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ABSTRACT 

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans 

could cause coronavirus disease 2019 (COVID-19). Since its first discovery in Dec 2019, 

SARS-CoV-2 has become a global pandemic and caused 3.3 million direct/indirect deaths 

(2021 May). Amongst the scientific community’s response to COVID-19, data sharing has 

emerged as an essential aspect of the combat against SARS-CoV-2. Despite the ever-growing 

studies about SARS-CoV-2 and COVID-19, to date, only a few databases were curated to 

enable access to gene expression data. Furthermore, these databases curated only a small 

set of data and do not provide easy access for investigators without computational skills to 

perform analyses. To fill this gap and advance open-access to the growing gene expression 

data on this deadly virus, we collected about 1,500 human bulk RNA-seq datasets from 

publicly available resources, developed a database and visualization tool, named 

CovidExpress (https://stjudecab.github.io/covidexpress).  This open access database will 

allow research investigators to examine the gene expression in various tissues, cell lines, and 

their response to SARS-CoV-2 under different experimental conditions, accelerating the 

understanding of the etiology of this disease to inform the drug and vaccine development. Our 

integrative analysis of this big dataset highlights a set of commonly regulated genes in 
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SARS-CoV-2 infected lung and Rhinovirus infected nasal tissues, including OASL that were 

under-studied in COVID-19 related reports. Our results also suggested a potential FURIN 

positive feedback loop that might explain the evolutional advantage of SARS-CoV-2.   
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INTRODUCTION 

 Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 

humans could cause Coronavirus disease 2019 (COVID-19). Since it was first discovered in 

Dec 2019, SARS-CoV-2 has become a global pandemic that spread into 192 countries, 

infected approximately 163 million people and caused 3.3 million of deaths to date (2021 May) 

(Dong et al). The scientific community quickly responded to COVID-19 and public data sharing 

in health crises (Littler et al) played a critical role across all aspects of combatting against 

SARS-CoV-2. For instance, Nextstrain and GISAID databases allow sharing and 

comprehensive real-time analysis to monitor the virus evolution and adaptation (Hadfield et al; 

Shu & McCauley) since the first sequencing data were available (Wu et al). MOBS LAB and 

MIDAS enabled the epidemic spread modeling that facilitated policy makers to draft emergent 

regulations (Chinazzi et al; Kenah; Kucharski et al; Sun et al). Platforms like Vivli shed a light 

on sharing clinical trial data anonymization to accelerate scientific progress (Li et al). The 

structure sharing on Protein Data Bank (Burley et al; Jin et al; Walls et al) and CoV3D 

(Gowthaman et al) have been instrumental for investigators to understand SARS-CoV-2’s 

function and mechanism. Databases that document drug repurposes were developed either 

based on 3D structure (Chen et al) or literature searching (Tworowski et al). Web portals such 

as LitCovid (Chen et al, 2020, 2021a) and COVIDScholar (Trewartha et al) were developed to 

reduce the time for acquiring information, while Cochrane were more focused on collecting 

clinical trial studies (Hilton et al). The gene sets collected by PAGER-CoV (Yue et al) and 

COVID-19 Drug and Gene Set Library (Kuleshov et al) could be used for cross-examining 

different results and prioritization of potent drugs.  

On the other hand, the fast growth of COVID-19 related publications (Palayew et al) led to 

many cases of unreliable results, some of which were unfortunately retracted (Abritis et al; 

Else, 2020). Thus, re-analysis and critical curation of the ever-growing available data in an 

unbiased manner becomes a necessity to ensure the reproducibility of scientific conclusions 

and further propel advances toward therapeutics. Of the many published studies depositing 

raw data in public repositories including GEO (Barrett et al), bulk RNA-seq datasets have 
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taken the largest share. However, few databases enable rapid and easy access to such as 

quantitative details (Cantelli et al; Ziegler et al) in RNA-seq, and none provides analysis 

functions for world-wide investigators without programming skills.  

Thus, we sought to develop an open-access database so investigators could easily 

examine the comprehensive, consistently re-processed data by performing basic analysis with 

intuitive, customized, and instant visualization. Our main goals are to facilitate open-access to 

publicly available COVID19 related bulk RNA-sequencing data, to provide standardized results 

for investigators to use to generate hypotheses for subsequent genetic, biochemical, and 

functional experimental analyses, and to present rich visualization tools so investigators can 

make publication-ready figures to accelerate publication process. With this effort, we have 

curated and analyzed up to date the largest set of 1,468 SARS-CoV-2 related bulk RNA-seq 

samples from 43 independent studies. Those data, after quality control, were also used to run 

a total of 315 contrasts of differentially expressed genes analyses, and utilizing several 

alternative postprocessing approaches, ultimately allowed for identification of 20,036 

differential SARS-CoV-2 related gene signatures. 

 

RESULTS  

Overview of Data Processing Workflow for CovidExpress 

Figure 1A describes the general schema of the data curation and analysis. We collected 

human RNA-seq data by using the query “((covid-19 OR SARS-CoV-2) AND gse[entry type]) 

AND "Homo sapiens"[porgn:__txid9606]” at NCBI Gene Expression Omnibus(GEO) website. 

From 43 studies (9 published, Supplementary Table S1), we collected 1,468 samples (4.7TB 

raw data) from total representing 227 experimental groups. We integrated quality control (QC) 

code from RSeQC (Wang et al) so that optimal parameters for processing pipeline were 

automatically chosen (see Material and Methods) based on the strand information of RNA-seq 

protocol (Supplementary Figure S1A,S1B). Next, we reviewed the quality control metrics and 

found that most data had good sequencing depth (Supplementary Figure S1C) and mapping 

rate (Supplementary Figure S1D). Nevertheless, the genomic distribution of the sequencing 
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reads revealed that about 21.2% of the samples were biased toward intronic reads 

(Supplementary Figure S1E, Supplementary Table S1, Material and Methods), we 

reasoned that these biases could be explained by protocol differences and experimental 

variations. We still included those samples since our processing method was only counting 

exonic reads as for gene level expression quantification. Also, these biases did not affect our 

differential expression analysis since we would only compare samples within the same study 

cohort.  

We noticed that several studies were strongly enriched with sequences from 3′UTRs that 

would affect our analyses. We found that this 3′UTR bias could be explained by experimental 

protocols. For instance, a study from GSE154936 employed QuantSeq (Moll et al) protocols 

known by its 3’UTR bias in order to utilize the low input or low quality RNA materials. To 

systematically identify similar samples, we aggregated the normalized gene-wise binned 

coverage for each sample and used hierarchical clustering to separate datasets into 9 clusters 

by gene-coverage similarity (Supplementary Figure S1F). Principal component analysis 

(PCA) (Lever et al) of the gene-body coverage profiles showed that clusters 1, 2 and 3 were 

distinct from the other clusters (Supplementary Figure S1G). A summarized plot confirmed 

that clusters 1, 2 and 3 were strongly biased toward the 3′UTR (Supplementary Figure S1H). 

Clusters 4, 5 and 6 also shown a slight 3’UTR bias, but we decided to keep them since they 

achieved good coverage for gene body (Supplementary Figure S1H). Together, we included 

data from clusters 4-9 as the finalized sample list for our database and all downstream 

analyses. All our QC metrics are listed in Supplementary Table S1. Our finalized sample list 

includes 1093 samples, where 557 (50.96%) were of samples infected with SARS-CoV-2. 

Most samples were from Respiratory, Circulatory, and Immune systems (Figure 1B,1C). An 

overview of the overlap between different analytical criteria were summarized in 

Supplementary Figure S1I and S1J.  

To help investigators begin their own analyses using CovidExpress portal (Figure 1D), we 

took two approaches to highlight the currently known important genes in COVID-19 research. 

We first used machine learning-based tool for retrieving bioconcept annotations from literature 
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research. We extracted gene annotations from 108,627 COVID-19 related literature sources, 

and weighed genes by their appearance frequency in Pubtator annotation (Wei et al, 2019) 

(Figure 1E). Per our expectation, ACE2 and TMPRSS2 emerged as the top studied genes 

(Clausen et al; Hoffmann et al, 2020; Liu et al, 2020; Ziegler et al., 2020). Many other top 

genes were also very interesting, such as C-reactive protein (CRP), which may be an early 

marker of COVID-19 (Luo et al, 2020). Several other top genes require further genetic, 

biochemical, and functional characterization using follow-up experiments. 

Next, we extracted metadata using GEOmetadb and manually reviewed data for accuracy 

(Zhu et al). We performed a total of 315 differential expression (DE) genes analyses between 

groups for each study, and we asked which genes frequently showed up as top differentially 

expressed shared among all our comparisons (Figure 1C and 1F). We found that many 

COVID-19 context studies reported that these top differentially expressed genes were 

important (Supplementary Table S2). Some of the top genes that frequently appeared in 

literature research approach such as IL6, IL1A and TNF, were also found among the top 

differentially expressed genes. Interestingly, top genes in literature-based search, such as 

ACE2, TMPRSS2, and CRP, were not among the top differentially expressed genes. This 

suggests that although it have been repeatedly reported that SARS-CoV-2 need 

ACE2/TMPRSS2 to infect cells (Clausen et al.; Hoffmann et al., 2020; Liu et al., 2020; Ziegler 

et al., 2020), ACE2/TMPRSS2 expression level was not elevated following infection. Thus, the 

most dramatic differential expression observed in RNA-seq was more related to the innate 

immune defense mechanism. In support of this notion, many interferon genes and 

inflammatory cytokine and chemokine genes were frequently found as top differentially 

expressed genes (Figure 1F). The results of such meta-analysis itself has a power to guide 

future molecular studies to determine the functional impact of these genes and the resulting 

proteins in the disease pathogenesis. Overall, our RNA-seq analyses pointed to the innate 

immune defense mechanism as the most differentially regulated following SARS-CoV-2 

infection.  
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CovidExpress Web Portal Overview and Key Functional Components 

 Large datasets could be challenging to explore especially for investigators without 

programming skills. Thus, we built our server blueprinted from cellxgene interface, which is a 

tool that was originally designed for exploring single-cell RNA-seq data  and comes with a 

rich set of features (Cakir et al). Furthermore, we added designed features and extended the 

functional set of cellxgene components to allow investigators to visualize and customize their 

results as well as to run more in-depth analyses (Figure 2A). Beside all the functionalities 

cellxgene supports, our server further allows investigators to visualize the expression of their 

genes of interest and exports publication-ready figures such as violin plots, dot plots, track 

plots and heatmaps (Figure 1D, 2B, Supplementary Figure S2A, S2B). Importantly, we 

developed additional analytical components so that investigators could explore their own gene 

sets (i.e. lists of genes of interest). Our server enables investigators to calculate enrichment 

scores against all our pre-computed regulated gene ranks by using Gene Set Enrichment 

Analysis (GSEA) (Fang; Subramanian et al). The results will be presented to investigators in 

an interactive manner so they can select the top comparisons of interest (Figure 2C). To 

ensure the reliability of the results, the codes for calculation scores for GSEA have been 

carefully reviewed. We implemented a procedure for multiple hypothesis testing: p-values 

were controlled by False Discovery Rate (FDR) from all pre-computed p-values for each 

comparison. This would allow investigators to assess the specificity of their gene set 

comparison to gene sets from other databases including MSigDB (Liberzon et al) and 

COVID-19 related gene set databases we or the investigators curated (Kuleshov et al.). Finally, 

the investigators can review the strength and confidence of their gene set enrichment by 

examining the output volcano (Figure 2D) and GSEA plots (Figure 2E). The investigators 

could also choose to explore our pre-computed GSEA results from different gene set 

databases (Figure 2F), using different gene-ranking strategies (Supplementary Figure S2C), 

or based on different comparisons (Supplementary Figure S2D).  

 

Examples Demonstrating How to Use CovidExpress  
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 CovidExpress is a rich resource for investigators at various stages of their research 

projects. For investigators who do not know exactly where to start the analysis in our web 

portal, we compiled a gene name cloud to highlight genes that have been frequently studied or 

implicated in SARS-CoV-2 and COVID-19 studies based on RNA-seq analysis (Figure 1C,1D, 

Supplementary Table S2), and the functional significance of many of these transcripts 

remains to be determined. To showcase the utility of CovidExpress in exploratory analysis, we 

present below two case studies. 

As the first case study, we wish to illustrate how CovidExpress portal might be used to 

investigate the expression patterns of pre-selected genes of interest and identify new ones. 

Here as the example, we examine the expression of a COVID-19 severity related gene set, 

identified by Overmyer et al (Overmyer et al, 2021), using an elastic net machine learning 

approach to find molecular features with high significance to COVID-19 status and severity 

based on multi-omics data. We restricted our analysis to 20 genes with the highest predictive 

power from the original paper. Then, using CovidExpress, we checked the expression of these 

genes in our compiled gene expression data of all the studies that reported the patient’s 

COVID-19 disease severity (510 samples from 14 different studies). The violin plot in Figure 

3A indicates that, indeed, many of these genes show some relatively higher expression 

especially in the samples from Intensive Care Unit patients (ICU), Non-ICU, Remission and 

Severe patients. To closely check the enrichment pattern of these genes and avoid batch 

effect, we selected the ICU and Non-ICU samples from Overmyer et al. data (GSE157103) 

and plotted their expression in all of the 126 samples (66 ICU and 60 Non-ICU) (Figure 

3B,3C). The expression pattern of these genes indicates that GRB10, ARF1, PGS1, 

RASGEF1A and SESN2 genes are highly expressed in ICU samples, while the rest of the 

genes are highly expressed in Non-ICU samples. These results can be very useful to get a 

sense about the role of these genes in COVID-19 severity. 

To investigate further the difference between ICU and Non-ICU patients, we performed 

differential gene expression analysis using CovidExpress for the same study (GSE157103). 

We identified the significantly up- and down-regulated genes between these two conditions 
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and found some gene from the starting list also were among top differential expressed genes 

such as GRB10 (Figure 3D). The results of GSEA analysis run for the ICU up-regulated genes 

indicates that the ICU enriched genes are a good discriminator between healthy controls and 

patients in the remission state from another study (GSE16778) further supporting the 

importance of these genes (Figure 3E). Consistently, the expression for top COVID-19 

severity predictor genes GRB10 and RASGEF1A were correlated and were overall higher in 

both ICU vs. non ICU and remission vs. healthy patients (Figure 3F). 

As the second case study, we wish to illustrate how investigators can utilize CovidExpress 

to explore dozens of datasets starting from biological hypothesis and ending on an in-depth 

analysis of selected studies. An increasing body of literature is showing that altered 

coagulation is one of the strong phenotypic markers associated with severe COVID-19 cases 

(Al-Samkari et al, 2020; Osuchowski et al, 2021; Ramlall et al, 2020). Thus, we wanted to 

check how genes related with blood coagulation (GO:0030193) are regulated in different 

samples in our cohort. Using the GSEA enrichment feature, we can first identify the top 15 

samples that show a significant up- or down-regulation of the coagulation markers (Figure 3G). 

Among the contrasts that show an up-regulation of the coagulation genes are the Buffy coat 

cells from COVID-19 positive ICU patients compared with control (GSE154998); while on the 

other hand, the SARS-CoV-2 treated H1299 cells (GSE148729) showed decreased 

expression of coagulation genes after treatment. Interestingly, in Wyler et al. study (Wyler et al, 

2021) H1299 cell lines showed a low susceptibility to SARS-CoV-2 infection due to their low 

expression of ACE2 and low virus replication. This in turn might explain the altered activation 

of the coagulation genes.  

To examine the degree of up/down-regulation of our coagulation gene set, we can further 

explore the GSEA enrichment profile. Indeed, most of the genes are up- and down-regulated 

in GSE154998 and GSE148729 experiments, respectively (Figure 3H). We can also compare 

how the GSEA score calculated for our coagulation gene set are ranked in respect with the 

precalculated contrasts from our database. For example, Figure 3I illustrates volcano plot, for 

the relation between Normalized Enrich Score (NES) and p-value, for the Buffy coat cells (left) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.05.14.444026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

and H1299 cells (right). Using the available custom annotation feature, investigators can plot 

the gene expression of the different coagulation genes (Figure 3J) and perform differential 

gene expression analysis to study in more details the expression patterns of these 

experiments (Figure 3K). As expected, and as reported by the previous studies, Buffy coat 

cells shows a large change in its genome-wide expression, while the H1299 cell line showed a 

transcriptional profile similar to uninfected cells as reported by Wyler et al. (Wyler et al., 2021). 

We summarized suggested analysis steps for various investigation interests in 

Supplementary Figure S3A. Overall, CovidExpress provided functionalities can become a 

very handy and powerful exploratory tool for investigators, especially those without advanced 

programming background or without easy access to high-performance computing facilities. 

 

 

CovidExpress Reveals Insights and Potential Discoveries 

 With all re-processed datasets and web portal in CovidExpress, we sought to explore 

user friendliness of the web portal. The first challenge that we encountered was the 

heterogeneity of experimental protocols and data variations. As expected, samples clustered 

strongly by study cohorts in conventional PCA (Figure 4A). PCA reduction using the top 1000 

differentially expressed genes leads to some improvements, but the batch effect was not 

totally removed (Supplementary Figure S4A). Different dimension reduction methods such 

as t-distributed stochastic neighbor embedding (tSNE) or Uniform Manifold Approximation and 

Projection (UMAP) (McInnes et al) did not solve this problem, either (Supplementary Figure 

S4B,C). Different scaling options such as batch correction using Combat (Leek et al, 2012) 

could not entirely solve this problem (Supplementary Figure S4D). We hypothesized that the 

inherent experimental variability might be partially mitigated or equalized by correcting against 

a set pathways or regulated genes using the approach of Single-sample GSEA (ssGSEA) 

enrichment scores (Barbie et al) for PCA, tSNE and UMAP analysis instead of correcting at the 

gene level. ssGSEA is an extension of GSEA to calculate separate enrichment scores for each 

pairing of a sample and gene set. Each ssGSEA enrichment score represents the degree to 
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which the genes in a particular gene set are coordinately highly or lowly expressed within a 

sample. By calculating ssGSEA in each sample, we were able to get an enrichment score for 

each gene set in MSigDB (Liberzon et al.), including well known pathways like KEGG 

(Kanehisa et al), REACTOME (Jassal et al), BIOCARTA (Nishimura), Wikipathways (Slenter 

et al), and Gene Ontology processes (The Gene Ontology). Next, we used ssGSEA scores to 

cluster samples by similarity between gene sets, with the rationale that ssGSEA scores are 

sufficient to represent gene variability between samples. 

To test this hypothesis, we used GTEx data as a ground truth. We downloaded and 

processed 9,525 GTEx samples from 30 tissues, then, we calculated the top 10 principal 

components projection for each sample using its gene expression and MSigDB ssGSEA 

enrichment scores respectively (Supplementary Figure S4E, S4F). Next, we used the 

silhouette score to measure the separability between tissues (Rousseeuw, 1987) and found 

that ssGSEA scores-based projection indeed leads to a better separability between tissues 

(Supplementary Figure S4G). 

 Encouraged by these results, we then applied the ssGSEA approach on our data 

collection, we observed that the samples clustered less according to study cohorts (Figure 4B, 

Supplementary Figure S4H). This clustering was further improved if we use the ssGSEA 

score from COVID-19 signature gene sets (top differentially expressed genes from our 

analysis) (Figure 4C, Supplementary Figure S4H). In contrast, although batch effect 

correction method such as Combat achieved the best experiments-based silhouette score (i.e. 

making samples less separated by study cohorts)(Supplementary Figure S4H), this strategy 

did not improve the samples separation by phenotype (infected with SARS-CoV-2 or 

not)(Supplementary Figure S4I). As expected, this clustering did not perfectly separate 

infected samples from control samples (Figure 4D) due to tissue specificity and many infected 

samples were also tested with drug treatments. In the portal, we show a projection obtained by 

using the ssGSEA scores of the differentially expressed gene sets by default setting in the 

CovidExpress portal, but investigators may select other types of projections (Supplementary 

Figure S5A, S5B, S5C).  
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Next, we utilized the portal’s function to gain insights about SARS-CoV-2’s effect. We first 

noticed there were two large clusters despite their SARS-CoV-2 infection status (Figure 4D). 

Interestingly, the left top cluster were all from blood related samples such as white blood cells, 

leukocytes, monocytes. While the right bottom cluster were from other tissues. This indicated 

the COVID-19 signature was not able to overcome the tissue specificity and that immune cells 

might respond to SARS-CoV-2 differently. Next, we reviewed the SARS-CoV-2 infection status 

for studies with large number of samples. CovidExpress portal allowed us to select different 

projection of samples (Supplementary Figure S5A), that we noticed Rhinovirus samples 

separated from control samples but mixed with some SARS-CoV-2 samples in both UMAP 

and tSNE projections (Supplementary Figure S5B, S5C). The clustering of Rhinovirus 

samples is less visually impressive in PCA. However, we noticed PC1 generally reflected the 

effect of virus infection and that smaller PC1 value correlated with virus infection. For example, 

more SARS-CoV-2 infection samples clustered at left in lung (Figure 4E), similarly more 

Rhinovirus (RV) infection samples clustered at left in nasal sample (Figure 4F). This is 

consistent with the proposed role that RV infections are potential mechanisms of ACE2 

overexpression in patients with asthma (Chang et al, 2020). We next selected one study from 

each tissue that had a simple experimental design comparing SARS-CoV-2 or RV infected 

cells versus control (GSE160435 and GSE149273) and identified their differentially expressed 

genes respectively. 

 Interestingly, 345 genes (280 up-regulated and 65 down-regulated) showed consistent 

expression change pattern in both lung and nasal cells (Figure 4G, Supplementary Table 

S3). Among the 280 consistently up-regulated genes, 56 genes (20%) where among the top 

1000 genes highly cited in COVID-related literature mined through the LitCovid database 

(Chen et al., 2020, 2021a) (Figure 4G). Among the top hits we identified genes such as TNF, 

IL1A and CXCL10 previously identified as a common factor between pulmonary and olfactory 

dysfunctions in SARS-CoV-2 infections (Oliviero et al, 2020). Additionally, TNF has been 

functionally shown, along with IFN-γ, to be one of the key drivers of cytokine storm in 

COVID-19 (Karki et al, 2020). Functional enrichment analysis against the COVID-19 gene-sets 
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compiled by the EnrichR database (Figure 4H) (Kuleshov et al., 2020) shows 

up/down-regulation patterns consistent with those from other independent studies. These 

enrichment results also indicate that the identified up/down-regulated genes are also 

consistently changing in the airway epithelium cells (Figure 4H). GSEA analysis of the 

identified up-regulated genes against the gene contrasts compiled in our database also 

indicate consistent upregulation in ex vivo cells such as in SARS-CoV-2 infected lung 

organoids (Figure 4I). 

Among the commonly differential genes in both lung and nasal tissues we also identified 

an interferon response gene OASL, an under-studied protein from oligoadenylate synthase 

(OAS) protein family. OASL’s role in antiviral activity has been reported that it could enhance 

RIG-I (Zhu et al, 2014) but it was not extensively studied in the context of COVID-19 based on 

LitCovid database. Interestingly, we observed that, OASL showed an inversely correlated 

pattern to the common down-regulated gene such as PPARGC1A and can overall discriminate 

the lung and nasal virus infected cells from the control group (Figure 4J). The expression of 

OASL is also highly correlated with that of TNF in COVID samples (Figure 4K). Among all 

tissues, OASL expression is highest in the lung tissue (Supplementary Figure S5D), 

particularly in macrophage cells in lung tissue (Supplementary Figure S5E), suggesting its 

important role in the innate immune response in lungs.  

We also noticed ACE2 and several other top studied genes were significantly 

up-regulated only in RV infected nasal but not in SARS-CoV-2 infected lung organoids (Figure 

4G). This might also be due to the nature of SARS-CoV-2 needing ACE2 to infect cells 

(Clausen et al.; Hoffmann et al., 2020; Liu et al., 2020; Ziegler et al., 2020) but not regulating 

ACE2’s expression. Interestingly, despite “IL-6/JAK/STAT3 Signaling” were enriched for genes 

up-regulated in both lung and nasal (Supplementary Table S3), IL6 is significantly 

up-regulated only in RV infected nasal but not in SARS-CoV-2 infected lung organoids (Figure 

4G). This indicated the activation of IL-6 signaling were different between RV infected nasal 

and SARS-CoV-2 infected lung organoids. In lung, there are other pathways implicated such 

as mTOR (Supplementary Table S3) (Mullen et al, 2021). In addition, furin cleavage site in 
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SARS-CoV-2 was reported to help its infectivity and transmissibility (Johnson et al, 2021; Xia 

et al, 2020) while our results found FURIN gene was also up-regulated in SARS-CoV-2 

infected lung organoid alveolar type 2 cell (Figure 4G, Supplementary Table S3) (Mulay et al, 

2021), implicating a positive feedback, presumably via TGF-beta Signaling (Supplementary 

Table S3) (Blanchette et al, 2001). Given that the furin cleavage site could naturally occur in 

coronavirus family (Wu & Zhao, 2021), it is plausible SARS-CoV-2 might evolved to induce 

FURIN expression to gain superior infectivity, although this hypothesis requires further 

investigation.  Together, the data analysis capacities offered by CovidExpress enable 

scientists to identify key genes and pathways that would be catalysts of new scientific 

investigations. 
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DISCUSSION 

We describe the data collection, data processing, and web portal development of a 

comprehensive RNA-seq database from SARS-CoV-2 and COVID-19 related research, 

named CovidExpress. CovidExpress database content and portal will be periodically updated. 

We expect the updates will be based on the framework described here. We also plan to 

improve our differential gene expression analysis component in the future to adjust for batch 

effects between studies. For the current release, we strongly suggest investigators to 

perform gene expression comparison within individual study. To make the database as 

user friendly as possible, we have developed abundant visualization functions to help 

investigators to quickly test their hypothesis and visualize results. We included GSEA 

component to enable investigators to analyze gene sets on-the-fly and compare results with 

thousands of pre-computed GSEA results. This framework could be easily applied to different 

collections of data. Finally, our approach in using ssGSEA scores for unbiased clustering 

sheds light on how to visualize large datasets with varying, strong, and most importantly 

unknown batch effect.  

We strongly believe the CovidExpress database has a power to become a key tool for 

identifying new genes of interest to support the development of hypotheses and subsequent 

biochemical analyses. While many genes have been found to be differentially regulated during 

SARS-CoV-2 infection across studies, some are only found in specific cell types or 

experimental conditions, and the functional relevance of many of these remains unclear. It will 

be beneficial to use the CovidExpress tool as the first step in elucidating these functional 

pathways across dozens of experiments. Follow up investigations aimed at elucidating where 

genes of interest fit into biochemical pathways and characterizing which are upstream 

regulators or sensors that can affect a variety of downstream processes will be essential to 

improve our understanding of SARS-CoV-2 pathogenicity and identify new therapeutic 

approaches. For example, while IL-6 has been identified in many datasets as being important 

in COVID-19, biochemical characterization has lagged, and the functional relevance of IL-6 

remains unclear, as clinical trials to block IL-6 or its receptor have had mixed results in patients 
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(Gordon et al, 2021; Nasonov & Samsonov, 2020). Additionally, analyses should consider the 

stage of disease, which can be selected using the sample selection feature in CovidExpress. 

Innate immune responses, particularly IFN responses, are known to change throughout the 

infection (Blanco-Melo et al, 2020; Hadjadj et al, 2020; Lee et al, 2020; Lee & Shin, 2020; 

Lucas et al, 2020), making temporal considerations key.      

Overall, the CovidExpress database fills a critical gap in the research field to 

comprehensively compile the large amount of RNA-seq data available on COVID-19 and offer 

it in a format that enables users to perform basic and visualizable analyses without the need 

for programming skills. We think this work will not only benefit SARS-CoV-2 research field but 

may also inspire other data-driven investigators on how to utilize rich data already published 

for scientific discoveries.   

 

DATA AVAILABILITY 

RNA-seq data were collected from GEO as listed in Supplementary Table S1. Raw data with 

annotation and gene signatures could be downloaded from 

https://stjudecab.github.io/covidexpress  

 

MATERIALS AND METHODS 

RNA-seq data analysis.  

Sequencing reads were quality filtered using TrimGalore (available on-line at 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Filtered reads were aligned 

to the human reference genome GRCh38.p12 using STAR (Dobin et al, 2013), assuming that 

the RNA-seq experiment is strand-specific. Next, MarkDuplicates from GATK (McKenna et al, 

2010) and CollectRnaSeqMetrics from Picard (available on-line at 

http://broadinstitute.github.io/picard/) were used to mark duplicated reads and compute 

mapping statistics. Only samples with more than 2M reads mapped (1,460 samples) or more 

than 1M deduplicated reads mapped (1,396 samples), were later retained for further analysis. 

RSEM (Li & Dewey, 2011) was used to quantify read counts per gene based on Gencode v31 
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reference gene annotation , and expression values were converted to Transcripts Per Kilobase 

Million (TPM) unit. Next, infer_experiment.py tool from RSeQC (v4.0.0) (Wang et al., 2012) 

was used to examine strand-specificity for each sample. Subsequently, the results from each 

sample were manually examined to determine final strand-specificity. If majority of samples in 

experiment (i.e. samples from the same GEO accession number) exhibited no bias toward 

strand specificity, as emphasized by fraction of reads mapping to both strands at the level > 

0.4 and < 0.6, the experiment strategy was changed to unstranded (non-strand specific), and 

reads from all samples from that experiment were remapped in the unstranded mode. The 

exception from the approach to assign the same strand specificity toward all samples from the 

same experiment was made for GSE147507 experiment, in which case the manual 

examination revealed that strand specificity status called by RSeQC was consistent within 

subseries of the samples, as emphasized by the sample names. E.g. samples from “Series1” 

were consistently considered strand-specific, while samples from “Series2” were non-strand 

specific. 

After all samples were mapped, geneBody_coverage2.py from RSeQC was used to 

examine the percentile-distribution of mapping reads along housekeeping genes. Distribution 

in each sample was min-max normalized, hieratically clustered with Ward’s method and 

manually examined in order to subjectively identify clusters representing samples with the 

highest quality (clusters #4, #7, #8, and #9; 946 samples), medium quality (clusters #5 and #6; 

163 samples) and low quality (clusters #1, #2 and #3; 359 samples; Supplementary Figure 

1H). Normalized distributions were also used to calculate for each sample the cumulative sum 

at 50th percentile, with the assumption that deviation of this cumulative value from 0.5 value 

will increase with the increasing bias toward mapping of reads at 3’ or 5’ end. The lower and 

upper thresholds to consider a sample as being biased toward 3’ or 5’ end was set as 0.2716 

and 0.7496 respectively; which values corresponds with the minimal and maximal values of 

cumulative sum at 50th percentile (min=0.3282; max=0.693), minus/plus one standard 

deviation (std=0.0566), computed among 946 samples which were considered as representing 

the highest quality gene coverage among studied samples. Applying those thresholds for all 
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samples allowed for identification of total of 1,274 samples with low 5-3 ends bias. 

Independently, the mean coverage was calculated for each sample from normalized gene 

body coverage distributions, with the assumption that the value will be lower for low quality 

samples than for high quality samples. Indeed, for example the mean coverage for 359 

samples from three lowest quality clusters #1, #2 and #3 (Supplementary Figure 1H) the 

mean coverage is on average at the level of 0.2669, while in contrast for 946 samples from 

high quality clusters #4, #7, #8, and #9, this value is at the level of 0.7392. Therefore, a value 

0.3843 was set as a minimal average gene body coverage threshold, which value corresponds 

with the minimal coverage value of 0.5138 (minimal among 946 highest quality samples) 

minus three standard deviations from the mean (std=0.04317). This allowed for identification 

of 1,160 samples meeting average gene body coverage threshold. Finally, carefully 

considering all quality control criteria, a total of 1,093 samples were selected for further 

analysis (Supplementary Figure 1J). 

After removing low quality samples, batch correction using Combat (Leek et al., 2012) 

was applied for FPKM values, which values were used only for the purpose of samples 

clustering with PCA, if the user would like to choose this option. However, because of the 

nature of the CovidExpress project, and very large technical and biological variability between 

experiments, in order to minimize the influence of the batch effects correction, the differential 

gene expression analysis was computed only for the samples originating from the same 

experiment based on non-batch-corrected FPKM expression values. Differential expression 

analysis was assessed using limma-voom (Law et al, 2014). Only GENCODE annotated level 

1 and 2 protein-coding genes, with at least 10 reads per sample in the minimum group size, 

were retained in the analysis. Based on each contrast, differential genes were extracted with 

the following thresholds: 

1.     Up2: FC ≥ 2, FDR ≤ 0.05 

2.     Up2NoFDR: FC ≥ 2, p ≤ 0.05 

3.     Up: FDR ≤ 0.05 

4.     UpNoFDR: p ≤ 0.05 
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5.     DownNoFDR: p ≤ 0.05 

6.     Down: FDR ≤ 0.05 

7.     Down2NoFDR: FC ≥ 2, p ≤ 0.05 

8.     Down2: FC ≥ 2, FDR ≤ 0.05 

  

Moreover, based on each DEG contrast, the genes were pre-ranked following four alternative 

approaches: 

1.   FCRank metric = log2 (FC)  

2.   PRank metric = direction × -log10 (p-value) 

3.   FCPRank metric = log2 (FC) × -log10 (p-value) 

4.   FCPERank metric = log2 (FC) × -log10 (p-value) × log10 (Mean Expr. +1)  

  

Each pre-ranked gene list was sorted and used to extract 20, 50, 100, 200, 500, 1000 and 

2000 Top (upregulated) and Bottom (downregulated) genes. All pre-ranked gene lists were 

also used to calculate Gene Set Enrichment Analysis (Subramanian et al., 2005) using 

GSEApy (v.0.10.2, available online at https://github.com/zqfang/GSEApy). GSEApy was run 

with 1000 permutations and gene set size thresholds were set to 5 and 5000 for minimal and 

maximum size, respectively. The analysis was independently conducted for gene signatures 

collections from four sources: 

1. COVID-19 related gene signatures: 561 differential gene signatures from COVID-19 

related research, downloaded from Enrichr portal (Kuleshov et al, 2016; Kuleshov et 

al., 2020). This collection was enlarged by 20,036 differential gene signatures 

collected at various thresholds and top up-/down-regulated genes from CovidExpress 

project. 

2. DSigDB: 23,950 gene signatures from DSigDB database (Yoo et al, 2015), 

downloaded through Enrichr database. 

3. DrugMatrix: 7876 gene signatures from DrugMatrix database (Ganter et al, 2006), 

downloaded through Enrichr database. 
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4. MSigDB: 25,724 gene signatures from MSigDB (v7.1) (Liberzon et al., 2015; Liberzon 

et al, 2011). In addition to pre-ranked GSEA analysis, single-sample GSEA, also using 

GSEApy program, was conducted. Normalized enrichment scores (NES) were 

computed for all the COVID-19 related samples either for the full collection of gene 

signatures from MSigDB, or collection of in-house differential gene signatures from 

COVID-19 related research, narrowing down the full collection to 492 differential gene 

signatures from Up2 and Down2 categories. 

 

CovidExpress web portal development 

We built CoivdExpress by leveraging the sophisticated visualization features of cellxgene 

interface, which is a tool that was originally designed for exploring single-cell RNA-seq 

analysis . Because cellxgene client side was built using the React library, the addition of new 

user interface (UI) components can be done in a straightforward modular way. We mainly 

added the following components: GSEA analysis and visualization related components, gene 

expression visualization plots and differential gene expression analysis and full results 

downloading component. We used nivo library (https://nivo.rocks/) for visualization of the 

interactive plots. The GSEA enrichment plot was generated using the python module gseapy 

(https://github.com/zqfang/GSEApy) , while the different gene expression plots were 

generated using the python module scanpy (Wolf et al, 2018).  

 

Data preparation for visualization 

To be able to pass the data to cellxgene, it needs to be converted into the .h5ad format 

understood by scanpy (Wolf et al., 2018). Thus, we first used Seurat v3 R package (Stuart et al, 

2019) to load the expression data, add the different projections slots and the metadata. The 

Seurat object was then converted into the .h5ad format using the SeuratDisk R package 

(https://github.com/mojaveazure/seurat-disk). 

The GSEA ranks, NES scores and p values, on the other hand, were stored in a separated .h5 

file for rapid access and parsing. 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. Overview of RNA-seq processing Workflow 
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A  General schema of data collection and processing. See Material and Methods part for 

details.  

B  Overview of samples distribution for finalized samples used. 

C  Summary of the number of samples, DEG contrasts, differential gene signatures 

extraction approaches and final number of differential gene signatures. 

D  Overview of general approaches for CovidExpress exploration, and analytical and 

visualization tools that may be utilized within the portal. 

E  Word cloud highlighted genes frequently reported in literatures related to 

SARS-CoV-2.  

F  Word cloud highlighted genes frequently shown in top 500 regulated genes from this 

study(315 contrasts), genes also in Figure 1E were colored in red.  
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Figure 2. CovidExpress web portal overview and key functional components 

A  Main Graphical User Interface of CovidExpess web portal. Left panel were organized 

by meta data. Middle panel each dot represents a sample. Right panel allow user input 

gene of interest for reviewing their expression level or perform GSEA analysis.  

B  Our newly designed visualization tool allow user generating violin plot, dot plot, track 

plot and heatmap for selected genes across all or selected samples.  

C  Barplot of top GSEA results compared to pre-computed GSEA results. User mouse 

hover each bar would show detailed information. User click on bar would update 

Volcano plot and GSEA plot as panel D and E.  

D  Volcano plot for the selected result. User mouse hover each dot would show detailed 

information. Data and plot could be downloaded for user’s customization.   

E  GSEA plot for the selected result. User click could find more functions such as zoom, 

rotate, download.  

F  Volcano plot for pre-computed data. Multiple choices of rank types and gene set 

databases available.  
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Figure 3. Use cases demonstrating the common steps for using CovidExpress  

A  Use case1: CovidExpress violin plot showing the expression of the top 20 COVID-19 

severity predictors as defined by Overmyer et al (Overmyer et al., 2021) in the 

available severity classes available in CovidExpress. 

B  CovidExpress dot plot showing the expression pattern of the top 20 COVID-19 

severity predictors in Overmyer et al dataset (GSE157103). 

C  CovidExpress heatmap showing the detailed expression of the top 20 COVID-19 

severity predictors in Overmyer et al dataset (GSE157103).  

D  Volcano plot showing the transcriptome-wide differential expression results as 

calculated by CovidExpress of ICU vs Non-ICU samples from Overmyer et al dataset 

(GSE157103). 

E  CovidExpress GSEA plot showing the enrichment the upregulated genes from the ICU 

samples of GSE157103 in the remission patients from GSE161778.  

F  CovidExpress scatter plot showing the gradual distribution of samples based on their 

COVID-19 severity using two top COVID-19 severity predictors.  

G  Use case2: CovidExpress GSEA ranking plot of the list of experiment showing the 

most enriched and depleted expression of the coagulation genes (GO:0030193). 

H  CovidExpress GSEA plot of the experiments showing the most enrichment and 

depletion of the expression of the coagulation genes. 

I  CovidExpress GSEA volcano plot comparing the NES and FDR scores of the 

coagulation geneset relatively to the other contrasts in the samples identified in figure 

H. 

J  CovidExpress dot plot showing the expression pattern of the coagulation genes in the 

experiments identified in panel H. 

K  Volcalo plot showing the identification of additional differential genes between the 

previous two experiments using CovidExpress differential gene expression feature. 
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Figure 4. CovidExpress reveal insight led to potential discovery 

A  PCA analysis based on gene expression level (TPM), colored by studies 

B  PCA analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), using 

gene sets from MSigDB, colored by studies 
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C  PCA analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), using 

Covid signature gene sets from this study, colored by studies 

D  PCA analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), using 

Covid signature gene sets from this study, colored by SARS-CoV-2 infection status.  

E  Using combination of lasso selection and meta data selection, we selected lung tissue 

SARS-CoV-2 (red dots) and control group (blue dots).  

F  Using combination of lasso selection and meta data selection, we selected nasal 

tissue Rhinovirus (red dots) and control group (blue dots).  

G  Scatterplot showing the log2 expression fold change between lung and nasal cells 

after virus infection. Genes up-regulated in both tissues are shown in red, while the 

down-regulated in both tissues are shown in blue. We labelled genes shown as top in 

our literature-based word cloud that black ones were only significant up-regulated by 

Rhinovirus in nasal, while purple were only significant up-regulated by SARS-CoV-2 in 

lung.   

H  Heatmap showing the -log10(p-value) of the commonly up-/down-regulated genes in 

COVID-19 genes sets compiled by the EnrichR database.  

I  GSEA plot of one of top contrast differential expression comparison (GSE157057) 

showing the enrichment of the commonly up-regulated genes in lung and nasal tissue.  

J  Scatterplot showing the anti-correlation between OASL (commonly up-regulated) and 

PPARGC1A (commonly down-regulated) genes in nasal and lung samples. Samples 

are colored based on their phenotype (red: SARS-CoV-2 or Rhinovirus, blue: Control). 

K  Scatterplot showing the correlation between OASL and TNF (both commonly 

up-regulated) in nasal and lung samples. Samples are colored based on their 

phenotype (red: SARS-CoV-2 or Rhinovirus, blue: Control). 
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Figure S1.  

A  Heatmap of results from automatic detection of RNA-seq strandness.   

B  Pie chart shown percentage of stranded RNA-seq data versus unstranded. 

C  Boxplot of mapped reads number by studies. 

D  Heatmap of mapping rate, duplication rate.  

E  Heatmap of read genomic distribution. 

F  Hierarchical clustering of read aggregative gene-based coverage. 

G  PCA plot colored based on hierarchical clusters (in panel G), 5’ to 3’ bias score and 

Average normalized coverage. Number in brackets indicated variance explained.  

H  Line plot of aggregative gene-based coverage for individual cluster (defined in 

Supplementary Figure 1F).  

I  Pie chart shown the percentage of RNA-seq sample using single-end versus 

paired-end sequencing. 

J  Upset plot summaries the overlap between different clusters, groups and quality 

control criterions. The black dot in bottom right matrix indicated which group the 

sample for that bar belong to. For example, the 166 samples for second bar were 

overlapping only between group 

1396_samples_with_at_least_1M_deduplicated_reads_mapped and 

1460_samples_with_at_least_2M_reads_mapped. 
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Figure S2.  

A  Detailed demonstration of plot function. These functions were made available for all 

types of plots as violin plot, dot plot, track plot and heatmap plot. User could input their 

gene list. User could also simple plot the top 10 differential expressed gene by 

selected meta data (“Source” as example) here. Results here indicated very few 

genes could be distinct one source from the others. For selected group 1 versus 

group2, differentially expressed genes between group 1 and group 2 could also been 

plot.  

B  Plot customization functions were provided so user could zoom, rotate, change text 

size, download the figure on-the-fly.  
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C  We provide GSEA for different options of pre-computed ranks. User could choose 

based on different questions to ask. For example, using fold change (FC) based rank if 

they wondering what have been enriched by most changed genes. p.value based if 

they more interesting in what have been enriched by most consistently changed genes. 

See Material and Methods part for details.  

D  An example of how pre-computed results were organized and available for user’s 

selection.  
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Figure S3. 

Suggested analysis steps for variously investigation interests.  
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Figure S4.  

A  PCA analysis based on the top one thousand differential genes, colored by studies 

B  tSNE analysis based on gene expression level, colored by studies 

C  UMAP analysis based on gene expression level, colored by studies 

D  PCA analysis based on gene expression level after batch correction, colored by 

studies 

E  PCA analysis of GTEx data based on gene expression, colored by tissue.  
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F  PCA analysis of GTEx data based on MsigDB signature, colored by tissue. 

G  Comparison of tissue-level Silhouette score distribution using expression and 

MSigDB-based PCA projections. 

H  Experiment-level Silhouette scores distribution between our compiled samples using 

different scoring methods to measure batch-effect. Lower score indicates less batch 

effect. 

I  Phenotype-level Silhouette scores distribution between our compiled samples using 

different scoring methods to measure the degree of phenotype separability. Higher 

scores indicate better separability between SARS-CoV-2 infection and control 

samples. 
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Figure S5.  

A  An example shown various choices of samples embedding layouts user could use. 
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B  UMAP analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), 

using COVID signature gene sets from this study, colored by SARS-CoV-2 infection 

status.  

C  tSNE analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), 

using COVID signature gene sets from this study, colored by SARS-CoV-2 infection 

status.  

D  OASL expression in different tissues from GTEx datasets. 

E  OASL expression in different cell types from Lung GTEx single-cell RNA-seq datasets. 
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