA
revealed that the protein structure and consequently protein function
might be hampered. Fluctuations of total intra-molecular H-bond and H-
bond between protein and water have been found in all structurally



Fig. 3. Rg analysis of RBD mutant variants along their wild type over 10 ns simulation. Black dot plot showed wild type whereas red indicates mutant.
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hampered RBD mutant variants which signify the rigidity of protein
might be influenced [24].

Previous study has disclosed that the residues F486, L455, Q493, and
N501 in the RBD spike protein form amajor binding domain for the human
ACE2 receptor [25]. A few mutants’ viz.L455Y, Q493N, R408I, Q498Y,
F486L, N501T within the RBD region (319–591), and D936Y& A930V
417
within HR1 site (912–984) have also been studied by in silico analysis to
investigate the basic structure of spike glycoprotein. After comparing MD
simulations in mutants and WT, a significant destabilizing outcome of
mutationson theHR1andRBDdomainswas revealed.Researchers revealed
compromised stability of the overall spike protein structures by investi-
gating the effect of framed mutations, before binding to the receptor [26].



Fig. 4. SASA analysis of RBD mutant variants along their wild type over 10 ns simulation. Black dot plot showed wild type whereas red indicates mutant.
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5. Conclusion

In this study, we performed molecular docking and simulation-based
screening of B.1.617 and previously reported RBD variants of COVID-19
to compare the binding and functional stability of spike proteins. Results
of the present study suggest that the B.1.617 strain and K417Gwithin the
receptor-binding site could reduce the vaccine efficacy and increase the
418
chances of reinfection by affecting the SARS-CoV-2 interaction with the
CR3022 antibody and ACE2 receptor. We have examined the impact of
B.1.617 and earlier reported RBD variants on the spike glycoprotein's
structural stability by in silico analysis along with molecular simulation
data and found structural alteration in the RBD domain in seven mutant
variants. Further molecular interaction study of CR3022 antibody and
ACE2 receptor with the RBD variants and comparison with wild type
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strain revealed the reduced binding affinity of all seven mutant versions
with antibody, besides B.1.617 found to have the lowest affinity among
all the RBD variants. These findings infer the possibilities of antigenic
drift, ensuing incompatibility of current vaccine for B.1.617 strain. This
information can be further harnessed for improvement of the available
vaccines and aid in vaccine development. However, the results must be
taken with caution as more research is still needed to explicate the exact
consequences of the B.1.617 strain of SARS-CoV-2.
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